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Abstract This paper is concerned with group consensus of multi-agent systems (MASs) that consist of two

groups in additive noise environments. First, a control protocol is proposed based on the state information

of each agent’s neighbors corrupted by additive noises. Second, some sufficient conditions and necessary

conditions are obtained for the following two types of group consensus behaviors. (1) Pure group consensus:

agents in both groups have the same behavior (weak consensus or strong consensus); (2) hybrid group

consensus: agents in different groups achieve different consensus behaviors. It is revealed that the influence

between the two groups should be attenuated such that the MASs can achieve group consensus in additive

noise environments, i.e., the affected group must fight against the influence that comes from another group.

Finally, some simulation examples are given to illustrate the feasibility of the theoretical results.
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1 Introduction

With the development of automation and robotics technology, the coordination control of multi-agent
systems (MASs) has become an important topic in the control community, with the consensus problem
being the basic problem. In recent years, consensus problems of MASs have received wide attention and
have obtained many promising research findings. Vicsek et al. [1] proposed a discrete-time multi-agent
model and developed consensus issues. Based on [1], Jadbabaie et al. [2] investigated linear MASs and
gave the consensus conditions. For the problem on how time-delays affect consensus behaviors, many
important and interesting research results have been obtained, as shown in [3–10].

The above studies all focused on the global consensus problem that all agents converge to a common
state under the given control protocol. Note that the agents may be assigned different tasks, and different
groups are then required to achieve different consensus behaviors. Some agents are required to converge to
one common state, and some converge to another common state. This behavior is called group consensus
and plays an important role in group formation control [11] and distributed cluster control for multi-
microgrids [12]. In fact, group consensus problems have been studied extensively. Yu and Wang [13]
studied the group average consensus of MASs under ideal environments. Further, they discussed the case
with communication time-delays in [14]. An et al. [15] and Oyedeji and Mahmoud [16] also made efforts
to study how time-delays affect group consensus behaviors. However, there is a common assumption
in [13, 14] that for each node in the graph, the in-degree from other groups is zero at any time. The
assumption mentioned above is called the balance assumption, which may largely limit its application.
The assumption was then relaxed in [17, 18] when considering group consensus of MASs. Huang et
al. [19] studied a class of cluster consensus by a tracking approach. Here, the models mentioned above
were assumed to be deterministic.
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In real MASs, measurement noises inevitably exist in the communication between any two agents, in
which additive and multiplicative noises are dominant. So far, fruitful achievements have been made
in consensus problems of MASs with the noises mentioned above. Li and Zhang [20] gave the average
consensus conditions of first-order MASs with generally directed topologies concerning additive noises and
introduced a control gain function. Wang and Zhang [21] investigated the stochastic strong consensus
of MASs with general directed topology and additive noises in detail. Research results obtained in [21]
further extended the results in [20]. In the case in which additive and multiplicative measurement noises
coexist in MASs, Zong et al. [22] explored sufficient conditions and necessary conditions for achieving a
consensus and revealed some relationships between the mean square consensus and almost sure consensus.
For complex environments with both time-delays and noises, some conditions for achieving a consensus
were given in [23]. Other research findings of the coordination control of MASs under measurement
uncertain environments have also been obtained, such as in [24–28].

Note that the above consensus results under measurement noises are related to the global consen-
sus. However, group consensus of MASs under measurement noise environments has not been studied
systematically. For the case with both multiplicative noises and time-delays, Shang [29] studied group
consensus problems of MASs in directed topologies with the required weak balance assumption that for
all nodes in the graph, the in-degrees from the other groups are equal at any time. Song et al. [30] sought
an asymptotic group consensus condition under a special kind of network, i.e., the Boolean network, in
which additive noises were concerned and one group needed to satisfy the zero in-degree condition. Note
that almost all efforts about group consensus under noisy environments mentioned above are based on
some balance assumptions. However, how to investigate the group consensus under measurement noises
without these balance assumptions remains an open problem.

Motivated by the above discussion, this paper investigates the group consensus problem of MASs
in additive noise environments. This paper assumes that the MASs consist of two groups, and there
is communication between the two groups. Due to the presence of communication between the two
groups, the existing conditions on control gain functions for the single group system are not sufficient
to guarantee the group consensus under additive noise environments. Moreover, we do not need these
balance assumptions to hold; i.e., the in-degree mentioned above can be unequal, which leads to the failure
of the protocol in [29,30] and makes it more difficult to derive the conditions for achieving group consensus
behaviors. Based on the state information of each agent’s neighbors corrupted by additive noises, this
paper proposes a new type of control protocol. By the semi-decoupled skill and some estimation methods,
this paper obtains some new conditions about the control gain functions for achieving different group
consensus behaviors and reveals the effect of the communication between the two groups on the group
consensus under additive noise environments.

The main contribution of this paper can be concluded as follows.
(1) Concepts of pure group consensus and hybrid group consensus are proposed. The following four

types of group consensus are established under additive noise environments: (a) agents in both groups
achieve stochastic weak consensus; (b) agents in the unaffected group and affected group achieve stochastic
weak consensus and strong consensus, respectively; (c) agents in the unaffected group and affected group
achieve stochastic strong consensus and weak consensus, respectively; (d) agents in both groups achieve
stochastic strong consensus. (a) and (d) are called pure group consensus, while (b) and (c) are named
hybrid group consensus. These studies are more comprehensive and helpful to solve some practical
problems, such as group formation control of multi-unmanned aerial vehicle systems and distributed
cluster control for multi-microgrids.

(2) Under additive noise environments, it is revealed that the influence between the two groups should
be attenuated for achieving group consensus, and its attenuation rate can be related to control gain
functions. Based on these findings, this paper develops a condition that can reveal the attenuation rate
of the influence between the two groups and obtains some conditions such that the MASs can achieve
different group consensus behaviors.

The rest of the paper is organized as follows. Section 2 introduces the problem formulation. Section 3
discusses the main results and establishes some new conditions for different group consensus behaviors.
Section 4 explores some simulation results. Finally, Section 5 gives the conclusion and enumerates some
topics for future research.

