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Abstract Clustering is one of the most crucial problems in unsupervised learning, and the well-known

k-means algorithm can be implemented on a quantum computer with a significant speedup. However, for the

clustering problems that cannot be solved using the k-means algorithm, a powerful method called spectral

clustering is used. In this study, we propose a circuit design to implement spectral clustering on a quantum

processor with substantial speedup by initializing the processor into a maximally entangled state and encoding

the data information into an efficiently simulatable Hamiltonian. Compared to the established quantum k-

means algorithms, our method does not require a quantum random access memory or a quantum adiabatic

process. It relies on an appropriate embedding of quantum phase estimation into Grover’s search to gain the

quantum speedup. Simulations demonstrate that our method effectively solves clustering problems and is an

important supplement to quantum k-means algorithm for unsupervised learning.
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1 Introduction

Quantum machine learning (QML) is an interdisciplinary subject connecting quantum computing and
machine learning (ML), focusing on solving ML problems in quantum processors and obtaining potential
quantum speedup or other advantages [1]. Although the exploration of QML is still preliminary, existing
results have shown that multiple QML algorithms substantially reduce the computational complexity
compared to their classical counterparts. Examples of such advantages include quantum data-fitting [2],
quantum support vector machine (QSVM) [3, 4], quantum principal component analysis [5], quantum
Boltzmann machine [6], and quantum reinforcement learning [7]. Besides supervised and reinforcement
learning, another important subfield in ML is unsupervised learning, wherein algorithms are designed to
find hidden patterns in a set of unlabeled data. Typical unsupervised learning problems include anomaly
detection [8], dimensionality reduction [9], and clustering [10]. Clustering aims to group a set of data
points into different subgroups based on their similarities, and one of the most popular clustering algo-
rithms is the k-means algorithm. The k-means algorithm can be implemented on a quantum computer by
either converting it into a search problem [11] or utilizing a quantum random access memory (QRAM) [12]
and adiabatic quantum computing [13,14]. Depending on the specific design, the quantum k-means algo-
rithm can achieve a quadratic or exponential speedup [11, 14]. Nevertheless, not all clustering problems
can be solved by k-means algorithm because it fails in some important clustering cases (Figure 1). In such
cases, another method called spectral clustering is used to solve clustering problems. Spectral clustering
is more flexible and adaptable to different data distributions than k-means clustering [15, 16]. In graph
theory, spectral clustering is equivalent to a graph cut problem, which can be solved by calculating the
first k smallest eigenvalues and the corresponding eigenvectors of the graph Laplacian matrix. Hence, the
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Figure 1 (Color online) Comparison of clustering results for data sets D1 and D2 under two different methods, k-means and

spectral clustering: (a) and (c) under k-means, and (b) and (d) under spectral clustering. Both methods give good clustering for

D1, but only spectral clustering give a reasonable clustering for D2.

essence of a quantum spectral clustering algorithm is to solve an eigenvalue problem on a quantum com-
puter. The originally established quantum algorithm for spectral clustering was based on biased phase
estimation [17], but its success cannot be guaranteed. Another effort is made with a crucial assumption
on the availability of a QRAM [18]; in reality, physically building a QRAM is still a challenge. One major
challenge of designing such a quantum algorithm is to create an initial state that overlaps with every
eigenvector of the Laplacian matrix with an equal probability amplitude.

To address this problem, we propose an alternative quantum algorithm for spectral clustering based
on a bipartite maximally entangled initial state. Compared with existing quantum k-means algorithm,
our proposal does not require a QRAM or a quantum adiabatic process. We encode the Laplacian
matrix of the clustering problem into a d-sparse Hamiltonian which can be efficiently simulated. Our
designed clustering circuit combines Grover’s search [19], quantum phase estimation [20], and d-sparse
Hamiltonian simulation [21] in a way that the entire circuit complexity has a speedup over the well-
known classical eigensolvers. After passing through the clustering circuit, the quantum state undergoes a
quantum measurement of a pre-chosen observable. Finally, the measurement outcome is optimized over
the observable choice, and the desired clustering result is achieved. Before getting into the detail of our
quantum proposal, we first briefly review the classical spectral clustering algorithm.

