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Abstract The aim of quantum metrology is to exploit quantum effects to improve the precision of parameter

estimation beyond its classical limit. In this paper, we investigate the quantum parameter estimation problem

with multiple channels. It is related but not limited to the following two important and practical quantum

metrology problems: (i) Quantum enhanced metrology with control, whose aim is to improve the precision

of quantum sensing by utilizing feedback or open-loop control; (ii) Practical quantum metrology where the

underlying evolution of quantum probes may change from a unitary dynamics to an open system dynamics,

owing to the inevitable decoherence during the quantum sensing operation. For various kinds of quantum

multiple channels, the corresponding quantum channel Fisher information is derived. To demonstrate the

results, some illustrative examples are given.
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1 Introduction

High precision measurement of unknown parameters has been one of the pivotal tasks in science and
technology [1–43]. A typical measurement procedure consists of a generic sequence of probe initializa-
tion, and the parameter encoding through a channel that is usually realized by a parameter-dependent
dynamical evolution, following which the output is measured for an appropriate estimation of the inter-
ested unknown parameter [4]. To achieve the highest admissible precision, one needs to make the best
use of available resources and design optimal schemes to reach the limit [22–43].

Denote by x the unknown parameter to be measured, if a specific measurement is fixed, the ultimate
precision of any unbiased estimator is bounded below by the Fisher information I(x) in the form of
the well-known Cramér-Rao inequality [4–8, 29–31, 44, 45]. The Fisher information I(x) quantifies the
maximum amount of information about the true value of x that can be extracted from the selected
measurement procedure, which is jointly determined by the initial state of the probe, the parameter
encoding channel, and the measurement scheme.

More fundamentally, the precision of parameter estimation is determined by the physical mechanism
behind the estimation process. It was shown that by exploiting quantum effects, the precision limit
of parameter estimation can go beyond its classical counterpart, leading to the emerging technology of
quantum metrology [23–35]. From the view of quantum mechanics, any classical measurement scheme can
be considered as a projective measurement, and thus one can obtain the quantum Fisher information J(x)
by maximizing the Fisher information I(x) over all possible measurement strategies allowed by quantum
mechanics [4, 43–46]. This figure of merit J(x), which depends upon the state of the probe before the
measurement, thus characterizes the maximum amount of information that can be extracted about the
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unknown parameter x using the best quantum measurement strategies. The corresponding Cramér-Rao
inequality in terms of J(x) sets the best precision limit that may be attained for any unbiased estimator
under a given initial state of the probe and a fixed parameter encoding channel.

The precision of quantum parameter estimation can be further improved by maximizing the quantum
Fisher information J(x) over all initial states of the probe [4, 6, 47]. Typically, by utilizing quantum
recourses such as entanglement and squeezing, the lower bound can be significantly reduced compared
with classical strategies [25–27, 47]. For instance, in classical metrology, the estimation error generally
scales as O(1/

√
N), where N is the number of probes used in the measurements. By exploiting quantum

resources, the error scaling can be greatly reduced to O(1/N) [4–6, 27–31,48].

Under the optimal quantum measurement and a given initial state of the probe, the quantum Fisher
information J(x) is only related to the parameter encoding channel. In this regard, we also call J(x)
as the quantum channel Fisher information. The calculation of the quantum Fisher information of a
given channel has been widely investigated in [4–8, 29–31]. Physically, the encoding channel can be
manipulated by external controls, and thus one can optimize the controls to improve J(x). One can
even apply feedback control to alter the total dynamics to improve the precision limit. For example,
in [30], an optimal feedback scheme was utilized to obtain a universal time scaling for the precision limit.
In [26], it was demonstrated that a sequential feedback scheme can outperform the parallel scheme for
Hamiltonian parameter estimation. To obtain the enhanced precision with feedback, a key assumption
was made that the involved controls take negligible time, which is a valid assumption in some physical
settings. However, for general setups, this assumption is usually invalid and the encoding dynamics must
be taken into account in the duration of controls.

In practice, the control (e.g., via arbitrary waveform generator in microwave regime) is often generated
in the form of bounded piecewise-constant pulses, the entire quantum dynamics can be viewed as sending
the probe through a sequence of encoding channels that are determined by these constant sub-pulses.
Thus a natural and important question arises: how to calculate the quantum Fisher information of a
sequence of multiple quantum channels. From a practical viewpoint, it is also important to investigate
the multi-channel quantum metrology. In presence of inevitable noises, quantum system dynamics cannot
be modeled as a strictly unitary process. As a matter of fact, a quantum system must be treated as an
open system once the time duration is comparable with the coherence time. However, as a valuable
resource in quantum metrology, the sensing time is expected to be as long as possible for better precision.
In the case where the sensing time is longer than the coherence time, the measurement process can be
formulated as a multi-channel quantum metrology problem, i.e., a unitary channel whose duration is much
smaller than the coherence time, which is followed by a non-unitary encoding channel. The quantum
channel Fisher information of the total encoding channel and the first unitary part only can be calculated
to compare the corresponding precision limits.

