
SCIENCE CHINA
Information Sciences

September 2022, Vol. 65 199103:1–199103:2

https://doi.org/10.1007/s11432-019-3020-4

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 info.scichina.com link.springer.com

. LETTER .

Automated regression unit test generation for
program merges

Tao JI1, Liqian CHEN1*, Xiaoguang MAO1*, Xin YI1 & Jiahong JIANG2

1College of Computer, National University of Defense Technology, Changsha 410073, China;
2Beijing Institute of Tracking and Telecommunication Technology, Beijing 100095, China

Received 12 December 2019/Revised 13 March 2020/Accepted 16 July 2020/Published online 23 August 2022

Citation Ji T, Chen L Q, Mao X G, et al. Automated regression unit test generation for program merges. Sci

China Inf Sci, 2022, 65(9): 199103, https://doi.org/10.1007/s11432-019-3020-4

Dear editor,

Merging of various branches of software with the current

branch is common in collaborative software development.

After decades of hard work on detecting merge conflicts,

various tools have been proposed [1] for assisting software

developers in detecting and resolving conflicts. However,

software developers are still deeply relying on textual merge

tools to handle complicated merge tasks [2]. They may not

be able to detect latent semantic merge conflicts, which re-

duces the software quality.

Recently, Sousa et al. [3] have made progress on guaran-

teeing the quality of a three-way merge, by proposing the

contract of semantic conflict freedom and developing the

tool SafeMerge to verify whether a three-way merge meets

this contract. However, the above mentioned verification

approach still has limitations and faces challenges in ver-

ifying merges. First, besides a three-way merge, Git also

supports the merging of two branches without the common

ancestor (two-way merge) or more than two branches (oc-

topus merge). SafeMerge only supports a three-way merge

and thus fails to deal with other common merges. Second,

SafeMerge only works on cases wherein two branches make

changes to the same Java method. Third, as described in [3],

SafeMerge has limitations on changes made to method sig-

natures, an analysis scope, and exceptions.

Regression testing can prevent regression faults and is

widely used in real-world software development. Meanwhile,

rerunning the test suite seems to be enough for detecting

merge conflicts if we have a high-coverage test suite before

merging branches. However, in practice, the test suite may

still face a high probability in missing the merge conflicts ow-

ing to the workflow of collaborative development. Imagine

two branches are developed by different software develop-

ers. The newly added or changed test cases may not cover

changes made by the other branch since the developers are

not aware of each other’s work. As a result, the conflicts

between these changes cannot be detected.

Test oracles. We find some inconsistencies between the

contract of semantic conflict freedom and the verification

algorithm of SafeMerge, and then revise the algorithm in

Appendix A. In Appendix B, we negate the formula that

needs to be verified in the revised algorithm. According to

the results, we propose general test oracles for all kinds of

merges as follows.

Definition 1 (Test oracles on program merges). Given an

n-parent merge in which every program version is compil-

able, to find the merge conflicts, we generate tests, which

achieve the following goals.

(1) Unexpected behavior. Suppose that one test case t is

generated for the merged program vm. We say that vm has

some unexpected behavior, if for any parent version vi, the

same assertion ϕ is violated.

(2) Lost behavior. Suppose that parent versions have the

common original vo. For one parent version vi, we say its

newly introduced behavior is missing after merging, if one

test t for vi fails on vo and vm over the same assertion ϕ.

According to our oracles, for each merge, we repeatedly

generate test cases for one target version and then check

their executions on all variant versions.

Implementation. As shown in Figure 1, we present the

workflow of our tool TOM (testing on merges). Given one

n-parent merge, we generate tests for {vm, v1, . . . , and vn}

in an order, as shown in the left part of Figure 1. Then, for

each case, according to the extracted dependencies between

different code entities, we select the UUTs (units under test-

ing) and then generate tests to reveal the conflicts. The al-

gorithm for selecting UUTs can be found in Appendix C.

We employ the advanced test generation tool EvoSuite [4]

to implement the test generation for program merges.

We implement the diff-line coverage criterion to guide the

search to cover different line-level parts between the target

version and its variants. If someone generates a non-flaky

test that cannot cover any different parts between two ver-

sions, we do not need to re-execute the test on the other

version. Otherwise, we execute it on all the variants. Given

any two executions of the test on the two versions, we gener-

ate assertions on the variables with different values to cap-

ture the behavior difference between the two versions. Af-

ter running one test on all the variants, all the assertions

that appear in each execution comparison are extracted. If

*Corresponding author (email: lqchen@nudt.edu.cn, xgmao@nudt.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-019-3020-4&domain=pdf&date_stamp=2022-8-23
https://doi.org/10.1007/s11432-019-3020-4
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-019-3020-4
https://doi.org/10.1007/s11432-019-3020-4


Ji T, et al. Sci China Inf Sci September 2022 Vol. 65 199103:2

1

N
N

N

N

N

Y

Y

Y

Y

Y

vm: [v1, v2, ..., vn]

vn: [vb, vm]

n

b

m

n

b

m

2 ...

...1 n

m

2

.

.

.
.
.
.