2 Classical spectral clustering algorithm

Given a dataset D = {vi}N−1
i=0 ⊂ R

M , a clustering task is to group the points in D into k subgroups based

on their similarities, and the clustering outcome is described by a partition {Pj}k−1
j=0 with D =

⋃k−1
j=0 Pj

and Pi ∩ Pj = ∅, for i 6= j. The value of k is given as an input of the clustering problem.
In order to apply the spectral clustering algorithm, we further assume the similarity between points vi

and vj is characterized by a similarity function S: S(vi,vj) = S(vj ,vi) ∈ [0,+∞), satisfying S(vi,vj)
is large if the two points are from the same subgroup, and is small if they are from different subgroups.
Compared with the k-means algorithm that deals with the dataset D directly, the spectral clustering
algorithm deals with the similarity graph G(VD, EDS), whose nodes are points in D, and edges between
every pair of points that are (d − 1)-nearest neighbors to each other. In other words, two points vi and
vj in G are connected by an edge eij with a weight S(vi,vj), if they are (d− 1)-nearest neighbors to each
other. Here, d is a value chosen by the user to characterize the local connectivity of every point to its
surrounding neighbors. In most applications, d is independent of N and d ≪ N , which we will take as
assumptions of the clustering problem. Then we can defineW as the adjacent matrix of G(VD, EDS), with
wij = S(vi,vj) for each edge eij in G. Then the associated Laplacian matrix L ∈ R

N×N for G(VD, EDS)
is defined by

Lij =















− wij , i 6= j,

N−1
∑

l=0

wil, i = j.
(1)

L is symmetric and positive-semidefinite, with eigenvectors {ui} and eigenvalues {λi} satisfying 0 = λ0 6

λ1 6 · · · 6 λN−1. Notice that L has at least one zero eigenvalue, i.e., λ0 = 0.
The idea of spectral clustering comes from the property of the Laplacian matrix L: the number of

zero eigenvalues of L is equal to the number of connected components of the similarity graph. Hence,
eigenvalues of L equal to or close to zero will provide useful clustering information. The classical spectral
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clustering algorithm consists of two steps. In step 1, we calculate the first k smallest eigenvalues {λi}, i =
0, . . . , k−1 as well as their corresponding eigenvectors ui, and construct the matrix A ≡ [u0, . . . ,uk−1] ∈
R
N×k. The rows of A are denoted as {yi}, i = 0, . . . , N − 1. In step 2, we apply the k-means algorithm

to {yi} and group them into k subgroups {Cj}k−1
j=0 . It turns out that the clustering {Cj} on {yi} leads to

a good clustering {Pj} on D = {vi}: if yi and yj belong to the same subgroup Cj , then vi and vj belong
to the same subgroup Pj [15,16]. The entire process of spectral clustering is summarized in Algorithm 1.
Since the time complexity of numerically calculating the first k smallest eigenvalues of L is O(kN3) (e.g.,
using the inverse power method [22]), the time complexity of spectral clustering is at least O(kN3).

Algorithm 1 Classical spectral clustering algorithm

Input: A dataset D = {vj}, a given value d, and the number of clusters k.

Output: Clusters P1, . . . , Pk.

1: Construct the similarity graph G(VD , EDS) upon D and S(vi,vj).

2: Compute the graph Laplacian matrix L.

3: Calculate the first k eigenstates u0, . . . ,uk−1 of L.

4: Let A ≡ [u0, . . . ,uk−1] ∈ R
N×k and denote the i-th row of A as yi ∈ R

k.

5: Cluster yi=0,...,N−1 ∈ R
k into k different clusters C0, . . . , Ck−1 with k-means algorithm.

6: Generate P0, . . . , Pk−1 by Pj = {vi|yi ∈ Cj}.