In this paper, we address and calculate the quantum Fisher information with various kinds of multiple
channels. The paper is organized as follows. In Section 2, we introduce the tools to be utilized to calculate
the quantum channel Fisher information and set up the problem under consideration. Then in Section 3,
we first consider the simplest case, i.e., the multiple channels are two sequential unitary channels, and
then generalize the result to an arbitrary number of sequential unitary channels. Section 4 investigates
the case where a unitary channel is followed by a non-unitary channel. Section 5 concludes the paper.

2 Quantum Fisher information and problem statement

A general measurement procedure of an unknown parameter is shown in Figure 1. The probe is first
prepared in a known initial state ρ0, and then evolves for a duration t, whose dynamics depend on the
unknown parameter x in a parametric way. This process can be viewed as the probe being sent through a
parameter encoding channel εx. A set of quantum measurements {Ey}, represented by positive operator
valued measures, is performed on the final state of the channel. The occurrence probability of the result
y is p(y|x) = Tr(Eyρx). Based on the distribution of the obtained measurement results, an estimate x̂
of the unknown parameter x can be given through a proper algorithm such as the maximum likelihood
method [49] or the linear regression estimation [50, 51].

For any unbiased estimator, the precision limit is bounded below by the Fisher information I(x) in the
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Figure 1 (Color online) Schematic for quantum parameter estimation. The probe prepared in an initial state ρ0 is sent through a

quantum encoding channel εx for a time duration t. After that, a measurement is implemented on the final state, and an estimate

x̂ of the parameter x is given based on the measurement results.

form of the Cramér-Rao inequality

δx̂ ≡
√

〈(x̂ − x)2〉 > 1
√

I(x)
,

where

I(x) =
∑

y

p(y|x)
(

∂lnp(y|x)
∂x

)2

.

As explained in Section 1, we can first maximize the Fisher information I(x) over all possible measurement
strategies allowed by quantum mechanics to obtain the quantum Fisher information of the state ρx as
J(ρx) = J(εx(ρ0)) [46]. The corresponding Cramér-Rao inequality gives

δx̂ >
1

√

J(ρx)
.

Since the quantum state Fisher information J(ρx) depends on the initial state ρ0 of the probe, the
precision limit can be further improved by maximizing J(ρx) over all initial states of the probe [47, 52].
For a unitary channel, i.e., εx = Ux, the quantum channel Fisher information of Ux is given as [30]

J(Ux) = lim
dx→0

4C2
θ (U

†
xUx+dx)

dx2
, (1)

where Cθ(U) is the maximal angle that the unitary operater U can rotate a state away from itself. The
operator † denotes the conjugate transpose. It can be derived that cos[Cθ(U)] = minρ F (ρ, UρU †), where

the fidelity F (ρ1, ρ2) = Tr

√

ρ
1
2
1 ρ2ρ

1
2
1 . The detailed definition of Cθ(U) for any unitary operator U can be

found in [52]. For an m×m unitary matrix U , denote e−iθj as the eigenvalues of U , where θj ∈ (−π,π]
for j = 1, . . . ,m. If

θmin = θ1 6 θ2 6 · · · 6 θm = θmax

are arranged in ascending order, then we have [52]

Cθ(U) =
θmax − θmin

2
, when θmax − θmin 6 π. (2)

This result combined with (1) will be employed to derive our main results in Section 3.

For a non-unitary channel, i.e., εx(ρ) =
∑

i ki(x)ρk
†
i (x), where the Kraus operators {ki(x)} satisfy

∑

i k
†
i (x)ki(x) = I, the quantum channel Fisher information of εx is given by [47]

J(εx) = lim
dx→0

8(1−max||W ||61
1
2λmin(KW +K†

W ))

dx2
, (3)
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Figure 2 (Color online) Schematic for quantum parameter estimation under two unitary channels. The probe prepared in a

known initial state ρ0, first evolves as U(1)
x = e−

i
~

H
(1)
x ·t1 driven by the Hamiltonian H(1)

x for a duration t1 and then evolves as

U(2)
x = e−

i
~

H
(2)
x ·t2 with the underlying Hamiltonian H(2)

x for a duration t2. After that, a measurement is implemented on the final

state, and based on the measurement results an estimate x̂ of the parameter x is given.

where λmin(A) denotes the minimal eigenvalue of matrix A, KW =
∑

i,j wijk
†
i (x)kj(x + dx), and wij is

the ij -th element of the matrix W which satisfies ‖W‖ 6 1 (the matrix norm || · || is referred to as the
maximum singular value). This formula will be applied to obtain our main results in Section 4.

