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Video anomaly detection aims to learn normal patterns

and identify the samples deviating from normal patterns

as anomalies. In early research, methods based on hand-

crafted low-level features have been widely studied. How-

ever, the representation power of low-level features is in-

sufficient for describing various patterns, causing a bottle-

neck in handcrafted-feature-based anomaly detection. Re-

cent methods are typically used to build reconstruction or

prediction models based on deep learning to represent nor-

mal frames and detect anomalies based on the representation

error [1]. However, most existing detection methods based

on deep learning adopt the loss function, such as l1-norm

and l2-norm, to calculate the reconstruction or prediction

error [2]. In these methods, all pixels in the frame are pro-

cessed equally, that is, the model loses its focus and does not

prioritize learning and reconstructing the complex regions

that are difficult to reconstruct during training. Conse-

quently, the model may not be able to obtain reconstructed

image with high quality foreground, since the simple back-

ground pixels dominate the optimization of model. Unfortu-

nately, such issue may reduce the performance of anomaly

detection, because the foreground is more important than

the stationary background in anomaly detection. Further,

existing reconstruction methods attempt to minimize the

difference between the reconstructed frame and its ground

truth [3]. Although similarity is guaranteed in the pixel or

even latent space, it is a one-to-one constraint, which ignores

the similarity of different normal frames.

Framework. To solve these problems, we propose a dual-

encoder single-decoder network, denoted by DESDnet, with

a novel training strategy, including reverse erasure based on

reconstruction error and deep support vector data descrip-

tion (SVDD) [4]. The workflow of the proposed method is

shown in Figure 1(a). The DESDnet is designed to extract

spatial and temporal features individually from the current

and past frames. The decoder simultaneously utilizes spatial

and temporal features to reconstruct the current frame and

detect anomalies based on the reconstruction error. In the

training strategy, reverse erasure is employed to guide the

network to optimize in the expected direction by providing a

prior information, further improving the reconstruction ac-

curacy of the normal frame. Deep SVDD aims to enlarge

the difference between the reconstructed images of normal

and anomaly by controlling the features in the latent space.

Reverse erasure based on reconstruction error. We per-

form reverse erasure based on reconstruction error in the

training phase. Specifically, after each training iteration, the

pixel-level error between the target frame It and the recon-

struction frame Ît is calculated. Based on whether the value

in error map is larger than a given threshold, the mask is

obtained by setting it to one or zero. Before the next epoch,

the raw frames from It−∆ to It are multiplied pixel by pixel

with the mask to create the input data for the network, de-

noted by I′
t−∆

to I′t. Because the foreground contains many

moving objects, the reconstruction error of the foreground is

typically considerably larger than that of the background in

the frame. Considering this, we set the threshold as the av-

erage reconstruction error of the corresponding frame. Thus,

the erased frame retains most of the foreground pixels and

discards most of the background pixels, helping the model

to automatically form an attention mechanism to the fore-

ground. In this case, a natural assumption is that both the

simple background and the complex foreground will be re-

constructed with high quality. The uncertain change in the

input also makes the DESDnet more robust against noise.

Deep SVDD. To perform deep SVDD in the training

phase, an encoding network behind decoder, called map-

ping encoder, is added; it has the same structure as the

reconstruction encoder. The mapping encoder maps recon-

structed frame into the low-dimensional feature represen-

tation. Deep SVDD expects these low-dimensional repre-

sentations to be fitted into a hypersphere with a minimum
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Figure 1 (Color online) (a) Workflow of the proposed model. (b) Frame-level AUC/EER comparison on Avenue, Ped2, and

ShanghaiTech datasets with different methods. The best and second-best performances are represented in bold and underlined,

respectively.

volume, forcing the network to learn the common factor of

normal events. With this constraint, the reconstructed nor-

mal frames are as similar as possible, thus effectively in-

creasing the distance between the reconstructed normal and

abnormal frames. Wu et al. [4] employed deep SVDD to con-

strain the latent features of input frames, thereby essentially

constraining the encoder used to map the input frame. How-

ever, owing to the generalization of the decoder constructed

by convolutional neural network, we cannot guarantee that

anomalies cannot be represented even if the encoder is con-

strained, that is, the difference between the reconstruction of

the normal and anomaly may not be obvious. Consequently,

the method in [4] is not suitable for our model, because the

reconstruction error rather than the distance in the feature

space, is utilized to detect anomaly in our method.