Notations. The following notations are used in the analysis process. 1n and ϑn,i are two n-dimensional
column vectors, where each element is one for 1n, and the ith element being one and others being zero for
ϑn,i. Let Im denote the m-dimensional identity matrix. For any complex number λ in the complex space
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C, let Re(λ) denote its real part. For the matrix or vector P , let PT and ‖P‖ denote its transpose and
Euclidean norm, respectively. For a given random variable or vector X , let EX denote its mathematical
expectation. For a (local) continuous martingale R(t), let 〈R〉(t) denote its quadratic variation.

2 Problem formulation

Let G = (V , E ,A) be a weighted directed graph, where V = {1, . . . , n} is the set of nodes with i represent-
ing the ith agent, E ⊆ V × V denotes the set of edges and (i, j) ∈ E is an edge of G, A = [aij ] ∈ Rn×n is
the weighted adjacency matrix with real adjacency elements aij = 1 or 0 indicating whether or not there
is an information flow from agent j to agent i directly. Moreover, we assume aii = 0 for all i ∈ V . Let
Ni = {j ∈ V|(i, j) ∈ E} denote the set of neighbors of node i and L denote the Laplacian matrix of G. A
directed path is a sequence of edges with the form (i, i+ 1), (i+ 1, i+ 2), . . .. A directed graph contains
a directed spanning tree if there exists at least one node that has a directed path to all other nodes.

In this paper, we consider a continuous-time multi-agent system (MAS) consisting of n + m agents
with directed communication graph. We assume that the topology graph G = (V , E ,A) contains two sub-
networks G1 = (V1, E1,A1) and G2 = (V2, E2,A2), where E1 = V1 ×V1, E2 = V2 ×V2 and V1 = {1, . . . , n},
V2 = {n + 1, . . . , n + m}, that is, the first n agents belong to one group, which is defined as Ω1, and
the last m agents belong to another group, which is defined as Ω2. Moreover, Ni = N1i ∪ N2i, where
N1i = {j ∈ V1|(i, j) ∈ E} and N2i = {j ∈ V2|(i, j) ∈ E} denote the set of neighbors belonging to Ω1 and
Ω2 of agent i, respectively. Here, we give the dynamics of each agent as follows:

ẋi(t) = ui(t), i = 1, . . . , n, n+ 1, . . . , n+m, (1)

where xi(t) ∈ R and ui(t) ∈ R denote the state and the control input of the ith agent, respec-
tively. Let X1(t) = [x1(t), . . . , xn(t)]

T, X2(t) = [xn+1(t), . . . , xn+m(t)]T and initial states X1(0) =
[x1(0), . . . , xn(0)]

T, X2(0) = [xn+1(0), . . . , xn+m(0)]T. For the directed graph G and the communication
between the two groups, we give the following assumption.

Assumption 1. There are information flows from the nodes in group Ω1 to the nodes in group Ω2,
and not vice versa. That is, the communication between the two groups is unidirectional and the agents
in group Ω2 can receive the information from the agents in group Ω1. Meanwhile, G1 and G2 contain a
spanning tree, respectively.

Remark 1. In previous study [29], the weak balance assumption that the in-degree from other groups
is identical at every time for each node is required to examine the group consensus. In this paper, we
remove the assumption and require the condition that both G1 and G2 have spanning trees. In fact, if
G1 or G2 does not contain a spanning tree and the whole topology graph G contains a spanning tree, the
group consensus will not be achieved, which is revealed in the simulation example in Section 4.

When additive noises exist in the MAS (1), the information exchange between agents cannot be per-
formed accurately. Here, in additive noise environments, it is often assumed that the ith agent can receive
the information from its neighbors as follows:

yji(t) = xj(t) + σjiηji(t), j ∈ Ni,

where yji(t) denotes the measured value of the jth agent’s state by the ith agent, ηji(t) ∈ R denotes
the measurement noise, and σji is the corresponding intensity function. Then, for each agent in different
groups, the measurement information from its neighbors has the following form:

{
ȳji(t) = xj(t) + σjiηji(t), i ∈ V1, j ∈ Ni,

¯̄yji(t) = ¯̄yji1(t) + κ(t)¯̄yji2(t), i ∈ V2, j ∈ Ni,

where ¯̄yji1(t) = xj(t) + σjiηji(t), i ∈ V2, j ∈ N2i is the measured value of agent i to its neighbor j

belonging to group Ω2 and ¯̄yji2(t) = xj(t) + σjiηji(t), i ∈ V2, j ∈ N1i is the measured value of agent i to
its neighbor j belonging to group Ω1. κ(t) is a time-varying function, which reflects the communication
intensity between the two groups.

Remark 2. Under the balance condition, Yu and Wang [13] proposed a new group control protocol
and studied group average consensus of MASs under ideal environments, where σji = 0 and κ(t) = 1. In
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this paper, we will explore general conditions on κ(t) for achieving different group consensus behaviors
under the additive noise environments.

Based on the measurement information above, we consider the following control protocol:

ui(t) =

{
g1(t)

∑n

j=1 aij(ȳji(t)− xi(t)), ∀i ∈ V1,

g2(t)
∑n+m

j=n+1 aij(¯̄yji1(t)− xi(t)) + g2(t)
∑n

j=1 aij ¯̄yji2(t), ∀i ∈ V2,
(2)

where g1(t) and g2(t) ∈ C((0,∞); [0,∞)) are two time-varying control gain functions.

Remark 3. Obviously, the communication between agents in both the same group and different groups
is considered in this protocol. Under this control protocol, we can study the above four types of group
consensus behaviors flexibly and obtain some new conditions for achieving group consensus under additive
noise environments. Inspired by [20], for the two groups, we introduce time-varying consensus gain
functions g1(t) and g2(t) in our control protocol (2) respectively to attenuate additive noises. It can be
seen from (2) that there are some coupling relationships between κ(t), g1(t), and g2(t), which may make
it more difficult to analyze group consensus problems. In this paper, we will obtain some conditions on
g1(t), g2(t), and κ(t) for achieving group consensus.

In general, independent Gaussian white noises are used to model measurement noises, which satisfy
the following assumption.

Assumption 2. The stochastic process ηji(t) satisfies
∫ t

0 ηji(s)ds = ωji(t), t > 0, i, j = 1, 2, . . . , n+m,
where {ωji(t), i, j = 1, 2, . . . , n+m} are independent Brownian motions.

In this paper, the MAS (1) under (2) is a stochastic system rather than a deterministic system. Here,
we introduce global consensus definitions in mean square and almost sure sense.