Let us see how the encoding channel affects the precision limit. Usually, the unknown parameter x
is imprinted on the probe through a fixed Hamiltonian Hx during the encoding process, even though
in the cases where feedback controls are involved. This is owing to the key assumption made therein
that feedback controls take negligible time. However, for general physical settings, this assumption is not
valid, leading to the fact that for different control periods, the control-induced-evolution together with
the encoding dynamics are different. As explained in Section 1, the total feedback-involved-encoding
process can be dealt with from a new viewpoint. Firstly, it is well known that any continuous control
can be arbitrarily approximated by piecewise controls corresponding to a sequence of quantum encoding
channels. Secondly, the realistic open system dynamics may introduce additional non-unitary channels.
In the following, we will derive the quantum channel Fisher information of multi-unitary-channels, and
the case where the multiple channels consist of a unitary channel followed by a non-unitary channel.

3 Quantum channel Fisher information of multi-unitary-channel

3.1 The case with two unitary channels

In this subsection, we focus on the simplest case where the multiple channels are two unitary channels.
To be specific, as shown in Figure 2, the probe prepared in state ρ0 is first sent through the encoding

channel U
(1)
x = e−

i
~
H(1)

x ·t1 , and then the channel U
(2)
x = e−

i
~
H(2)

x ·t2 . By the end of the entire dynamics,

the probe state becomes ρx = Uxρ0U
†
x, where Ux = U

(2)
x U

(1)
x is the total encoding channel. Note that

for i = 1, 2, the Hamiltonian H
(i)
x can be decomposed as H

(i)
x = H

(0)
x +H

(i)
c , where H

(0)
x is the encoding

Hamiltonian, and H
(i)
c is the i-th control Hamiltonian, the time ti is actually the duration of the control

Hamiltonian H
(i)
c .

Before deriving the quantum channel Fisher information, we give some notations. Firstly, denote

J(U
(i)
x ) and J(Ux) as the quantum channel Fisher information for the unitary channel U

(i)
x and the entire

channel Ux, respectively. Secondly, define

h(1)
x , i(∂xU

(1)
x )U (1)†

x , h(2)
x , iU (2)†

x ∂xU
(2)
x . (4)

Thirdly, let λmax(A) and λmin(A) denote the maximal and minimal eigenvalues of a matrix A, respectively.
The quantum channel Fisher information can be calculated as Theorem 1.

Theorem 1. The quantum Fisher information of the total encoding channel Ux and the channel U
(1)
x

are J(Ux) = [λmax(h
(1)
x +h

(2)
x )−λmin(h

(1)
x +h

(2)
x )]2 and J(U

(1)
x ) = [λmax(h

(1)
x )−λmin(h

(1)
x )]2, respectively.

Moreover, if

[λmax(h
(1)
x + h(2)

x )− λmin(h
(1)
x + h(2)

x )] > [λmax(h
(1)
x )− λmin(h

(1)
x )],
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then J(Ux) > J(U
(1)
x ).

Proof. To obtain the quantum Fisher information of the entire channel Ux, according to (1), one needs

to calculate Cθ(U
(1)†
x U

(2)†
x U

(2)
x+dxU

(1)
x+dx), where dx is an infinitesimal change of x.

Note that the set of eigenvalues of U
(1)†
x U

(2)†
x U

(2)
x+dxU

(1)
x+dx is the same as that of U

(2)†
x U

(2)
x+dxU

(1)
x+dxU

(1)†
x .

Combining (1) and (2), the quantum Fisher information J(Ux) of the total encoding channel Ux can be
described as

J(Ux) = lim
dx→0

4C2
θ (U

(1)†
x U

(2)†
x U

(2)
x+dxU

(1)
x+dx)

dx2

= lim
dx→0

4C2
θ (U

(2)†
x U

(2)
x+dxU

(1)
x+dxU

(1)†
x )

dx2
. (5)

Since U
(1)
x+dx = U

(1)
x + ∂xU

(1)
x dx+ o(dx), we have

U
(1)
x+dxU

(1)†
x = I+ (∂xU

(1)
x )U (1)†

x dx+ o(dx)

= I− i(i∂xU
(1)
x )U (1)†

x dx + o(dx)

= exp(−ih(1)
x dx) + o(dx). (6)

To calculate h
(1)
x , we apply the following integral formula for the derivative of an operator exponen-

tial [48, 53]

∂

∂x
exp

(

− i

~
Hx · t

)

= −i

∫ t

0

exp

(

− i

~
Hx · s

)(

∂Hx

∂x

)

exp

(

i

~
(s− t)Hx

)

ds,

which gives the expression of h
(1)
x as

h(1)
x =

∫ t1

0

exp

(

− i

~
sH(1)

x

)

