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Appendix A Preliminaries

Since this letter mainly uses bilinear pairing to design scheme and the scheme is based on some known computational

difficulty problems, this section will briefly illustrate bilinear pairing and those hard computation problems.

Appendix A.1 Bilinear pairing

Let G1 be a cyclic additive group and G2 be a cyclic multiplicative group. Both G1 and G2 have the large prime order q.

P is assumed to be the generator of G1. If function e defined as G1 × G1 → G2 exists, then (G1, G2) is bilinear pairing

map groups. Bilinear pairing has some properties described as following.

• Bilinearity: e(aP, bP ) = e(P, P )ab, where a, b ∈ Z∗p
• Non-degeneracy: Generator P satisfies e(P, P ) 6= 1. 1 is G2’s multiplicative identity.

• Computability: An efficient algorithm exists to calculate e(P, P ).

Appendix A.2 Problems of computational difficulty

This subsection gives the definitions of elliptic curve discrete logarithm problem (ECDLP), computational Diffie-Hellman

problem (CDHP), and divisible computation Diffie-Hellman problem (DCDHP). Descriptions are as below.

• ECDLP: Let P be an elliptic curve point of the prime order q and be the generator of G1. Given P,M ∈ G1, it is

infeasible to calculate a from M = aP , where a ∈ Z∗p .

• CDHP: Let parameter g be a generator of G2 and it has the prime order q. Given (g, gx, gy), gxy is difficult to be

computed , where x, y ∈ Z∗p .

• DCDHP: Let parameter g be a generator of G2 and it has the prime order q. Given (g, gx, gy), gxy
−1

is hard to be

computed , where x, y ∈ Z∗p .

Appendix B The explanations of the notions used in our scheme

The notions used in our scheme are explained in Table B1.

Appendix C Security analysis

This section conducts security analysis of the new proposed scheme from following two aspects: formal security verification

by tool ProVerif and provable security through random oracle model. The details are described as below.
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Table B1 The notions and corresponding explanations of our scheme

Notions Corresponding explanations

TA The trusted authority

SMi The smart meter

UCj The utility control

E The adversary

IDi The smart meter SMi’s identity

IDj The utility control UCj ’s identity

Si The private key of the smart meter SMi

Sj The private key of the utility control UCj

s The master key selected by the trusted authority

Ppub The trusted authority’s public key and its value is sP

Appendix C.1 Formal security verification by ProVerif

ProVerif is a tool used for automatic formal verification and analysis of cryptographic protocols, which can verify security

attributes such as confidentiality and authentication. Based on Dolev-Yao model, ProVerif uses applied π calculus and

verifies protocol’s security by queries. Here we present security verification of our protocol by ProVerif tool.

We first define c as the public channel, where the smart meter SMi and utility control UCj communicate with each

other and exchange information. Additionally, it is important to define the type of parameters, since parameters’ types

determine whether they can be obtained by adversaries. Public parameters and parameters transmitted over public channel

are exposed to adversaries, but private parameters are protected. We define constant P as a public bitstring. Key Si and Sj ,

master key s, and session key skij are defined as private bitstrings. Afterwards, we need to construct some functions used

to describe the proposed protocol. Seven kinds of operations are adopted. The first one is hash functions. The subsequent

six operations are multiplication, multiplicative inverse, addition, elliptic curve point multiplication, concatenation, and

bilinear pair computation.

After that, we define four events to verify the authentication of the proposed protocol. As far as SMi is concerned,

event begin − SMi(bitstring) and event end − SMi(bitstring) should be defined. From UCj ’s viewpoint, event begin −
UCj(bitstring) and event end − UCj(bitstring) need to be defined. Subsequently, we establish π calculus for the trusted

authority TA, the smart meter SMi, and the utility control UCj .

Finally, we perform parallel execution of above three processes and make three queries to check the secrecy of the session

key skij and the authentication between SMi and UCj . The results are seen as follows.