3 Quantum spectral clustering algorithm

As discussed above, the critical step of spectral clustering is to calculate the eigenvalues of the Laplacian
matrix L for data set D. In this work, we assume that as the set size N = |D| grows, all points in D are
confined in the same compact region Dc ⊂ R

M . In the classical case, there are many ways of defining
the similarity function S, the similarity graph G(VD, EDS) and the corresponding L; in the quantum
case, analogous to the classical case, for a given d, we can define the (d − 1)-nearest neighbor graph
G(VD, EDS), with its adjacent matrix W = (wij). For convenience, we choose all nonzero wij to be 1.
Then the Laplacian matrix L can be defined by (1). Assuming d ≪ N , we have L is Hermitian and
d-sparse. We also assume N = 2n, so that L can be encoded as a Hamiltonian on an n-qubit system.
In addition, L can be further rescaled by a factor of 1

2d so that after rescaling all eigenvalues of L fall
into the interval [0, 1]. Such treatment will not alter the corresponding eigenstates, nor the property of
the Laplacian matrix, but will make it convenient to encode L into the quantum circuit. We denote
the eigenvalues and eigenstates of L as {λj}N−1

j=0 and {|uj〉}N−1
j=0 , respectively. In addition, for every λj ,

its binary representation is λj = 0.λj1λj2λj3 · · · , where λjl ∈ {0, 1}. It turns out that quantum phase
estimation (QPE) [20] embedded in Grover’s search is a powerful method to calculate the eigenvalues of
L. For U = e2πiL and one eigenpair (e2πiλk , |uk〉) of U , the quantum phase estimation circuit Upe can be
constructed from the inverse quantum Fourier transform and a series of controlled-U j gates, satisfying

Upe|0〉⊗t|uk〉 = |λ̃k〉|uk〉, (2)

where |λ̃k〉 = |λk1λk2 · · ·λkt〉 and its measurement outcome is a t-bits estimate of λk, up to an error
precision O(2−t). For convenience, the first register is called the phase register, and the second called the
eigenstate register. To implement quantum spectral clustering, it is sufficient to choose U = e2πiL in Upe

and then to calculate the eigenstates of L. Notice that the value of d cannot be chosen too large; otherwise
it would mistakenly connect two clusters that are generically distinctive. Hence, for our case of clustering
on a compact set, d has an upper bound independent of N . Thus, U = e2πiL can be efficiently simulated
on a quantum circuit [21]. The entire procedure of our quantum algorithm for spectral clustering consists
of four steps, as illustrated in Figure 2.

Step 1: Initial state preparation. If the input state of Upe is |0〉|φ〉, where |φ〉 =
∑N−1

i=0 αi|ui〉, then we
have

Upe|0〉|φ〉 =
N−1
∑

i=0

αiUpe|0〉|ui〉 =
N−1
∑

i=0

αi|λi〉|ui〉. (3)

Since {|ui〉} are unknown before the calculation, some of these amplitudes αi could be significantly small
for a poor choice of |φ〉, which could lead to a problem in the subsequent steps. To address this problem,
we propose to introduce an ancilla register and prepare a bipartite maximally entangled initial state. We
need Lemma 1 for further analysis [23].
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Figure 2 Quantum circuit illustrating our quantum spectral clustering algorithm. The quantum processor contains three registers,

the phase register, the eigenstate register and an ancilla register, with t, n and n qubits respectively. The value of t determines the

accuracy of phase estimation and n = log(N). The entire circuit contains four steps: initial state preparation (step 1), quantum

phase estimation with U = e2πiL (step 2), Grover iteration sequence to find the eigenvalues of L less than λ̃ (step 3), and quantum

measurement on the eigenstate register to evaluate and optimize 〈M〉 = Tr(ρM), whereM = XXT and X is the clustering indicator

matrix (step 4).

Lemma 1. For an N -dimensional quantum system, let {|i〉} be the computational basis, and {|vj〉} be
another orthonormal basis arbitrarily chosen, j = 0, 1, . . . , N − 1. Then we have

|Φ〉 ≡ 1√
N

N−1
∑

i=0

|i〉|i〉 = 1√
N

N−1
∑

j=0

|vj〉|v∗j 〉, (4)

where |v∗j 〉 is the complex conjugate of |vj〉.
Proof. Assuming |vj〉 =

∑

i αji|i〉, since

|i〉 =
∑

j

|vj〉〈vj |i〉 =
∑

j,k,m

αjkα
∗
jm|k〉〈m|i〉 =

∑

j,k

αjkα
∗
ji|k〉,

we have

∑

j

|vj〉|v∗j 〉 =
∑

j

∑

k

αjk|k〉
∑

i

α∗
ji|i〉 =

∑

i





∑

j,k

αjkα
∗
ji|k〉



 |i〉 =
∑

i

|i〉|i〉.