(

∂H
(1)
x

∂x

)

exp

(

i

~
sH(1)

x

)

ds. (7)

In the same way, U
(2)†
x U

(2)
x+dx can be expressed as

U (2)†
x U

(2)
x+dx = I + U (2)†

x (∂xU
(2)
x )dx+ o(dx)

= I − i(iU (2)†
x (∂xU

(2)
x ))dx+ o(dx)

= exp(−ih(2)
x dx) + o(dx),

where h
(2)
x = iU

(2)†
x ∂xU

(2)
x can be expressed in the integral form

h(2)
x =

∫ t2

0

exp

(

i

~
sH(2)

x

)

(

∂H
(2)
x

∂x

)

exp

(

− i

~
sH(2)

x

)

ds.

Since eA+B = eAeBe−
1
2 [A,B] · · · [54], we have

U (2)†
x U

(2)
x+dxU

(1)
x+dxU

(1)†
x = e−ih(2)

x dxe−ih(1)
x dx + o(dx)

= e−i(h(1)
x +h(2)

x )dx + o(dx),

in which the higher-order terms are neglected. By (2), we have

Cθ(U
(1)†
x U (2)†

x U
(2)
x+dxU

(1)
x+dx) = Cθ(U

(2)†
x U

(2)
x+dxU

(1)
x+dxU

(1)†
x )

=
λmax(h

(1)
x + h

(2)
x )dx − λmin(h

(1)
x + h

(2)
x )dx+ o(dx)

2
. (8)

Thus combining (5) and (8), we obtain the quantum Fisher information of the entire encoding channel
as follows:

J(Ux) = [λmax(h
(1)
x + h(2)

x )− λmin(h
(1)
x + h(2)

x )]2. (9)
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Let us turn to the quantum information of the channel U
(1)
x , i.e., only the first unitary part of the total

channel is used. By (1), (2) and (6), it is clear that

J(U (1)
x ) = lim

dx→0

4C2
θ (U

(1)†
x U

(1)
x+dx)

dx2

= lim
dx→0

4C2
θ (U

(1)
x+dxU

(1)†
x )

dx2

= [λmax(h
(1)
x )− λmin(h

(1)
x )]2. (10)

This is actually a well-known result [1,30,47]. Thus, by (9) and (10), once the following inequality holds:

[λmax(h
(1)
x + h(2)

x )− λmin(h
(1)
x + h(2)

x )] > [λmax(h
(1)
x )− λmin(h

(1)
x )], (11)

we have
J(Ux) > J(U (1)

x ).

Remark 1. Note that the dependence of h
(1)
x in (7) on the Hamiltonian H

(1)
x is highly nonlinear.

However, when H
(1)
x commutes with ∂

∂x
H

(1)
x , we have h

(1)
x = t1 · ∂xH(1)

x according to (7). This can be
satisfied under the following two conditions:

• H
(1)
x =

∑

n Pn(x)H
n, where Pn(x) is a function of x, H is a fixed Hamiltonian, and n is an arbitrary

positive integer;

• H
(1)
x = Q−1









λ1(x)

. . .

λn(x)









Q,

where λi(x) depends on the parameter x, while Q is an invertible matrix independent of x.

Remark 2. It is worth pointing out that the inequality (11) does not always hold even in the case

where H
(1)
x = H

(2)
x . As an illustration, let H

(1)
x = H

(2)
x = B[sin(x)σ1 + cos(x)σ3], where σ1 = ( 0 1

1 0
)

and σ3 = ( 1 0

0 −1
) are the Pauli matrices. It can be calculated that the quantum Fisher information of

the channel Ux is J(Ux) = 4sin2(Bt), which oscillates with the sensing time. Thus simply extending the
sensing time may not improve the quantum Fisher information.

Now we give a sufficient condition for the inequality (11) to be held. Suppose that the dimension of

the quantum probe system is n. Since the matrices h
(1)
x and h

(2)
x are Hermitian, their eigenvalues are

real. Denote λj(h
(i)
x ), 1 6 j 6 n, as the eigenvalues of matrix h

(i)
x for i = 1, 2, and arrange them in

ascending order such that λ1(h
(i)
x ) 6 λ2(h

(i)
x ) 6 · · · 6 λn(h

(i)
x ). Similarly, the eigenvalues of h

(1)
x + h

(2)
x

can be expressed as λ1(h
(1)
x + h

(2)
x ) 6 λ2(h

(1)
x + h

(2)
x ) 6 · · · 6 λn(h

(1)
x + h

(2)
x ) . We have Proposition 1.

Proposition 1. If [λn(h
(2)
x )− λ1(h

(2)
x )] > 2[λn(h

(1)
x )− λ1(h

(1)
x )], then J(Ux) > J(U

(1)
x ).