− − Query not attacker(skij [])

Completing...

Starting query not attacker(skij [])

RESULT not attacker(skij []) is true.

− − Query inj − event(end − SMi(IDj)) ==> inj − event(begin − SMi(IDi))

Completing...

Starting query inj − event(end − SMi(IDj)) ==> inj − event(begin − SMi(IDi))

RESULT inj − event(end − SMi(IDj)) ==> inj − event(begin − SMi(IDi)) is true.

− − Query inj − event(end − UCj(IDi)) ==> inj − event(begin − UCj(IDj))

Completing...

Starting query inj − event(end − UCj(IDi)) ==> inj − event(begin − UCj(IDj))

RESULT inj − event(end − UCj(IDi)) ==> inj − event(begin − UCj(IDj)) is true.

From the results, we declare that our scheme realizes the secrecy and mutual authentication. Especially, primitive

“RESULT not attacker(skij []) is true” means that the session key established between SMi and UCj is not capable

of being obtained by attackers and it is secret. In addition, primitive “RESULT inj − event(end − SMi(IDj)) ==>

inj− event(begin−SMi(IDi)) is true” and primitive “RESULT inj− event(end−UCj(IDi)) ==> inj− event(begin−
UCj(IDj)) is true” denote that SMi verifies the validity of UCj and UCj verifies the validity of SMi.

Appendix C.2 Threat model

This letter adopts the Canetti-Krawczyk (CK) threat model [1]. In this treat model, attackers are Turing machines with

probabilistic polynomial time, who are able to completely control the communication channel of participants and can delay,

eavesdrop, modify, replay and insert messages arbitrarily. Furthermore, for adversaries in non-authenticated links, they

can also initiate a series of queries to obtain the secret information of participants and related sessions. Specifically, an

adversary E is permitted to use following queries to communicate with a protocol entity P (or an oracle), where the protocol

entity can be either SMi or UCj . If an attacker cannot distinguish the session key negotiated by protocol participants

with an independent random number under the allowable attack capability, we say that the key agreement protocol satisfies

security.

• Execute(SMi, UCj): This query simulates E’s passive attacks. E is able to obtain all the messages transmitted

between SMi and UCj by this query.
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• Hk(m): This query returns a random number Huk to adversary E.

• Send(P,m): This query simulates E’s active attacks. After E sends a message m to P , P returns a corresponding

response.

• SSReveal(P ): This query lets E get the session-specific state information held by P . However, it does not output the

long-term private key held by P by this query.

• SKReveal(P ): By this query, E is permitted to acquire the session key held by P .

• Corrupt(P ): By this query, E is permitted to acquire the long-term private key held by P .

• Expire(P ): By this query, E is permitted to delete a completed session’s session key held by P .

• Test(P ): This query measures the session key’s semantic security. In this query, a coin d is flipped by P , where d = 0, 1.

The real session key is returned by P if d = 1. Otherwise, P randomly selects a number and sends it to E.

Some related definitions are as follows.

Definition 1. If oracles SMi and UCj authenticate mutually and generate the same skij , they are said to be partners.

Definition 2. A session
∏

held by oracle P is called locally exposed if queries of SKReveal(P ), SSReveal(P ), and

Corrupt(P ) are asked prior to Expire(P ) query by adversary E or oracle P is corrupted before the establishment of
∏

. If

both session
∏

and its matching sessions are not locally exposed,
∏

is considered fresh.

Definition 3. In our proposed authenticated key agreement (AKA) scheme, the security is simulated by gameGMAKA(P,E),

where E is permitted to issue many Test(P ) (SMi or UCj) queries. After receiving a Test(P ) query, P flips a coin d and

responds with d, where d is either an actual session key or a random number. Adversary E guesses a bit d
′
. If d

′
=d, E

wins the game. Let Pr[d
′
=d] be the probability that E successfully wins GMAKA(P,E), then E ’s advantage in violating

our scheme’s semantic security is denoted as AdvAKA(E)=|2Pr[d′=d]− 1|.
Definition 4. If AdvAKA(E) 6 ε holds, where ε is small enough, then the new proposed scheme is said to resist CK-

adversary model.