This lemma implies that the maximally entangled state |Φ〉 can be expressed in any orthonormal
basis, either known or unknown. In particular, we can choose |vi〉 = |ui〉 in (4), where {|ui〉}N−1

i=0 is the
eigenbasis of L and is unknown before the calculation. The significance of this lemma is, |Φ〉 can be
efficiently prepared using the known computational basis {|i〉}, and then it can be expressed in terms
of the unknown basis {|ui〉}, but with known coefficients. Notice that |Φ〉 can be efficiently constructed
using Uin ≡ ∏n

i=1 CNOTi,i+nH
⊗n: |Φ〉 = Uin|0〉⊗2n. Here, Uin consists of n Hadamard gates and n

CNOT gates, where H⊗n acts on the first n qubits and CNOT(i,i+n) denotes the CNOT gate with the
i-th qubit as the control and the (i+ n)-th qubit as the target, as illustrated in Figure 2. Hence, in step
1, we prepare the three registers, the phase register, the eigenstate register, and the ancilla register into
the initial state |ψ0〉 ≡ |0〉⊗t|0〉⊗n|0〉⊗n, and then apply Uin to get: Uin|ψ0〉 = 1√

N

∑N−1
i=0 |0〉⊗t|i〉|i〉.

Step 2: Applying quantum phase estimation. After applying Uin to |ψ0〉, we apply the phase estimation
circuit Upe to obtain:

|ψ〉pe ≡ UpeUin|ψ0〉 =
1√
N

N−1
∑

i=0

Upe|0〉⊗t|i〉|i〉 =
1√
N

N−1
∑

i=0

Upe|0〉⊗t|ui〉|u∗i 〉 =
1√
N

N−1
∑

i=0

|λi〉|ui〉|u∗i 〉, (5)

where we have used Upe|0〉⊗t|ui〉 = |λi〉|ui〉. From this, we can see the advantage of preparing |Φ〉: each
overlap αi between |ψ〉pe and every |λi〉|ui〉|u∗i 〉 is known and equal to 1√

N
, even though {|ui〉} is unknown.

In order to efficiently construct Upe, we need to efficiently construct the following controlled-U gate,
with U = e2πiL:

CU = |0〉〈0| ⊗ I + |1〉〈1| ⊗ e2πiL = e2πi(|1〉〈1|⊗L), (6)
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whereH ≡ |1〉〈1|⊗L is also a d-sparse matrix. According to the well-known results in quantum simulation,
since H = |1〉〈1| ⊗ L is d-sparse, CU and hence Upe can be efficiently constructed, and the quantum
complexity for Upe is O(poly(logN)d4/ǫ), where ǫ represents the error of the estimated phase [21].

Step 3: Applying Grover’s search to find the eigenvalues of L less than the threshold. In classical
spectral clustering, the number of clusters k0 is chosen as the input of the clustering problem, and
a classical eigenvalue-solving algorithm will be applied to find the k0 smallest eigenvalues of L. In
comparison, in our quantum spectral clustering algorithm, we choose a threshold value λ̃ > 0, and apply
Grover’s search [19] to |ψ〉pe to find eigenstates of L smaller than λ̃. Specifically, given λ̃, the desired
classical oracle f can be defined as follows:

f(x) =







1,
x

2t
< λ̃,

0,
x

2t
> λ̃,

(7)

where x is a t-bit Boolean variable. Then based on the reversible classical circuit that generates f , we
can construct the corresponding quantum circuit that generates the quantum oracle Of [24], satisfying

Of |x〉 = (−1)f(x)|x〉. (8)

Such Of will add a phase −1 to all |x〉 satisfying x
2t < λ̃. Then based on Of , we can construct the Grover

iteration G,
G ≡ UinvOf = (2|ψ〉pe〈ψ|pe − I)Of , (9)

where Uinv ≡ (2|ψ〉pe〈ψ|pe−I) is the initial-state inversion with respect to |ψ〉pe. Hence, the constructions
of f and Of are completely determined by the value of λ̃, and does not require any prior information
about the eigenvalues of L.