Proof. The eigenvalues of h
(1)
x + h

(2)
x have the following relationships with h

(1)
x and h

(2)
x as [55],

λn(h
(1)
x + h(2)

x ) > λ1(h
(1)
x ) + λn(h

(2)
x ), (12)

and
λ1(h

(1)
x + h(2)

x ) 6 λn(h
(1)
x ) + λ1(h

(2)
x ). (13)

According to (12) and (13), we have

λn(h
(1)
x + h(2)

x )− λ1(h
(1)
x + h(2)

x ) > [λn(h
(2)
x )− λ1(h

(2)
x )]− [λn(h

(1)
x )− λ1(h

(1)
x )].

Hence, once
[λn(h

(2)
x )− λ1(h

(2)
x )] > 2[λn(h

(1)
x )− λ1(h

(1)
x )],

we have
J(Ux) > J(U (1)

x ).

Remark 3. Proposition 1 provides a design guide for the control HamiltonianH
(i)
c such that by utilizing

multiple encoding channels rather than a single unitary channel, the best possible precision limit of
quantum parameter estimation can be improved.
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3.2 An illustrative example

Consider a single qubit quantum probe. Denote the jk-th (1 6 j, k 6 2) element of the matrix of h
(i)
x

(for i = 1, 2) as h
(i)
jk , where the subscript x is omitted. The eigenpolynomial of h

(1)
x + h

(2)
x is

det[λI − (h(1)
x + h(2)

x )] =λ2 − (h
(1)
11 + h

(1)
22 + h

(2)
11 + h

(2)
22 )λ

+ (h
(1)
11 + h

(2)
11 )(h

(1)
22 + h

(2)
22 )− |h(1)

12 + h
(2)
12 |2.

Thus, the quantum Fisher information J(Ux) of the total encoding channel can be calculated as

[λn(h
(1)
x + h(2)

x )− λ1(h
(1)
x + h(2)

x )]2

= [λn(h
(1)
x )− λ1(h

(1)
x )]2 + [λn(h

(2)
x )− λ1(h

(2)
x )]2

+ 2(h
(1)
11 − h

(1)
22 )(h

(2)
11 − h

(2)
22 ) + 4(h

(1)
12 h

(2)†
12 + h

(2)
12 h

(1)†
12 )

= [λn(h
(1)
x )− λ1(h

(1)
x )]2 + 2(h

(1)
11 − h

(1)
22 )(h

(2)
11 − h

(2)
22 )

+ (h
(2)
11 − h

(2)
22 )

2 + 4(h
(1)
12 h

(2)†
12 + h

(2)
12 h

(1)†
12 + |h(2)

12 |2), (14)

where the equality

[λn(h
(i)
x )− λ1(h

(i)
x )]2 = (h

(i)
11 + h

(i)
22 )

2 − 4(h
(i)
11h

(i)
22 − |h(i)

12 |2)

is applied.
In the first equality of (14), the first and second terms are the quantum Fisher information of the

channels U
(1)
x and U

(2)
x , respectively, when they are utilized to encode the parameter separately. The

third term depends on both U
(1)
x and U

(2)
x depicting their cooperation. Thus in addition to J(U

(1)
x ) and

J(U
(2)
x ), the quantum Fisher information of the entire encoding channel J(Ux) also involves an interaction

part that describes the cooperation between the separate channels. This is a typical quantum interference
effect.

From the second equality in (14), if h
(2)
x satisfies

(h
(2)
11 − h

(2)
22 )

2 + 2(h
(1)
11 − h

(1)
22 )(h

(2)
11 − h

(2)
22 ) + 4(h

(1)
12 h

(2)†
12 + h

(2)
12 h

(1)†
12 + |h(2)

12 |2) > 0, (15)

then J(Ux) > J(U
(1)
x ).

Moreover, if H
(2)
x is in the form of

H(2)
x = αxσ3 =

(

αx 0

0 −αx

)

,

where α > 0, then

h(2)
x = t2

∂

∂x
H(2)

x = t2

(

α 0

0 −α

)

.

By (15), it can be seen that J(Ux) > J(U
(1)
x ) if αt2 > max[h

(1)
22 − h

(1)
11 , 0], which shows that the precision

limit can be improved by exploiting the positive cooperation effect of the two encoding channels.

3.3 The case with many unitary channels

In this subsection, we focus on the case where a series of unitary channels are employed for quantum
sensing.