Definition 1 ([22]). For all agents i, j that belong to the same group, if limt→∞ E‖xi(t)− xj(t)‖2 = 0
(or limt→∞ ‖xi(t) − xj(t)‖ = 0, a.s.), then the agents in this group are said to reach mean square weak
consensus (MSWC) (or almost sure weak consensus (ASWC)); i.e., the agents in this group achieve
stochastic weak consensus.

Definition 2 ([22]). For all agents i, j that belong to the same group, if there is a random variable x̄∗,
such that E‖x̄∗‖ < ∞, P{‖x̄∗‖ < ∞} = 1, limt→∞ E‖xi(t)− x̄∗‖2 = 0 (or limt→∞ ‖xi(t)− x̄∗‖ = 0, a.s.),
then the agents in this group are said to reach mean square strong consensus (MSSC) (or almost sure
strong consensus (ASSC)); i.e., the agents in this group achieve stochastic strong consensus.

Then, based on above global consensus definitions, in this paper, we will discuss group consensus
problems involving the following four types of group consensus behaviors: (a) agents in both groups
achieve stochastic weak consensus; (b) agents in groups Ω1 and Ω2 achieve stochastic weak consensus and
strong consensus, respectively; (c) agents in groups Ω1 and Ω2 achieve stochastic strong consensus and
weak consensus, respectively; (d) agents in both groups achieve stochastic strong consensus. (a) and (d)
are called pure group consensus, while (b) and (c) are named hybrid group consensus. These discussions
are more comprehensive and helpful to solve some practical problems, such as group formation control [11]
and distributed cluster control for multi-microgrids [12].

Remark 4. For the group consensus in the mean square sense, it is easy to see from the definitions
of different group consensuses that the strong group consensus implies weak group consensus. In fact, if
agents in any group achieve strong consensus, all agents in this group will move together, which satisfies
the definition of weak consensus. Similarly, considering two groups, the strong group consensus implies
the hybrid group consensus and the weak group consensus. Moreover, the hybrid group consensus implies
the weak group consensus. However, there is no direct relationship between the two classes of the hybrid
group consensus. The results also hold for the group consensus in the almost sure sense.

Here, we first introduce the following lemma.

Lemma 1 ([22]). For the Laplacian matrix L′ of directed graph G′, we have the following assertions:
(1) There exists a probability measure π such that πTL′ = 0.

(2) There exist a nonsingular matrix Q = ( 1√
n
1n, Q̃) and

Q−1 =

(
υT

Q

)
, Q−1L′Q =

(
0 0

0 L̃′

)
, (3)

where n is the number of nodes, Q ∈ R(n−1)×n, L̃′ ∈ R(n−1)×(n−1), and υ is a left eigenvector of L′ such
that υTL′ = 0 and 1√

n
υT1n = 1.
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(3) The directed graph contains a spanning tree if and only if each eigenvalue of L̃′ has positive real
part. Moreover, if the directed graph contains a spanning tree, then the probability measure π is unique
and υ =

√
nπ.

Under protocol (2), from (1) we can obtain

Ẋ1(t) = −g1(t)L11X1(t) + g1(t)

n∑

i,j=1

aijσjiϑn,iηji(t) (4)

and

Ẋ2(t) =− g2(t)L22X2(t)− g2(t)κ(t)L21X1(t) + g2(t)

n+m∑

i,j=n+1

aijσjiϑm,i−nηji(t)

+ g2(t)κ(t)

n+m∑

i=n+1

n∑

j=1

aijσjiϑm,i−nηji(t), (5)

where L11 = [lij ] is defined as

lij =

{
−aij , j 6= i, i ∈ V1, j ∈ N1i,∑n

k=1,k 6=i aik, j = i, i ∈ V1, j ∈ N1i,

L22 =
[
l̄ij
]
is defined as

l̄ij =

{
−aij , j 6= i, i ∈ V2, j ∈ N2i,∑n+m

k=n+1,k 6=i aik, j = i, i ∈ V2, j ∈ N2i,

and L21 = [lij ] is defined as lij = −aij, i ∈ V2, j ∈ N1i. Here, L11 and L22 are the Laplacian matrices of
G1 and G2, respectively.

3 Main results

In this section, we will give sufficient conditions and some necessary conditions of pure group consensus
and hybrid group consensus for MASs in additive noise environments, respectively.

3.1 Stochastic weak group consensus

Firstly, we study stochastic weak group consensus, that is, agents in both groups achieve stochastic weak
consensus.

In fact, for agents in the first group, since each agent only exchanges information with its neighbors
in its own group, consensus problems of the first group can be considered as general global consensus
problems. For the global consensus under additive noise environments, here, the following conditions on
the time-varying control gain function g1(t) were proposed to solve the stochastic weak consensus [20,22]:

(C1)
∫∞
0

g1(t)dt = ∞;
(C2) limt→∞ g1(t) = 0;

(C3) limt→∞ g1(t) log
∫ t

0
g1(s)ds = 0.

Remark 5. Condition (C1) is called convergence condition. With this condition, all agents’ states
in the first group can reach a common value with a proper rate under additive noise environments.
Conditions (C1) and (C2) are sufficient conditions of MSWC, and (C1) and (C3) are sufficient conditions
of ASWC [22]. At the same time, it can be seen that the form of condition (C3) is more complex, but it
can reflect the decay rate of the control gain function accurately.

However, in this paper, there is communication between agents in different groups. Due to the presence
of the communication between two groups, the existing findings on the control gain function g2(t) for
general global stochastic consensus are not sufficient to guarantee the consensus of the second group.
Here, we will redesign the two control gain functions, and consider the following conditions on g1(t),
g2(t), and κ(t):
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(C4)
∫∞
0

g2(t)dt = ∞;

(C5) limt→∞ g2(t) = 0;

(C6) limt→∞ κ2(t)
∫ t

0
g21(s)ds = 0.

Theorem 1. For the MAS (1), suppose that Assumption 1 holds. Then, under protocol (2), the agents
in the first group can achieve MSWC if conditions (C1) and (C2) hold. In the meantime, if conditions
(C4)–(C6) hold, then the agents in the second group can also achieve MSWC.