Appendix C.3 Provable security through random oracle model

Subsequently, we proof our scheme’s security under random oracle model. We first present difference lemma [2] necessary

for analysis and give the theorem which needs to be proofed.

Lemma 1 (Difference Lemma). Let B1, B2, B3 be the events defined in some probability distribution. Given B1 ∧
¬B3⇔B2∧¬B3, we can conclude |Pr[B1]− Pr[B2]| 6 Pr[B3].

Theorem 1. Suppose an adversary E is probabilistic polynomial time-bounded, who can break our scheme’s semantic

security by issuing Hash query for at most qh times, Execute query for at most qe times and Send query for at most qs
times. E’s advantage is defined as follows.

AdvAKA(E) 6
4q2h + 2q2s

2l
+

(qs + qe)2

p
+ 2qhAdvCDHP (E)

Proof. We define six games GM0 ∼ GM5 to prove our scheme’s semantic security. Especially, GM0 denotes the actual

attack and adversary E has no advantage in GM5. We assume that Sucj is GMj ’s corresponding event, which denotes E’s

success guessing of bit d by Test query.

Game GM0: In random oracle model, this game represents real attack. Thus, we can obtain following conclusion.

AdvAKA(E) = |2Pr[Suc0]− 1| (C1)

Game GM1: This game simulates all the oracles and the details are shown in Table C1. The answers are kept in

corresponding lists. As the simulation shows, we can observe that GM1 is indistinguishable from GM0. Thus, we can

obtain following conclusion.

Pr[Suc1] = Pr[Suc0] (C2)

Game GM2: This game nearly simulates GM1. The difference is that GM2 ignores several collisions of M1 or M2 in the

hash queries and transcripts, where M1 and M2 are random. Thus, this game and the previous game are indistinguishable

if there are no collisions occur. By applying birthday paradox, hash collisions’ probability is no more than
q2h
2l

. Similarly,

in transcripts, the collisions’ probability is no more than
(qs+qe)

2

2p
. As a result, by adopting Lemma 1, we can get following

conclusion.

|Pr[Suc2]− Pr[Suc1]| 6
q2h
2l

+
(qs + qe)2

2p
(C3)

Game GM3: This game is identical to GM2 unless SMi refuses Y2 or UCj refuses Y1 or Gi. Moreover, GM3 will be

terminated if adversary E is fortunate to guess the values of Y1, Y2, and Gi without inquiring the H oracle. Thus, we can

obtain following conclusion.

|Pr[Suc3]− Pr[Suc2]| 6
q2s
2l

(C4)

Game GM4: This game considers the security of the session key. This security property guarantees that E still fails to

acquire skij unless she obtains SMi’s secret information {a, x1, Si} or UCj ’s secrecy {b, x2, Sj}. The goal of E is to calculate

skij in the following cases by issuing some Hash and Execute queries, who is permitted to obtain session transcripts.
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Table C1 Simulation of oracles

For a one way hash query Hk(m), where k = 1, ..., 5, if there is a record (Huk,m) exists in the list LHuk
, then Huk is

returned. Otherwise, a random number Huk is selected from {0, 1}l and is returned to adversary E. After that, the new

record Huk is added into LHuk
.