As illustrated in Figure 3, suppose that there are N sequential encoding channels in total, and H
(i)
x

is the Hamiltonian of the i-th encoding channel whose duration is ti, i = 1, . . . , N . The corresponding

unitary channel is U
(i)
x = e−

i
~
H(i)

x ·ti . Thus, the entire encoding channel is Ux = U
(N)
x U

(N−1)
x · · ·U (2)

x U
(1)
x

with a total duration T =
∑N

j=1 tj . The following theorem gives the quantum Fisher information J(Ux)
of the entire channel Ux.
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Initial state Dynamic process Final state Measurement Estimator

ρ

x

x xx

t1

Ux

t2 tN

T

^{Ey}
0 ρ

x
(1)

Ux

(2) Ux

(N)

Figure 3 (Color online) Schematic for quantum parameter estimation with sequential unitary encoding channels. The probe

prepared in a known initial state ρ0, is sent through a sequence of channels U(i)
x with the underlying Hamiltonian H(i)

x for a

duration of ti, i = 1, . . . , N . After that, a measurement is implemented on the final state, and then an estimation x̂ of the

parameter x is given from the measurement results.

Theorem 2. The quantum Fisher information of the entire encoding channel is

J(Ux) = [λmax(h̄x)− λmin(h̄x)]
2,

where h̄x = i[Ū †
xU

(N)†
x (∂xU

(N)
x )Ūx + Ū †

x∂xŪx + (∂xU
(1)
x )U

(1)†
x ], and Ūx = U

(N−1)
x · · ·U (2)

x . If

[λmax(h̄x)− λmin(h̄x)] > [λmax(h
(1)
x )− λmin(h

(1)
x )],

then J(Ux) > J(U
(1)
x ).

Proof. According to (1), we need to calculate Cθ(U
†
xUx+dx). By (2) and the property of eigenvalues of

product matrices, it can be verified that

Cθ(U
†
xUx+dx) = Cθ(U

(1)†
x U (2)†

x · · ·U (N−1)†
x U (N)†

x U
(N)
x+dxU

(N−1)
x+dx · · ·U (2)

x+dxU
(1)
x+dx)

= Cθ([U
(2)†
x · · ·U (N−1)†

x ][U (N)†
x U

(N)
x+dx][U

(N−1)
x+dx · · ·U (2)

x+dx][U
(1)
x+dxU

(1)†
x ]). (16)

Noting that Ūx = U
(N−1)
x · · ·U (2)

x , Eq. (16) can be expressed as

Cθ(U
†
xUx+dx) = Cθ(Ū

†
x[U

(N)†
x U

(N)
x+dx]Ūx+dx[U

(1)
x+dxU

(1)†
x ]).

Expand the terms in the parenthesis of the above equation to the first order of dx, and we have

Ū †
x[U

(N)†
x U

(N)
x+dx]Ūx+dx[U

(1)
x+dxU

(1)†
x ]

= I + [Ū †
xU

(N)†
x (∂xU

(N)
x )Ūx + Ū †

x∂xŪx + (∂xU
(1)
x )U (1)†

x ]dx+ o(dx)

= I − ih̄xdx+ o(dx)

= e−ih̄xdx + o(dx),

where h̄x = i[Ū †
xU

(N)†
x (∂xU

(N)
x )Ūx+Ū †

x∂xŪx+(∂xU
(1)
x )U

(1)†
x ]. Thus, by combing (1) and (2), the quantum

Fisher information of the entire encoding channel is

J(Ux) = [λmax(h̄x)− λmin(h̄x)]
2.

Thus, it is clear that if [λmax(h̄x)− λmin(h̄x)] > [λmax(h
(1)
x )− λmin(h

(1)
x )], then J(Ux) > J(U

(1)
x ).

Remark 4. Note that here we only consider the precision limits of the entire channel (N sequential
encoding channels in total) and the first unitary encoding channel only for simplicity. It is worth pointing
out that for other parameter-encoding processes such as channels consisting of the first n sequential sensing
channels, where n = 2, . . . , N − 1, the methods presented in Theorems 1 and 2 can also be applied to
calculate the corresponding quantum channel Fisher information, and further to compare their precision
limits. Particularly, one can also compare the precision limit of the channel Ux(T ) = e−

i
~
Hx·T whose
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Quantum noise

Measurement Estimator

ρ

ε x

x x

t1

Ux

t2

^{Ey}
0

ρ
x

x

Figure 4 (Color online) Schematic for quantum parameter estimation in the case where the encoding channel is a unitary channel

followed by a non-unitary channel. The probe prepared in a known initial state ρ0, is first sent through a unitary encoding channel

Ux for a duration t1, and then a non-unitary channel εx for a period t2. After that, a measurement is implemented on the final

state, and then an estimate x̂ of the parameter x is given from the measurement results.

duration is also T . By (10) in Theorem 1, it is not difficult to obtain the quantum Fisher information of
Ux(T ) being J(Ux(T )) = [λmax(hx)− λmin(hx)]

2, where

hx =

∫ T

0

exp

(

− i

~
sHx

)(

∂

∂x
Hx

)

exp

(

i

~
sHx

)

ds.