In addition, a well-known result in quantum computation is, if the circuit complexity to generate
the classical oracle f is C, then the circuit complexity of the quantum oracle Of is O(poly(C)) [24].
For our case, since division and comparison are performed on t bits to evaluate f , the classical circuit
complexity to calculate f in (7) is poly(t), and hence the complexity of the above Of is O(poly(t)), where
t = n+ ⌈2 + log 1

2ǫ0
⌉, n = ⌈logN⌉ and 1 − ǫ0 is the success probability of phase estimation. Hence, the

circuit complexity to construct Of is O(poly(log(N))), i.e., Of and hence G can be efficiently constructed.

Since we are only interested in finding eigenvalues of L close to zero, λ̃ should be sufficiently small. As
a rule of thumb, λ̃ = 1

2N is a good first trial, and will give a reasonably good clustering. The value of λ̃

determines the number k of eigenvalues smaller than λ̃, and we can rewrite |ψ〉pe as

|ψ〉pe =
1√
N

∑

λi<λ̃

|λi〉|ui〉|u∗i 〉+
1√
N

∑

λi>λ̃

|λi〉|ui〉|u∗i 〉. (10)

After applying a standard Grover iteration sequence of length r = ⌈π

4

√

N
k ⌉ to the initial state |ψ〉pe, we

obtain the output state:

|ψ〉out =
1√
k

∑

λi<λ̃

|λi〉|ui〉|u∗i 〉 (11)

with high probability as long as k ≪ N . Alternatively, we can apply a fixed-point Grover’s search [25]
to |ψ〉pe with the final state converging to |ψ〉out with an arbitrarily high precision. The total quantum

complexity in step 3 in terms of N and k is O(
√

N
k poly(logN)); in comparison, on a classical computer,

the time complexity is O(kN3) using the inverse power method [22].
At this point, before we move on to step 4, we need to find the actual value of k, given λ̃. This can

be achieved by applying the quantum counting circuit to |ψ〉pe [26]. The value of k will then be used to
construct the clustering indicator matrix X in step 4. Details of the quantum counting circuit will be
discussed in the next section.

Step 4: Taking quantum measurement and optimizing over the clustering indicator matrix. At the end
of step 3, after we obtain the value of k using quantum counting, we need to repeat the quantum circuit
of Uin, Upe and the Grover’s iterations to prepare the register into |ψ〉out again. Then we take a quantum
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measurement on the eigenstate register, whose density matrix can be derived by taking the partial trace
of |ψ〉out:

ρ = Tr1,3
(

|ψ〉out〈ψ|out
)

=
1

k

k−1
∑

i=0

|ui〉〈ui| =
1

k
AAT, (12)

where A ≡ [u0, . . . ,uk−1] ∈ R
N×k, with rows of A denoted as {yj}. As discussed in the classical spectral

clustering algorithm, if we apply a clustering for {yj}, then the clustering outcome for {yj} will correspond
to a good clustering outcome for {vj}. In addition, the clustering for {yj} can be conveniently realized

in our proposal due to the relation ρ = 1
kAA

T. Specifically, for any k-partition {Ci}k−1
i=0 of {yi}N−1

i=0 , we
define the clustering indicator matrix X = (xij) = [x0, . . . ,xk−1] ∈ R