For a query Send(SMi, begin), oracle SMi randomly selects a, x1 from Z∗p , computes Z=ga+H3(Si‖x1), Aj=Ppub+H1(

IDi)P , M1=(a+H3(Si‖x1)) ·Aj , and Y1 =H4(IDi‖IDj‖Z‖M1), and responds with {M1, Y1}.
For a query Send(UCj , {M1, Y1}), oracle UCj chooses two random numbers b, x2 from Z∗p , computes Z = e(M1, Sj)=

e(P, P )a+H3(Si‖x1), and then verifies the correctness of Y1 =H4(IDi‖IDj‖Z‖M1). If it is valid, UCj determines V =

e(P, P )b+H3(Sj‖x2) = gb+H3(Sj‖x2), further generates Kij=H2(Zb+H3(Sj‖x2)), skij = H4(IDi‖IDj‖Z‖V ‖Kij), Bi =

Ppub +H1(IDi)P , M2 = (b+H3(Sj‖x2))·Bi, and Y2 = H4(IDi‖IDj‖V ‖M2), and finally replies with {M2, Y2}.
For a query Send(SMi, {M2, Y2}), SMi computes V = e(M2, Si)= e(P, P )b+H3(Sj‖x2) and verifies the validity of Y2=

H4(IDi‖IDj‖V ‖M2). If the result is positive, SMi calculates Kij =H2(V a+H3(Si‖x1)), skij=H4(IDi‖IDj‖Z‖V ‖Kij),

Gi=H4(IDi‖IDj‖Z‖V ‖skij) and returns {Gi}.
For a query Send(UCj , {Gi}), UCj verifies the validity of Gi=H4(IDi‖IDj‖Z‖V ‖skij). If it holds, UCj shares the

session key skij with SMi.

For a query Execute(SMi, UCj), it successively returns {M1, Y1}, {M2, Y2} and {Gi} by Send query.

For a query SSReveal(P ), {a, x1, Z,M1} is returned if P=SMi or {b, x2, V } is returned if P=UCj .

For a query SKReveal(P ), if P has formed a session key skij and both its partner and it have not been inquired by a

Test query, skij is returned. Otherwise, null is responded.

For a query Corrupt(P ), Si is returned if P=SMi or Sj is returned if P=UCj .

For a query Test(P ), skij is acquired by query SKReveal(P ) and a coin d is flipped. if d = 1, a real session key skij is

returned. Otherwise, a random number selected from {0, 1}l is returned.

Case 1. SSReveal(SMi) and SSReveal(UCj)

E is allowed to get smart meter SMi’s secrecy {a, x1, Z = ga+H3(Si‖x1),M1 = (a+H3(Si ‖ x1))(Ppub +H1(IDj)P )}
and instance UCj ’s information {b, x2, V = gb+H3(Sj‖x2)}.

Case 2. Corrupt(SMi) and Corrupt(UCj)

E is allowed to get SMi’s long-term private key Si and the long-term private key Sj of utility control UCj , but not their

ephemeral secrets {a, x1, b, x2}.
Case 3. SSReveal(SMi) and Corrupt(UCj)

E is allowed to get smart meter SMi’s secrecy {a, x1, Z = ga+H3(Si‖x1),M1 = (a+H3(Si ‖ x1))(Ppub +H1(IDj)P )}
and instance UCj ’s secrecy {Sj , V = gb+H3(Sj‖x2)}.

Case 4. Corrupt(SMi) and SSReveal(UCj)

E is allowed to get smart meter SMi’s secrecy {Si, Z = ga+H3(Si‖x1),M1 = (a+H3(Si ‖ x1))(Ppub +H1(IDj)P )} and

instance UCj ’s secrecy {b, x2, V = gb+H3(Sj‖x2)}.
According to the literature [3], CDHP is equal to DCDHP under the major groups with the prime order q of this

letter. For the sake of convenient discussion, we adopt CDHP to denote its equivalent variations. Even if in above four

cases, E is unable to compute skij , since the subkey Kij cannot be obtained without solving CDHP, whose value is

H2(g(a+H3(Si‖x1))(b+H3(Sj‖x2))). Thus, so long as CDHP holds, GM4 and GM3 are indistinguishable and we can conclude

following equation.

|Pr[Suc4]− Pr[Suc3]| 6 qhAdvCDHP (E) (C5)

Game GM5: This game will be aborted if E asks a H4(IDi‖IDj‖Z‖V ‖Kij) query. Otherwise, GM5 and GM4 are

indistinguishable. The probability that E is able to calculate the real skij is no more than
q2h
2l

. Thus, we can get following

conclusion.

|Pr[Suc5]− Pr[Suc4]| 6
q2h
2l

(C6)

In addition, from E’s point of view, there is no advantage for her to distinguish a random key from the real session key

if E does not correctly input a Hash query. Therefore, we can deduce Pr[Suc5] = 1
2

. To combine all above probabilities,

the Theorem 1 holds.