This quantity J(Ux(T )) can be further compared with J(Ux).

4 Quantum channel Fisher information of non-unitary channels

In this section, we consider the case where the multiple channels are a unitary channel Ux followed by a
non-unitary channel εx.

4.1 The case with unitary-non-unitary-channel

Recall that a quantum system must be treated as an open system once the sensing time is comparable
with the coherence time. Thus the entire encoding process can be viewed as a unitary evolution followed
by a non-unitary evolution.

As shown in Figure 4, the probe prepared in state ρ0 is first sent through the encoding channel
Ux(t1) = e−

i
~
Hx·t1 , and then the non-unitary channel εx(ρ) =

∑

iki(x, t2)ρk
†
i (x, t2) with a duration t2,

where ρ = Ux(t1)ρ0U
†
x(t1), and the set of Kraus operators {ki(x, t)} satisfy

∑

ik
†
i (x, t)ki(x, t) = I. Thus

at the end of the entire encoding dynamics, the final state of the probe becomes ρx =
∑

iFi(x, t)ρ0F
†
i (x, t),

where
Fi(x, t) = ki(x, t2)Ux(t1)

satisfy
∑

iF
†
i (x, t)Fi(x, t) = I, and t = t1 + t2. The quantum Fisher information of the entire multiple

channels can be calculated as [47]

J(Ux, εx) = lim
dx→0

8(1−max||W ||61
1
2λmin(FW + F †

W ))

dx2
, (17)

where FW =
∑

i,jwijF
†
i (x, t)Fj(x+ dx, t), and wij is the ij -th element of the matrix W .

In practical quantum metrology, the open dynamics εx may depend on the unitary evolution Ux through
the Kraus operators in the form of [47, 56–58]

ki(x, t2) = Ai(η(t2))Ux(t2), (18)

where Ai(η(t)) and η(t) depict the corresponding quantum noise and satisfy
∑

iA
†
i (η(t))Ai(η(t)) = I. In

Subsection 4.2, we will consider five typical noisy quantum channels and three different forms of η(t).

With quantum noise as (18), the final state of the probe becomes ρx =
∑

iFi(x, t)ρ0F
†
i (x, t) where

Fi(x, t) = Ai(η(t2))Ux(t),
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Table 1 The quantum Fisher information of typical noisy quantum channels. The first three columns describe the five typical

noisy quantum channels, in which the noise parameter η(t) satisfies 0 6 η(t) 6 1. The fourth column gives the quantum Fisher

information of the unitary encoding channel Ux(t) = e−
i
~

Hx·t. The last column is the quantum Fisher information of the entire

encoding channel

A1(η(t)) A2(η(t)) J(Ux) t ∈ [0, t1] J(Ux, εx) t ∈ [t1, t2]

Bit flip
√

1 − η(t)

(

1 0

0 1

)

√

η(t)

(

0 1

1 0

)

t2 [1 − 2η(t − t1)]2t2

Phase flip
√

1 − η(t)

(

1 0

0 1

)

√

η(t)

(

1 0

0 −1

)

t2 [1 − 2η(t − t1)]2t2

Amplitude damping

(

1 0

0
√

1 − η(t)

) (

0
√

η(t)

0 0

)

t2
4[1−η(t−t1)]t2

[1+
√

1−η(t−t1)]2

Phase damping

(

1 0

0
√

1 − η(t)

) (

0 0

0
√

η(t)

)

t2 [1 − η(t − t1)]t2

Bit-phase flip
√

1 − η(t)

(

1 0

0 1

)

√

η(t)

(

0 −i

i 0

)

t2 [1 − 2η(t − t1)]2t2

and t = t1 + t2. Thus Eq. (17) can be applied to obtain the quantum Fisher information J(Ux, εx) of the
entire multiple channels, and this can be further compared with J(Ux), which is the quantum channel
Fisher information of the unitary encoding part only.

4.2 Typical noisy quantum channels

To demonstrate the characteristics of the quantum channel Fisher information of unitary-non-unitary
channels, we first specify the unitary channel as Ux(t) = e−

i
~
Hx·t, where Hx = σ3

2 x, and σ3 is the

Pauli matrix. Then for the non-unitary channel εx, suppose that εx(ρ) =
∑

iki(x, t2)ρk
†
i (x, t2), where

ki(x, t2) = Ai(η(t2))Ux(t2) as in (18).
As detailed in Table 1, we consider five typical noisy quantum channels: bit flip channel, phase flip

channel, amplitude damping channel, phase damping channel, and bit-phase flip channel, described by
the corresponding Kraus operators {Ai}. Note that as η(t) approaches 0 continuously, the non-unitary
channel εx approaches the unitary channel Ux in a continuous way.