N×k satisfying

xij =







1
√
sj
, yi ∈ Cj ,

0, yi /∈ Cj ,

(13)

where sj = |Cj |. Then the clustering of {yi}N−1
i=0 can be formulated as an optimization problem with the

following objective function [27]:

max
X

1

k

k−1
∑

i=0

Tr(uiu
T
i XX

T) = max
X

Tr(ρXXT) = max
X

Tr(ρM) = max
X

〈M〉, (14)

subject to X defined by (13), where M ≡ XXT can be considered as a measurement observable. In
our proposal, the above optimization problem is equivalent to finding an optimal observable M = XXT

satisfying (13) to maximize 〈M〉 = Tr(ρM). Strictly speaking, finding the exact optimal X is an NP-
hard problem, but for most applications of clustering, a sub-optimal solution is sufficient. Many heuristic
algorithms, including hill climbing [28], are good enough to find an acceptable sub-optimal X within
a polynomial number O(kN) of iterations. We denote Ceigen as the quantum eigenvalue-solving circuit
composed by Uin, Upe and the Grover’s iteration sequence, and it maps |ψ0〉 to |ψ〉out. In each iteration
of the hill climbing algorithm, the quantum circuit Ceigen is repeatedly implemented for nM times to get

an estimation of 〈M〉. Since the complexity of Ceigen is O(
√

N/k poly(logN)), the total quantum circuit

complexity for Ceigen in all these O(kN) iterations becomes O(
√
kN3/2 poly(logN)), where we have used

the fact that nM only depends on the estimation accuracy of 〈M〉, and does not increase as N increases.

4 Determine the number of eigenvalues below threshold

As mentioned above, at the end of step 3 in Figure 2, based on |ψ〉pe, we need to calculate the value of k,

i.e., the number of eigenvalues (with multiplicities) of L smaller than the given threshold λ̃. Specifically,
from (10), we have

|ψ〉pe ≡
√

N − k

N
|α〉 +

√

k

N
|β〉 = cos

θ

2
|α〉+ sin

θ

2
|β〉,

|α〉 ≡
√

1

N − k

∑

λi>λ̃

|λi〉|ui〉|u∗i 〉,

|β〉 ≡
√

1

k

∑

λi<λ̃

|λi〉|ui〉|u∗i 〉.

Hence, |ψ〉pe is located on a 2-dimensional subspace, on which G is invariant and has the form:

G =

(

cos θ − sin θ

sin θ cos θ

)

. (15)
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Figure 3 Schematic circuit for quantum counting to estimate calculate the number k of eigenvalues of L less than λ̃, where

Uencode ≡ UpeUin, and G ≡ UinvOf .

G has two eigenvalues µ1 = eiθ and µ2 = ei(2π−θ), with two corresponding eigenvectors |a1〉 and |a2〉.
For k ≪ N , we have 0 < θ = 2 arcsin

√

k
N < π

2 . We can apply the quantum counting circuit Ucount in

Figure 3 to find the value of θ. Specifically, for input state |0〉⊗t′ |ψ〉pe, the output state of Ucount becomes:

Ucount|0〉⊗t
′ |ψ〉pe = α1|θ〉|a1〉+ α2|2π− θ〉|a2〉. (16)

Finally, through measuring the phase register, we obtain a measurement outcome of either θ or 2π − θ.
We can tell which is which since the former is smaller than π

2 and the latter is larger than 3π
2 . Thus, we

find the value of θ, and so as the value of k. By increasing the number of qubits in the phase register,
one can reduce the uncertainty |∆k| to a value less than 1, and then the value of k can be uniquely
determined. The total circuit complexity of quantum counting is O(

√
kN).

5 Complexity analysis

In classical spectral clustering, given L, the number of clusters k0 is chosen by the user and can be
considered as part of the clustering problem input. In comparison, in our quantum spectral clustering
algorithm, before implementing the quantum circuit, a threshold λ̃ is chosen, and it completely determines
the number k of eigenvalues of L smaller than λ̃, where k is equal to the number of clusters in the final
clustering outcome. Hence, given L, in our proposal, the value of λ̃ completely determines the final
clustering outcome, and hence it is taken as an input of the clustering problem. However, if someone
is interested in using our algorithm to group the data set into exactly k0 clusters, then we can do as
follows: assuming the eigenvalues of L are sorted in a non-decreasing order, with 0 = λ0 6 · · · 6 λk0−1 <
λk0 6 · · · 6 λN−1 6 1. Here, we can reasonably assume λk0 − λk0−1 = δ > 0, for if δ = 0 then the data
should be partitioned into k + 1 rather than k clusters. Then we can apply the binary search algorithm
to generate a sequence of {λ̃(i)}mi=1 such that the final value λ̃(m) ∈ (λk0−1, λk0 ] with exactly k = k0
eigenvalues of L smaller than λ̃(m). The total number of binary-search iterations is m = O(log 1

δ ). In
practice, if k0 corresponds to a good clustering outcome, then δ must be far from zero, and m must be
pretty small. Hence, due to the logarithm property of m = O(log 1

δ ), we can efficiently find the value λ̃
satisfying k = k0 through binary search.