Appendix D Performance analysis

Performance analysis is presented in this section. Here we make comparisons of computation and communication costs to

show the performance. Related works [4–6] are selected to compare with our proposed scheme.

We firstly elaborate performance of computation cost. Prior to calculating the computation cost, the execution time of

various operations used in schemes should be learned. Here we adopt evaluation results performed by Kilinc et al. [7], which
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Table D1 The execution time of various operations

Operations Time(ms) Meanings

Tm 2.2260 Execution time of point multiplication

Tb 5.8110 Execution time of bilinear pairing mapping

Tph 12.4180 Execution time of point hash mapping

Te 3.8500 Execution time of modular exponentiation

Ts 0.0046 Execution time of symmetric en/decryption

Th 0.0023 Execution time of one-way hash function

Table D2 Comparison of computation cost with related schemes

Schemes Smart meter(ms) Utility control(ms) Total cost(ms)

[4] 3Tm + Tb + 2Tph + Ts + 5Th=37.3319 3Tm + Tb + Te + 2Tph + Ts + 5Th=16.3597 78.5332

[5] 4Tm + Te + 5Th=12.7655 3Tm + 2Tb + Te + 5Th=22.1615 34.9040

[6] 2Tm + Tb + Te + 3Th=14.1199 2Tm + 2Tb + Te + 4Th=19.9332 34.0531

Ours 4Tm + Tb + 2Te + 7Th=22.4311 4Tm + Tb + 2Te + 7Th=22.4311 44.8622

are based on specifications of dual CPU E2200 2.2 GHz, 2.0 GB main memory, and Ubuntu operating system. Time to

execute different operations and their meanings are shown in Table D1. Subsequent result of comparison on computation

cost is shown in Table D2. Since the time for executing operations of XOR and point addition is negligible, the computation

cost of them is not included. As Table D2 shows, the total operating time of our scheme is moderate and reaches 44.8622ms,

which is higher than [6] but still lower than [4].

Table D3 Comparison of communication cost with related schemes

Schemes Number of messages Total cost(bits)

[4] 4 960

[5] 3 1408

[6] 3 1632

Ours 3 1120

Next, we evaluate the communication cost. Assuming that the speed of message sending is the same, then the commu-

nication cost relies on the bit length of total messages. Here we adopt the setup of bit size assumed in [2]. The random

number and time-stamp are supposed to 128 bits and 32 bits in size, respectively. The identity and hash output for trans-

mission are supposed to 160 bits in size. In addition, let elements in G1 be 320 bits in size and let elements in G2 be 512

bits in size. Subsequently, we take our scheme as an example for illustration. In the proposed scheme, three messages are

sent after a complete agreement is executed. The transmitted messages include Mes1={M1, Y1}, Mes2={M2, Y2}, and

Mes3={Gi}. Communication cost of Mes1 and Mes2 are both equal to 160+320=480 bits, and Mes3 requires 160 bits of

communication cost. Thus, the total cost in communication is 480+480+160=1120 bits. The comparison on communication

cost is presented in Table D3. From Table D3, we are able to draw a conclusion that our scheme requires only 1120 bits

and is lower than compared schemes when the number of messages is the same.

Although Mahmood et al.’s scheme [6] outperforms our scheme from the perspective of computation cost, our scheme

requires lower communication cost and enhances the security of theirs. Therefore, our scheme is more appropriate for

application in practice.
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