UUTs selection

Have
resource

Diff-lines
covered

Execute on
variants

Continue
The same
assertion
violated

Unit test
generation

End

Flaky test
Add to 

generated
tests

Figure 1 Workflow of TOM.

one test case triggers exceptions for the target version, we

leave the case to software developers because the exceptions

may not be desired. For each statement having exceptions

thrown in the execution on the variant, all assertions based

on the execution of the target version are generated to de-

scribe the different values and states. If we have the same

assertion generated by executions on all variants, we then

check the stability of this test by rerunning it five times.

If we find one stable test, we add it to the test list, which

will be provided to software developers to examine conflicts.

As shown in Figure 1, we configure TOM to stop unit test

generation once a test case revealing conflicts is generated

or the given resource has been consumed (time out).

Evaluation. According to our oracles, detecting semantic

conflicts for two-way merges is the sub-task of detecting con-

flicts for a three-way merge, and one benchmark consisting

of three-way and octopus merges is needed. Based on the

notion of semantic conflict, we construct conflict merges by

making bug-fix tests fail. For the buggy program Pb, we use

Major [5] to generate mutants on code statements covered

by a bug-fix test. Thus, we have the bug-fixed version Pf

and mutant version Pt. After merging Pf and Pt, we execute

the bug-fix test case on the merge Pm, and get one conflict

merge if this test case fails. For each constructed three-way

merge, we create another branch by randomly choosing one

mutant of the same class mutated in Pt. Finally, on top

of the bug-fix benchmark Defects4J [6], a total of 389 con-

flict three-way merges and 389 conflict octopus merges are

collected. The information of this constructed benchmark

MCon4J can be found in Appendix D.

SafeMerge is run on 18 merges in which two branches

modify the same Java method to evaluate its effectiveness.

However, SafeMerge fails to deal with 17 out of 18 merges,

showing the same error, which seems to be related to its im-

plementation. Regarding the remaining merge, we find that

the two branches modify the same body of one while loop.

The results indicate that SafeMerge fails to deal with the

complicated loop in this merge. Unfortunately, we conclude

that SafeMerge fails to detect conflicts on all the merges

from MCon4J.

Furthermore, we conduct two groups of experiments

guided by different coverage criteria. First, we only use

the proposed diff-line coverage criterion. Second, we add

more coverage criteria used in EvoSuite by default. Because

random operators exist in a search process, TOM is run on

each three-way merge three times to have a comprehensive

view of the tool’s performance. There are 42 and 40 conflict

three-way merges detected by two groups of experiments.

By examining these experimental results, we found that the

performance of the multiple criteria is better than the diff-

line criterion.

Moreover, a total of 87 conflict octopus merges are de-

tected by TOM. We found that 35 conflict octopus merges

created from 35 out of 45 detected conflict three-way merges,

are also detected by TOM. A total of 52 conflict octopus

merges from newly appeared cases are detected. Note that,

we construct octopus merges by adding one mutated branch

based on the constructed three-way merge. With more mu-

tated code changing program behaviors, TOM can find more

conflict octopus merges than the conflict three-way merges.

The detected merges can be found in Appendix E.

Conclusion. We propose test oracles for real-world pro-

gram merges including two-way, three-way, and octopus

merges. On this basis, we implemented a tool called TOM to

automatically generate test cases to reveal merge conflicts.

In addition, we designed the benchmark MCon4J to support

further studies on merges. In our experiments, a total of 45

conflict three-way merges and 87 conflict octopus merges

were detected using TOM, while the verification-based tool

SafeMerge failed to work on MCon4J.

Acknowledgements This work was supported by National
Key R&D Program of China (Grant No. 2017YFB1001802)
and National Natural Science Foundation of China (Grant Nos.
61672529, 61872445).

Supporting information Appendixes A–E. The support-
ing information is available online at info.scichina.com and link.
springer.com. The supporting materials are published as sub-
mitted, without typesetting or editing. The responsibility for
scientific accuracy and content remains entirely with the au-
thors.

References

1 Mens T. A state-of-the-art survey on software merging.

IEEE Trans Software Eng, 2002, 28: 449–462

2 Mckee S, Nelson N, Sarma A, et al. Software prac-

titioner perspectives on merge conflicts and resolutions.

In: Proceedings of IEEE International Conference on Soft-

ware Maintenance and Evolution (ICSME), 2017. 467–478

3 Sousa M, Dillig I, Lahiri S K. Verified three-way program

merge. In: Proceedings of the ACM on Programming Lan-

guages, 2018. 2: 165

4 Fraser G, Arcuri A. Evosuite: automatic test suite gener-

ation for object-oriented software. In: Proceedings of the

ACM SIGSOFT Symposium and the European Conference

on Foundations of Software Engineering (FSE), 2011. 416–

419

5 Just R. The Major mutation framework: efficient and scal-

able mutation analysis for Java. In: Proceedings of the

International Symposium on Software Testing and Analy-

sis (ISSTA), San Jose, 2014. 433–436

6 Just R, Jalali D, Ernst M D. Defects4j: a database of exist-

ing faults to enable controlled testing studies for java pro-

grams. In: Proceedings of the International Symposium on

Software Testing and Analysis (ISSTA), 2014. 437–440

info.scichina.com
link.springer.com
link.springer.com
https://doi.org/10.1109/TSE.2002.1000449