In addition, similar to λ̃, the value of d is also taken as an input of the clustering problem. The choice
of d and the generation of L belong to the data preprocessing part, and are taken as the preliminary
information that will be used for the classical and the quantum spectral clustering algorithms. However,
d does appear in the circuit complexity expression of simulating the unitary U = e2πiL. We will take d as
a value chosen by the user for the clustering problem, while N and d are taken as independent. In most
applications, d is chosen to be a constant much smaller than N . In the following, for given values of d
and λ̃, we analyze the quantum circuit complexity of all steps in Figure 2, including quantum counting.
The entire algorithm is summarized in Algorithm 2. First, quantum counting has a query complexity of
O(

√
kN) and each query has a circuit complexity of O

(

poly(logN)d4/ǫ
)

, where ǫ denotes the error of the
estimated phase in Upe. Then we analyze the four steps of the circuit illustrated in Figure 2. The complex-
ity of Uin is O(logN), and the complexity of Upe is O(poly(logN)d4/ǫ). For step 3, the query complexity

of the Grover iteration circuit is O(
√

N
k ), and each query has circuit complexity O(poly(logN)d4/ǫ). For

step 4, the hill-climbing algorithm consists of O(kN) iterations, and each iteration repeatedly implements
Ceigen for nM times, with nM independent of N . The total quantum circuit complexity for Ceigen in all
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(a) (b) (c)

Figure 4 (Color online) (a) An illustrative image describing data set D1 containing 256 points and the corresponding 8-nearest

neighbor graph: two points are connected by a solid-line edge if they are an 8-nearest neighbor to each other; (b) for λ̃ = 1

29
, the

clustering results for D1 using our quantum spectral clustering algorithm and (c) the clustering result using classical k-means with

k = 2. The performance of our method for D1 is much better than k-means.

these O(kN) iterations adds up to O(
√
kN3/2 poly(logN)d4/ǫ). Hence, the total complexity of the entire

algorithm becomes O((kN
√

N
k +

√
kN) poly(logN)d4/ǫ) = O(

√
kN

3
2 poly(logN)d4/ǫ), demonstrating a

notable speedup compared to the complexity of the classical spectral clustering algorithm, e.g., O(kN3)
for inverse power method to find the k eigenvalues classically [22].

Algorithm 2 Quantum spectral clustering algorithm

Input: A data set D = {vi}, a given value d, and a threshold λ̃.

Output: Clusters P0, . . . , Pk−1.

1: Given d, construct the Laplacian matrix L.

2: Apply Uin to |ψ0〉 to prepare the state 1√
N

|0〉
∑N−1

i=0
|i〉|i〉 = 1√

N
|0〉

∑N−1
i=0

|ui〉|u∗
i 〉.

3: Apply the quantum phase estimation Upe to generate |ψ〉pe = 1√
N

∑N−1
i=0

|λi〉|ui〉|u∗
i 〉.

4: Apply quantum counting to |ψ〉pe to find the value of k, i.e., the number of eigenvalues of L smaller than λ̃.

5: Repeat lines 2 and 3 to get |ψ〉pe, and apply Grover’s search to obtain ρ = 1
k

∑k−1
i=0

|ui〉〈ui| on the eigenstate register.

6: Construct an observable M ≡ XXT with X satisfying (13), and calculate 〈M〉 = Tr(Mρ) through measurement.

7: Repeat lines 5 and 6 and apply hill-climbing algorithm to optimize 〈M〉 over X. The sub-optimal X = X∗ gives the desired

clustering outcome P0, . . . , Pk−1, with Pj = {vi|X∗
ij 6= 0}.