If the sensing time t 6 t1, the encoding dynamics is unitary, and the corresponding quantum channel
Fisher information can be calculated as J(Ux) = t2. While if t > t1, the quantum Fisher information
of the unitary-non-unitary channel can be derived by (17). For different noisy quantum channels, the
quantum Fisher information J(Ux, εx) of the entire encoding channel is detailed in the last column of
Table 1. It can be seen that J(Ux, εx) depends on the noise parameter η(t). Generally, η(t) has the
following three typical forms: (i) η(t) = η; (ii) η(t) = 1−e−2γt, where γ depicts the spontaneous emission
rate; (iii) η(t) = 1 − cos2(αt), where α represents the coupling strength between the system and its
environment.

To illustrate the impact of the parameter η(t), we plot the quantum channel Fisher information with
different noise parameters η(t) in Figure 5. In Figures 5(a)–(c), the noisy channel is the phase damping
channel, while in Figure 5(d), the noisy channel is the phase flip channel. The noise parameters η(t) are
η(t) = η, η(t) = 1−e−2γt, and η(t) = 1−cos2(αt) with corresponding different parameters in Figures 5(a)
–(c), respectively. Here, the switch time t1 is set to be 2.

As can be seen from Figures 5(a) and (d), if the noise parameter η(t) is constant, there is a sudden
decrease of the quantum channel Fisher information at the switch time t1 = 2, from which an open system
dynamics replaces the preceding unitary evolution. In Figure 5(a), for the quantum phase damping noise,
J(Ux, εx) = (1 − η)t2. Thus the bigger the noise parameter η is, the more the quantum channel Fisher
information decreases at the time t1. Since the sensing time is a valuable resource, as the sensing time
increases, the quantum Fisher information J(Ux, εx) of the entire encoding channel gradually exceeds the
value of J(Ux) at the switch time t1. For the phase flip noise in Figure 5(d), J(Ux, εx) = (1 − 2η)2t2.
Hence, for η = 0.5, the quantum channel Fisher information J(Ux, εx) drops to 0 suddenly at the switch
time t1, and remains to be 0. In this case, there is no information at all of x being contained in the
final state of the entire encoding channel, no matter how long is the encoding period. For other values
of the noise parameter η, as extending the sensing time, J(Ux, εx) can slowly exceed J(Ux) valued at the
switch time t1. In Figure 5(b), for the noise parameter η(t) = 1 − e−2γt, the quantum channel Fisher
information J(Ux, εx) will continuously increase after the switch time t1 to reach its maximum value, and
then quickly decreases to 0 in an exponential way. Moreover, the larger the parameter γ is, the smaller
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Figure 5 (Color online) The quantum channel Fisher information of J(Ux) and J(Ux, εx) with different noise parameters η(t).

Here, the switch time t1 = 2. If the encoding time t 6 2, the encoding channel is unitary, while for t > 2, a noisy encoding channel

has to be taken into account. In (a)–(c), the quantum noise is the quantum phase damping noise. The noise parameters η(t) are

(a) η(t) = η, (b) η(t) = 1 − e−2γt, and (c) η(t) = 1 − cos2(αt), respectively. (d) depicts the quantum Fisher information with εx
being the quantum phase flip noisy channel, and η(t) = η with different values.

the maximum value of J(Ux, εx) is, and the quicker it decreases. Thus in this case, for large γ, a smart
choice of the total encoding time is around the switch time t1. In Figure 5(c), η(t) = 1− cos2(αt), after
the switch time t1, the quantum channel Fisher information J(Ux, εx) starts to oscillate. The larger the
parameter α is, the faster J(Ux, εx) oscillates. Although the amplitude of the oscillation increases as
the sensing time grows, to extract more information from the entire encoding channel, the sensing time
should be determined more precisely.

From this subsection, it can be seen that in practical quantum metrology, the following two points
are particularly important: (i) The switch time at which an open system dynamics emerges should be
identified; (ii) The total encoding time should be determined precisely to ensure that more information
can be extracted from the entire encoding channel.

5 Conclusion

In this paper, we studied the quantum Fisher information of parameter estimation using multiple chan-
nels. For several typical kinds of quantum multiple channels, the corresponding quantum channel Fisher
information is derived. The results are useful for two important and practical quantum metrology prob-
lems: (i) control involved quantum metrology, and (ii) practical quantum metrology where decoherence
is unavoidable. For control enhanced quantum metrology, the results can help design controls to improve
the quantum channel Fisher information, i.e., to improve the best possible precision limit of quantum
parameter estimation. For practical quantum metrology, the results provide a reference for properly
choosing the sensing time in presence of a non-unitary channel, under which circumstance the quantum
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channel Fisher information may decrease for a long sensing time. We expect that our results may trigger
more studies on the quantum parameter estimation with multiple channels.
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