Proof. First, we consider the first group. Let Q1 = ( 1√
n
1n, Q̃1) and Q−1

1 = (ῡ
T

Q1
), Q−1

1 L11Q1 = (0 0

0 L̃11
).

From Lemma 1 we know ῡ =
√
nπ̄, π̄TL11 = 0. Let Jn = 1√

n
1nῡ

T. By the properties of matrix L11

and Lemma 1, we have L111n = 0 and ῡTL11 = 0, and then (In − Jn)L11 = L11 = L11(In − Jn). Let
δ(t) = (In − Jn)X1(t) = [δ1(t), δ2(t), . . . , δn(t)]

T, where δi(t) ∈ R, i = 1, . . . , n. Let δ̃(t) = Q−1
1 δ(t) =

[δ̃1(t), δ̃2(t), . . . , δ̃n(t)]
T, δ̄(t) = [δ̃2(t), . . . , δ̃n(t)]

T, δ̃i(t) ∈ R. By the definition of Q−1
1 in Lemma 1, we

can get δ̃1(t) = ῡT δ(t) = ῡT(In − Jn)X1(t) = 0 and

dδ̄(t) = −g1(t)L̃11 δ̄(t)dt+ dM(t),

where M(t) =
∑n

i,j=1 aijσjiQ1(In − Jn)ϑn,i

∫ t

0 g1(s)dωji(s). From [22], we need to prove that limt→∞

E‖δ̄(t)‖2 = 0 for any initial state. Then, by the semi-decoupled skill, variation of constants formula, and

some estimation methods, we can get limt→∞ E‖δ̄(t)‖2 = 0 from (C1) and (C2). Then we have the conclu-
sion that the first part of Theorem 1 is true. Then we consider the second group. Let γ(t) = Q−1

1 X1(t) =
[γ1(t), γ2(t), . . . , γn(t)]

T, γ̄(t) = [γ2(t), . . . , γn(t)]
T, where γi(t) ∈ R, i = 1, . . . , n. Then, we can ob-

tain dγ1(t) = ῡTg1(t)
∑n

i,j=1 aijσjiϑn,idωji(t). Then γ1(t) = γ1(0)+ ῡT
∑n

i,j=1 aijσjiϑn,i

∫ t

0 g1(s)dωji(s),

where γ1(0) = ῡTX1(0). We also have

dγ̄(t) = −g1(t)L̃11γ̄(t)dt + dM ′(t), (6)

where M ′(t) =
∑n

i,j=1 aijσjiQ1ϑn,i

∫ t

0 g1(s)dωji(s). From [23] we can obtain limt→∞ γ̄(t) = [0, . . . , 0]T.
Then, from the above analysis and (5) we have

dX2(t) =− g2(t)L22X2(t)dt− g2(t)κ(t)L21Q1γ(t)dt

+ g2(t)

n+m∑

i,j=n+1

aijσjiϑm,i−ndωji(t)

+ g2(t)κ(t)

n+m∑

i=n+1

n∑

j=1

aijσjiϑm,i−ndωji(t). (7)

Let Q2 = ( 1√
m
1m, Q̃2) and Q−1

2 = (
¯̄υT

Q2

), Q−1
2 L22Q2 = (0 0

0 L̃22

), ¯̄υ =
√
m¯̄π, ¯̄πTL22 = 0. Let Jm =

1√
m
1m ¯̄υT. By the properties of matrix L22 and Lemma 1, we have L221m = 0 and ¯̄υTL22 = 0, and

then (Im − Jm)L22 = L22 = L22(Im − Jm). Let ξ(t) = (Im − Jm)X2(t) = [ξ1(t), ξ2(t), . . . , ξm(t)]T,
where ξi(t) ∈ R, i = 1, . . . ,m. Let ξ̃(t) = Q−1

2 ξ(t) = [ξ̃1(t), ξ̃2(t), . . . , ξ̃m(t)]T, ξ̄(t) = [ξ̃2(t), . . . , ξ̃m(t)]T,
ξ̃i(t) ∈ R. By the definition of Q−1

2 in Lemma 1, we can get ξ̃1(t) = ¯̄υTξ(t) = ¯̄υT(Im − Jm)X2(t) = 0 and

dξ̄(t) = −g2(t)L̃22ξ̄(t)dt− g2(t)κ(t)Pγ(t)dt+ dM̄(t) + dM̄ ′(t), (8)

where P = Q2(Im − Jm)L21Q1, M̄(t) =
∑n+m

i,j=n+1 aijσjiQ2(Im − Jm)ϑm,i−n

∫ t

0 g2(s)dωji(s), M̄
′(t) =

∑n+m

i=n+1

∑n

j=1 aijσjiQ2(Im − Jm)ϑm,i−n

∫ t

0
g2(s)κ(s)dωji(s). From [23], we now need to prove that

limt→∞ E ‖ξ̄(t)‖2 = 0 for any initial state. Then, according to the matrix theorem, we have HL̃22H
−1 =

J , where H is a complex invertible matrix, J is the Jordan normal form of L̃22. And we know
J = diag(Jλ2,n2

, . . . , Jλl,nl
),
∑l

k=2 nk = m − 1, where λ2, . . . , λl are all the eigenvalues of L̃22 and
Jλk,nk

is the Jordan block corresponding to eigenvalue λk, whose dimension is nk. Let Y (t) = Hξ̄(t) =
[Y2(t), . . . , Ym(t)]T with Yj(t) ∈ R, and then we have dY (t) = −g2(t)JY (t)dt − g2(t)κ(t)Dγ(t)dt +
HdM̄(t) + HdM̄ ′(t), where D = HP . Here, we first consider the kth Jordan block, and let ζk(t) =
[ζk,1(t), . . . , ζk,nk

(t)]T, D(k) = [DT
k,1, . . . , D

T
k,nk

]T, H(k) = [HT
k,1, . . . , H

T
k,nk

]T, where ζk,j(t) = Ykj
(t),
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Dk,j is the kjth row of D with kj =
∑k−1

l=2 nl + j, Dk,nk
= [d1, . . . , dn], and Hk,j = Hkj

is the kjth row

of H with kj =
∑k−1

l=2 nl + j. Then we have

dζk(t) =− g2(t)Jλk,nk
ζk(t)dt− g2(t)κ(t)D(k)γ(t)dt

+H(k)dM̄(t) +H(k)dM̄ ′(t).
(9)