It is worthwhile to point it out that how to choose appropriate values of d and λ̃ for a given clustering
problem is an interesting open question in spectral clustering research, but our work focuses on how to
implement the spectral clustering through a quantum circuit, and hence both d and λ̃ are taken as given
inputs of the clustering problem.

6 Numerical simulation

To demonstrate how to implement our quantum spectral clustering proposal in solving specific spectral
clustering problems, we apply it to two typical problems that are often used to benchmark the performance
of clustering algorithms. The first example is a data set D1 = {v(i)}255i=0 defined on a 2-dimensional com-

pact set, satisfying v
(i) = [v

(i)
1 , v

(i)
2 ]T with v

(i)
1 ∈ [−1, 2] and v

(i)
2 ∈ [−0.5, 1], as illustrated in Figure 4(a).

According to Algorithm 2, we first generate the 8-nearest neighbor graph of D, which will be used to gen-
erate the 9-sparse L1 ∈ R

256×256. Here we choose d = 8 which is sufficient to give a good final clustering.
Then we choose the threshold λ̃ = 1

29 , prepare the initial state, and apply quantum counting to find the

number of eigenvalues smaller than λ̃ to be k = 2. Next, we implement the quantum spectral clustering
circuit in Figure 2 to obtain the final state ρ of the eigenstate register. Then we choose an initial guess of
the clustering indicator matrixX = X(0), and use hill climbing algorithm to optimize 〈M〉 = Tr(Mρ) over
X , with M ≡ XXT. Through iterative optimization, we finally reach a sub-optimal solution X = X∗,
which gives a clustering partition {P0, P1}, satisfying Pj = {vi|X∗

ij 6= 0}, for i = 0, . . . , 255 and j = 0, 1.
The clustering outcome is shown in Figure 4(b), with the two clusters well separated, demonstrating a
good clustering result.

The second example is a dataset D2 with 256 data points v
(i) = [v

(i)
1 , v

(i)
2 ]T satisfying v

(i)
1 ∈ [−6, 8]

and v
(i)
2 ∈ [−2, 6] (Figure 5(a)). Analogously to the first example, we choose d = 8 and construct the

9-sparse Laplacian matrix L. Then we choose λ̃ = 1
29 , and run the quantum counting algorithm to find

k = 3. After that we implement our spectral clustering circuit and hill-climbing algorithm, and through
optimization we find a sub-optimal X = X∗, corresponding to a clustering partition {P0, P1, P2}. The
result is shown in Figure 5(b).
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(a) (b) (c)

Figure 5 (Color online) (a) An illustrative image describing data set D2 containing 256 points and the corresponding 8-nearest

neighbor graph: two points are connected by a solid-line edge if they are an 8-nearest neighbor to each other; (b) for λ̃ = 1

29
, the

clustering results for D1 using our quantum spectral clustering algorithm; (c) the clustering result using classical k-means with

k = 3. The performance of k-means is reasonably good, except for a few points incorrectly clustered.

In comparison, we have also plotted the clustering results for D1 and D2 using the k-means algorithm,
where we have chosen k = 2 and k = 3 respectively for the two examples, as shown in Figure 4(c)
and Figure 5(c). From these figures, one can see that although the k-means clustering result for the
second example is reasonably good, with only a few points incorrectly clustered, it is definitely not good
for the first example. Hence, for problems like the first example, spectral clustering is necessary and
advantageous to the k-means algorithm.

7 Conclusion

In this article, we explore the possibility of constructing a novel quantum spectral clustering algorithm
using an appropriate combination of Grover’s search, quantum phase estimation, and Hamiltonian sim-
ulation instead of QRAM. The essence of the method is to efficiently solve the eigenvalue problem on a
quantum circuit and use the circuit outcome for the clustering task. One crucial trick of the proposed
method is the initial preparation of the registers in a bipartite maximally entangled state. Furthermore,
we use quantum counting to calculate the actual number of clusters. A suboptimal clustering outcome
can be obtained by optimizing the measurement outcome using the hill-climbing algorithm. The overall
quantum complexity of our method demonstrates a speedup compared to the classical counterpart. Our
method successfully demonstrates the advantage of a quantum processor in solving machine learning
problems, and these techniques can be applied to other interesting quantum computational problems.
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