Then we have the following semi-decoupled equations:

dζk,nk
(t) =− g2(t)λkζk,nk

(t)dt− g2(t)κ(t)Dk,nk
γ(t)dt

+ dM̄k,nk
(t) + dM̄ ′

k,nk
(t), (10)

and

dζk,j(t) =− g2(t)λkζk,j(t)dt− g2(t)ζk,j+1(t)dt

− g2(t)κ(t)Dk,jγ(t)dt+ dM̄k,j(t) + dM̄ ′
k,j(t), (11)

where M̄k,j(t) =
∑n+m

i,q=n+1 rkj ,iaiqσqi

∫ t

0 g2(s)dωqi(s), M̄ ′
k,j(t) =

∑n+m

i=n+1 rkj ,i

∑n

q=1 aiqσqi

∫ t

0 g2(s)

×κ(s)dωqi(s), and rkj ,i = Hkj
Q2(Im − Jm)ϑm,i−n, j = 1, . . . , nk − 1. By means of a variation of

constants formula for (10), we can get

ζk,nk
(t) =e−λk

∫
t

0
g2(u)duζk,nk

(0)

−
∫ t

0

e−λk

∫
t

s
g2(u)dug2(s)κ(s)d1γ1(s)ds

−
n∑

p=2

∫ t

0

e−λk

∫
t

s
g2(u)dug2(s)κ(s)dpγp(s)ds

+ Zk,nk
(t) + Z ′

k,nk
(t), (12)

where Zk,nk
(t) =

∫ t

0 e−λk

∫
t

s
g2(u)dudM̄k,nk

(s) and Z ′
k,nk

(t) =
∫ t

0 e
−λk

∫
t

s
g2(u)dudM̄ ′

k,nk
(s). By taking the

Euclidean norm of (12), we have

‖ζk,nk
(t)‖ 6e−λk

∫
t

0
g2(u)du‖ζk,nk

(0)‖

+

∥∥∥∥
∫ t

0

e−λk

∫
t

s
g2(u)dug2(s)κ(s)d1γ1(s)ds

∥∥∥∥

+

∥∥∥∥∥

n∑

p=2

∫ t

0

e−λk

∫
t

s
g2(u)dug2(s)κ(s)dpγp(s)ds

∥∥∥∥∥

+ ‖Zk,nk
(t)‖+ ‖Z ′

k,nk
(t)‖.

Then, by Jensen inequality and taking expectation of the above equation, we can obtain

E‖ζk,nk
(t)‖2 65e−2Re(λk)

∫
t

0
g2(u)du‖ζk,nk

(0)‖2

+ 5E

∣∣∣∣
∫ t

0

e−λk

∫
t

s
g2(u)dug2(s)κ(s)d1γ1(s)ds

∣∣∣∣
2

+ 5E

n∑

p=2

∣∣∣∣
∫ t

0

e−λk

∫
t

s
g2(u)dug2(s)κ(s)dpγp(s)ds

∣∣∣∣
2

+ Ck,nk

∫ t

0

e−2Re(λk)
∫

t

s
g2(u)dug22(s)ds

+ C′
k,nk

∫ t

0

e−2Re(λk)
∫

t

s
g2(u)dug22(s)κ

2(s)ds, (13)

where Ck,j =
∑n+m

i,q=n+1 |rkj ,i|2a2iqσ2
qi and C′

k,j =
∑n+m

i=n+1

∑n

q=1 |rkj ,i|2a2iqσ2
qi. Now, our task is to prove

that the second term, the third term, and the last term on the right hand side of (13) vanish at infinite time



Li C J, et al. Sci China Inf Sci October 2022 Vol. 65 202205:8

because other terms tend to zero, the proof can be found in [20,23]. Let k be fixed and write Sk,nk
(t) =∫ t

0
e−λk

∫
t

s
g2(u)dug2(s)κ(s)d1γ1(s)ds. We have limt→∞ E‖Sk,nk

(t)‖2 6 limt→∞ E(
∫ t

0
e−Re(λk)

∫
t

s
g2(u)dug2(s)

κ(s)|d1γ1(s)|ds)2. Let U(t) =
∫ t

0 e
−Re(λk)

∫
t

s
g2(u)dug2(s)κ(s)|d1γ1(s)|ds, we have

√
E(U(t))2 6

∫ t

0

e−Re(λk)
∫

t

s
g2(u)dug2(s)κ(s)

√
E|d1γ1(s)|2ds.

By means of L’Hôpital’s rule we can get

lim
t→∞

√
E(U(t))2 6 lim

t→∞

√
E|d1γ1(t)|2κ(t)

Re(λk)
6 lim

t→∞

√
c3
∫ t

0 g
2
1(s)ds+ c4E|X1(0)|2κ(t)

Re(λk)
,

where c3 = d21
∑n

k=1 ῡ
2
k

∑n

i,j=1(aijσji)
2 and c4 is a constant. From (C6) we have limt→∞ κ(t) = 0, and

then we have limt→∞ E(U(t))2 = 0. Then limt→∞ E‖Sk,nk
(t)‖2 = 0. Note that limt→∞

∑n

p=2 dpγp(t) = 0;

then we can also get limt→∞ E
∑n

p=2 |
∫ t

0
e−λk

∫
t

s
g2(u)dug2(s)κ(s)dpγp(t)ds|2 = 0. Similarly, from (C5),

(C6), and L’Hôpital’s rule, we can get

lim
t→∞

∫ t

0

e−2Re(λk)
∫

t

s
g2(u)dug22(s)κ

2(s)ds

= lim
t→∞

∫ t

0
e2Re(λk)

∫
s

0
g2(u)dug22(s)κ

2(s)ds

e2Re(λk)
∫

t

0
g2(u)du

= lim
t→∞

g2(t)κ
2(t)

2Re(λk)
= 0. (14)

Then we obtain limt→∞ E‖ζk,nk
(t)‖2 = 0 for the given k. Similarly, we can obtain that E‖ζk,j(t)‖2 =

0 for the given k and all j = 1, . . . , nk − 1. Repeating the above process, similar induction yields
limt→∞ E‖ζk(t)‖2 = 0 for all k = 1, . . . , l. Hence,

lim
t→∞

E‖ξ̄(t)‖2 = 0, (15)

that is, the second part of Theorem 1 is true. This together with the above analysis guarantees that the
agents in both groups achieve MSWC.

Theorem 1 proves that under conditions (C1), (C2), and (C4)–(C6), agents in two groups can achieve
the MSWC. Then, based on above results, we examine the ASWC for both groups. Here, the following
condition on the control gain g2(t) is required:

(C7) limt→∞ g2(t) log
∫ t

0
g2(s)ds = 0.

Theorem 2. For the MAS (1), suppose that Assumption 1 holds. Then, under protocol (2), the agents
in the first group can achieve ASWC if conditions (C1) and (C3) hold. In the meantime, if conditions
(C4)–(C7) hold, then the agents in the second group can also achieve ASWC.
Proof. Similarly, we can easily prove that the first “if” part is true under (C1) and (C3). Then we prove
the second “if” part. According to the above analysis and [23], we now need to examine that for any ini-
tial state, limt→∞ ‖ζk(t)‖ = 0, k = 1, . . . , l. By means of L’Hôpital’s rule we can get limt→∞ |Sk,nk

(t)| 6
limt→∞

|d1γ1(t)|κ(t)
Re(λk)

. We also have |d1γ1(t)|κ(t) = |d1γ1(0) + c5
∑n

i,j=1

∫ t

0 g1(s)dωji(s)|κ(t), where c5 =

d1
∑n

k=1 ῡk
∑n

i,j=1 aijσji. Let V (t) = c5
∑n

i,j=1

∫ t

0
g1(s)dωji(s). Then we have limt→∞〈V 〉(t) =

c3
∫ t

0 g
2
1(s)ds. Then from (C6) we can obtain limt→∞ |Sk,nk

(t)| = 0. From [22], (C4), (C6), and (C7), by
the knowledge of martingale theory and some other estimation methods, we can obtain limt→∞ ‖Zk,nk

(t)‖
= 0 and limt→∞ ‖Z ′

k,nk
(t)‖ = 0. Then using the skills which are similar to the above analysis, we can

obtain limt→∞ ‖ζk(t)‖ = 0 for all k = 1, . . . , l. Then we have the conclusion that the agents in both
groups achieve ASWC.

Remark 6. From the analysis above, we can see that it is more difficult to analyze consensus problems
of the second group. It is easy to see from (C6) that the time-varying intensity coefficient κ(t) must be
attenuated and its attenuation rate is related to g1(t), that is, the information received from another
group vanishes at infinite time. We can understand this naturally in the following ways. Since different
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groups in MASs need to achieve different consensus and each agent in MASs has its own autonomous
behavior, the group affected by agents in other groups can achieve consensus only when the influence is
gradually attenuated.

Remark 7. In Theorem 2, condition (C6) reveals the attenuation rate of the influence between the two
groups for achieving group consensus. In fact, condition (C6) can be proved to be necessary for the weak

group consensus if d1 6= 0. Suppose that the weak group consensus holds and then E‖ζk,j(t)‖2 = 0, k =

1, . . . , l, j = 1, . . . , nk for any limt→∞ ‖ζ(0)‖2 6= 0. Hence, from (12), (13), and Sk,nk
(t) we can obtain

that when d1 6= 0, limt→∞ κ(t) = 0, that is, the necessity of (C6) is obtained.
Above, we obtain some conditions on g1(t), g2(t), and κ(t) for agents in both groups to achieve

stochastic weak consensus. Note that the agents in different groups may be assigned different tasks, and
different groups are then required to achieve different consensus behaviors, that is, agents in one group
achieve stochastic weak consensus and agents in another group achieve stochastic strong consensus. We
call this behavior a hybrid group consensus, which is discussed in Subsections 3.2 and 3.3.

3.2 Hybrid group consensus: weak+strong

Now, we first examine the hybrid group consensus, weak+strong consensus, that is, agents in two groups
achieve stochastic weak consensus and stochastic strong consensus, respectively.

For the first group, we know that the agents can achieve stochastic weak consensus when conditions
(C1)–(C3) hold. Then, to examine the stochastic strong consensus of the second group, we need the
following conditions:

(C8)
∫∞
0 g22(t)dt < ∞;

(C9)
∫∞
0 g2(t)κ(t)dt < ∞.

Remark 8. Condition (C8) is called robustness condition. With this condition, the proposed consensus
protocol can be robust against additive noises effectively [20], which together with (C1) guarantees
stochastic strong consensus of MASs with additive noises. When each agent in group Ω2 only exchanges
information with its neighbors in its own group, Zong et al. [22] told us that conditions (C4) and (C8)
are sufficient to obtain the global stochastic strong consensus result. But in this paper, the agents in
group Ω2 can receive the state information from group Ω1. In this case, existing some conditions are
not sufficient to analyze the stochastic strong consensus of group Ω2, so we propose conditions (C9) to
examine the consensus.

Theorem 3. For the MAS (1), suppose that Assumption 1 holds and g2(t)κ(t) is monotonic. Then,
under protocol (2), when the agents in the first group can achieve stochastic weak consensus, the agents
in the second group can achieve MSSC if conditions (C4)–(C6), (C8) and (C9) hold, and only if condition
(C8) holds. Moreover, the agents in the second group can achieve ASSC if conditions (C4)–(C9) hold,
and only if condition (C8) holds.
Proof. We first prove the two “if” parts. From the above analysis, we can get that the agents can achieve
stochastic weak consensus for all i ∈ V1. Then we consider the second group. Let ξ′(t) = Q−1

2 X2(t) =
[ξ′1(t), ξ

′
2(t), . . . , ξ

′
m(t)]T, ξ̄′(t) = [ξ′2(t), . . . , ξ

′
m(t)]T, ξ′i(t) ∈ R, i = 1, . . . ,m. Then we can get dξ′1(t) =

−g2(t)κ(t)β(t)dt+¯̄υTg2(t)
∑n+m

i,j=n+1 aijσjiϑm,i−ndωji(t)+ ¯̄υTg2(t)κ(t)
∑n+m

i=n+1

∑n

j=1 aijσjiϑm,i−ndωji(t),

where β(t) =
∑n

q=1 d
′
qγq(t) is the first element of Q−1

2 L21Q1γ(t) and [d′1, . . . , d
′
n] is the first row of

Q−1
2 L21Q1. Then we have

ξ′1(t) =ξ′1(0)−
∫ t

0

g2(s)κ(s)β(s)ds

+ ¯̄υT
n+m∑

i,j=n+1

aijσjiϑm,i−n

∫ t

0

g2(s)dωji(s)

+ ¯̄υT
n+m∑

i=n+1

n∑

j=1

aijσjiϑm,i−n

∫ t

0

g2(s)κ(s)dωji(s), (16)

where ξ′1(0) = ¯̄υTX2(0), ¯̄υT
∑n+m

i,j=n+1 aijσjiϑm,i−n

∫∞
0 g2(s)dωji(s), and ¯̄υT

∑n+m

i=n+1

∑n

j=1 aijσjiϑm,i−n

×
∫∞
0

g2(s)κ(s)dωji(s) are well defined [20]. Then we have limt→∞
∫ t

0
g2(s)κ(s)β(s)ds = limt→∞ b1

×
∫ t

0
g2(s)κ(s)ds+limt→∞ b2

∑n

i,j=1

∫ t

0
g2(s)κ(s)g1(s)dωji(s)+limt→∞

∑n

q=2 d
′
q

∫ t

0
γq(s)g2(s)κ(s)ds, where
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b1 = d′1γ1(0) and b2 = d′1ῡ
T
∑n

i,j=1 aijσjiϑn,i. Noting that limt→∞
∑n

q=2 d
′
qγq(t) = 0, then from con-

dition (C9) and Abel test we have limt→∞
∑n

q=2 d
′
q

∫ t

0 γq(s)g2(s)κ(s)ds < ∞. From condition (C8) and

the analysis above, we know
∑n

i,j=1

∫∞
0 g2(s)κ(s)g1(s)dωji(s) is also well defined, and then we have

limt→∞
∫ t

0
g2(s)κ(s)β(s)ds < ∞. We also have

E‖ξ′1(t)|2‖ 64‖ξ′21 (0)‖+ 4E|
∫ t

0

g2(s)κ(s)β(s)ds|2

+ a1

∫ t

0

g22(s)ds+ a2

∫ t

0

g22(s)κ
2(s)ds, (17)

where a1, a2 are all constants, a1 =
∑m

k=1
¯̄υ2
k

∑n+m

i,j=n+1 a
2
ijσ

2
ji > 0, and a2 =

∑m

k=1
¯̄υ2
k

∑n+m

i=n+1

∑n

j=1 a
2
ij

σ2
ji > 0. Similar to the proof of

∫∞
0

g2(s)κ(s)β(s)ds < ∞, we have limt→∞ E|
∫ t

0
g2(s)κ(s)β(s)ds|2 6

limt→∞ E|b1
∫ t

0 g2(s)κ(s)ds|2 + limt→∞ E|b2
∑n

i,j=1

∫ t

0 g2(s)κ(s)g1(s)ds|2 < ∞. Then we can get

lim
t→∞

E‖ξ′1(t)− ξ′∞1 ‖2 = 0, lim
t→∞

ξ′1(t) = ξ′∞1 , (18)

where ξ′∞1 = ξ′1(0)−
∫∞
0

g2(s)κ(s)β(s)ds+¯̄υT
∑n+m

i,j=n+1 aijσjiϑm,i−n

∫∞
0

g2(s)dωji(s)+¯̄υT
∑n+m

i=n+1

∑n

j=1aij

×σjiϑm,i−n

∫∞
0 g2(s)κ(s)dωji(s) < ∞. We also have dξ̄′(t) = −g2(t)L̃22ξ

′(t)dt − g2(t)κ(t)P
′γ(t)dt +

dW (t) + dW ′(t), where P ′ = Q2L21Q1, W (t) =
∑n+m

i,j=n+1 aijσjiQ2ϑm,i−n

∫ t

0 g2(s)dωji(s) and W ′(t) =
∑n+m

i=n+1

∑n

j=1 aijσjiQ2ϑm,i−n

∫ t

0
g2(s)κ(s)dωji(s). By the similar skills used in the above analysis, we

can easily get limt→∞ E‖ξ̄′(t)‖2 = 0 and limt→∞ ‖ξ̄′(t)‖ = 0. This together with (18) gives the conclusion
that the first part of Theorem 3 holds and the final convergence state is limt→∞ X2(t) = ξ′∞1 1m when
agents reach almost sure strong consensus for all i ∈ V2. And the MAS (1) achieves hybrid group
consensus: weak+strong.

Then we prove the two “only if” parts. From (18), limt→∞ E|ξ′1(t)|2 < ∞, a1 > 0 and a2 > 0, we can
get the necessity of (C8).

Above, we have examined the case of hybrid group consensus: weak+strong. Then we investigate
another case of hybrid group consensus: strong+weak, that is, agents in the two groups reach stochastic
strong consensus and stochastic weak consensus, respectively.

3.3 Hybrid group consensus: strong+weak

For agents in the first group, we know that in addition to conditions (C1)–(C3), the following condition
is also needed to explore stochastic strong consensus behaviors:

(C10)
∫∞
0 g21(t)dt < ∞.

Then, for the hybrid group consensus behavior: strong+weak, we give the following theorem.

Theorem 4. For the MAS (1), suppose that Assumption 1 holds. Then, under protocol (2), the agents
in the first group can achieve stochastic strong consensus if conditions (C1) and (C10) hold. Moreover,
the agents in the second group can achieve MSWC if conditions (C4)–(C6) hold and the agents in the
second group can achieve ASWC if conditions (C4)–(C7) hold.

Proof. By similar skills used in the analysis above, we have γ1(t) = γ1(0)+ ῡT
∑n

i,j=1 aijσjiϑn,i

∫ t

0 g1(s)

dωji(s), and from (C10) we know that ῡT
∑n

i,j=1 aijσjiϑn,i

∫ t

0
g1(s)dωji(s) is also well defined. Similar

to the proof of Theorems 1 and 2, we can obtain that the MAS (1) achieves hybrid group consensus:
strong+weak.

Above, we have investigated types (a), (b), and (c) of group consensus. Similarly, in Subsection 3.4,
we study the type (d): stochastic strong group consensus.

3.4 Stochastic strong group consensus

Now, we study the stochastic strong group consensus: agents in both groups achieve stochastic strong
consensus. From above analysis and conditions, we can get the following theorem directly.

Theorem 5. For the MAS (1), suppose that Assumption 1 holds and g2(t)κ(t) is monotonic. Then,
under protocol (2), when the agents in the first group can achieve stochastic strong consensus, the agents
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Figure 1 The communication graph of a system with six agents.

in the second group can achieve MSSC if conditions (C4)–(C6), (C8) and (C9) hold, and only if condition
(C8) holds. Moreover, the agents in the second group can achieve ASSC if conditions (C4)–(C9) hold,
and only if condition (C8) holds.
Proof. The proof is similar to the above analysis in Subsection 3.3, and is omitted here.

Remark 9. From the above analysis we can find that the designs of g1(t) and g2(t) depend on the
attenuation rate of κ(t). These conditions tell us that when the unaffected group in the MAS can achieve
stochastic consensus, in order to make the affected group achieve stochastic consensus, we can impose
the joint condition on g1(t), g2(t), and κ(t), where the attenuation rate of κ(t) might be helpful for us to
achieve the control of group consensus.

Remark 10. If the balance assumption in [13,14] holds, conditions (C1)–(C5), (C7), (C8) and (C10) are
sufficient to analyze the problem studied in this paper. In fact, the balance assumption means that there
does not exist substantial communication between the two groups; i.e., the close loop systems for the two
groups are independent. Hence, in this case, the conditions of group consensus are the same as those
of global consensus. This case excludes many types of topologies, and limits largely its application [18].
In this paper, we replace the assumption with Assumption 1, which may provide additional flexibility in
applications.

4 Simulation

In this section, some simulation examples for the group consensus problems discussed in this paper are
given to illustrate the effectiveness of the proposed group control protocol and conditions.

We give a system with six agents and the number of groups is 2, whose communication graph is given
in Figure 1, where agents 1–3 belong to group Ω1, and agents 4–6 belong to group Ω2. We can get
that G1 and G2 contain a spanning tree, respectively. The initial states are X1(0) = [4,−2, 5]

T
and

X2(0) = [5,−8,−6]
T
. Now, we assume that σji = 1, i, j = 1, 2, 3, 4, 5, 6.

To verify that the given MAS can achieve stochastic weak group consensus under protocol (2), here,
we consider time-varying control gain functions g1(t) = g2(t) = (1+ t)−0.4 and κ(t) = (1+ t)−0.8. Then it
is easy to get that conditions (C1), (C3), and (C4)–(C7) hold. From Theorem 2 we have the conclusion
that the given MAS can achieve weak group consensus in almost sure. The state trajectories of agents in
the MAS are shown intuitively in Figure 2, which shows that all agents in the same group get together.
Noting that condition (C2) also holds, then from Theorem 1 we know that agents in both groups can
achieve MSWC. For such group consensus behavior, according to the definition of MSWC, we consider
E|xi(t) − x1(t)|2i=2,3 and E|xi(t)− x4(t)|2i=5,6. We generate 103 sample paths. Then, we have Figure 3,
which shows that the given MAS achieves weak group consensus in mean square.

Considering g1(t) = (1 + t)−0.5, g2(t) = (1 + t)−1, and κ(t) = (1 + t)−0.5, the conditions (C1),
(C3), and (C4)–(C9) hold. Theorem 3 tells us that the given MAS can achieve hybrid group consensus:
weak+strong, which is shown in Figure 4 intuitively.

Now, we consider g1(t) = g2(t) = (1+ t)−1, κ(t) = (1+ t)−0.5. We can get that conditions (C1), (C10),
and (C4)–(C9) hold. Other conditions are the same as above. From Theorem 5 we know that agents in
both groups achieve ASSC. This type of stochastic strong group consensus behavior is shown intuitively
in Figure 5.
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Figure 2 (Color online) Almost-sure weak group consensus. Figure 3 (Color online) Mean square weak group consensus.
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Figure 4 (Color online) Hybrid group consensus:

weak+strong.

Figure 5 (Color online) Almost-sure strong group consensus.
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Figure 6 The communication graph of a system with six agents.

Then, we give another system, whose communication graph is given in Figure 6, where agents 1–
3 belong to group Ω1, and agents 4–6 belong to group Ω2. We can get that G1 and G2 contain a
spanning tree, respectively. Other conditions are the same as above. We choose g1(t) = (1 + t)−0.5,
g2(t) = (1 + t)−1, and κ(t) = (1 + t)−0.5. Then we have the conclusion that the given MAS can achieve
hybrid group consensus: weak+strong, which is shown in Figure 7.

Now, we give a system with seven agents, where agents 1–3 belong to group Ω1, and agents 4–7 belong
to group Ω2. A = [aij ]7×7 with a12 = a21 = a31 = a32 = a42 = a53 = a61 = a64 = a65 = a67 = a75 = 1
and other values being zero. We can get that G1 contains a spanning tree and G2 does not contain
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Figure 7 (Color online) Hybrid group consensus:

weak+strong.

Figure 8 (Color online) The counter-example: the given

MAS cannot achieve group consensus.

a spanning tree but the whole topology graph contains a spanning tree. We give the initial states
X1(0) = [5,−1,−3]

T
, X2(0) = [−2,−2.5, 7,−6]

T
, and assume that σji = 1, i, j = 1, 2, 3, 4, 5, 6, 7. We

consider g1(t) = g2(t) = (1+ t)−1 and κ(t) = (1+ t)−0.5. Then we obtain Figure 8, which shows that the
given MAS cannot achieve group consensus. That is, the assumption that G1 and G2 contain a spanning
tree respectively is necessary for the group consensus.

5 Conclusion

This paper addressed group consensus problems of MASs in additive noise environments. This paper
supposed that the communication between the two groups was unidirectional, and agents in group Ω2

can receive the information from agents in group Ω1. Effects on the second group from the first group could
be regarded as external robustness. However, the model cannot be considered a conventional dynamic
system with an external disturbance since the effect is modeled as stochastic systems driven by additive
noises, and the corresponding stability analysis has not been well established. By the semi-decoupled skill
and some estimation methods, this paper concluded that the MASs can achieve pure group consensus
and hybrid group consensus. Some coupling relationships between κ(t), g1(t), and g2(t) were found. It
is proved that the time-varying intensity coefficient κ(t) must be attenuated, and its attenuation rate
may be beneficial in designing appropriate time-varying control gain functions in the control protocol for
achieving group consensus. Based on these findings, this paper developed sufficient conditions and some
necessary conditions about the control gain functions for achieving different group consensus behaviors.

It is noted that it will be more complicated to study group consensus problems if the communication
between the two groups is bidirectional. It will also be more challenging to analyze the four types of
group consensus behaviors of MASs with both time-delays and noises. These issues still require further
research.
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