Reconstruction encoder and prediction encoder. In the

DESDnet, the reconstruction encoder and prediction en-

coder are used to provide the spatial and temporal features

for the decoder, respectively. Skip connections are employed

between the prediction encoder and decoder to provide mul-

tiscale low-level features for image conversion. In the train-

ing phase, given the erased frames from I′t−∆ to I′t, I′t is

input into the reconstruction encoder to extract the appear-

ance features, and the frames from I′
t−∆

to I′t−1 are input

to the prediction encoder to extract the motion features.

Compared with using optical flow to capture motion pat-

terns, our method avoids the inaccuracy and high computa-

tional cost caused by optical flow calculation. In the testing

phase, the raw frames from It−∆ to It are input into the re-

construction and prediction encoders to extract the spatial

and temporal features of the video sequence, respectively.

Fusion module and decoder. To integrate appearance and

motion features, we adopt a two-dimensional convolution

layer followed by a Tanh activation layer as the fusion mod-

ule. The convolution kernel is 1 × 1 with a channel size of

512. The appearance and motion features are cascaded and

then input into the fusion module to obtain spatio-temporal

features. Compared with the fusion method of concatenat-

ing features, our method reduces the computational cost and

increases the representation ability of the network. Further,

the spatio-temporal features are input into the decoder to

reconstruct the frame.

Training loss. To constrain the reconstruction frame in

pixel and latent space, the training loss function is defined

as

L = λintLint + λrgbLrgb + λcompactLcompact, (1)

where λint, λrgb, and λcompact are the hyperparameters cor-

responding to each loss, and these determine their contribu-

tion to the total training loss.

The intensity loss Lint is to maximize the pixel-by-

pixel similarity between the reconstruction frame Ît and its

ground truth It, which is computed as

Lint = ‖Ît − It‖
2
2, (2)

where t is the t-th frame, and ‖.‖2 represents l2-norm.

Inspired by [5], we adopt a weighted RGB loss Lrgb to

improve the similarity of successive frames and constrain

motion patterns.

Lrgb =
1

N

N∑

i=1

N − i+ 1

N
‖Ît − It−i‖

2
2, (3)

where N denotes the number of previous frames. The weight

of It−i is
N−i+1

N
, which decreases with an increase in i, be-

cause the larger the distance between frames is, the greater

the difference between them is.
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Based on deep SVDD, we define the constraint on the

latent space as a feature compact loss:

Lcompact = R2 +
1

vn

n∑

t=1

argmax{0, ‖Φ(It;W )− c‖22 − R2},

(4)

where c and R represent the center and radius of the hy-

persphere, and n is the number of frames. Φ(It;W ) is the

feature representation of Ît output by the network with pa-

rameters W . argmax{·} is the function to take the maxi-

mum. In (4), the first term aims to minimize the volume of

hypersphere and the second term is the penalty term of the

samples lying outside the hypersphere. v ∈ (0, 1] is used to

weigh the volume and boundary losses of the hypersphere.

To constrain the reconstructions of all normal frames to

a reachable range, the mean of feature vectors of the recon-

struction frames extracted by the first epoch training model

is regarded as the center c. During the subsequent training,

the Euclidean distance between the feature representation

of the reconstruction frame and center c is computed, and

then Lcompact is obtained. By minimizing the feature com-

pact loss of normal frames, the reconstruction images of all

normal frames will be more similar, whereas the reconstruc-

tion images of abnormal frames will be more different, so as

to increase the distinguishability of the anomaly.

Anomaly detection on testing data. During the testing

phase, the frames from It−∆ to It are input into the DESD-

net, and reconstruction frame Ît is obtained. In our method,

the patch with the largest reconstruction error in the test

frame is utilized to calculate the abnormality score, which

is conducive to highlighting the anomaly occurring within a

small region in the scene. Unlike [4], we employ deep SVDD

to constrain training rather than evaluate anomalies because

high-level features in the latent space inevitably lose details.

First, the partial score of each patch is defined as follows:

S(P ) =
1

|P |

∑

i,j∈P

(Ii,j − Îi,j)
2, (5)

where P represents a patch in frame I, and |P | is the num-

ber of pixels in P . i, j indicates the spatial position of the

pixels. The partial score of the patch with the largest S(P )

in the test frame is then selected as the abnormality score of

the frame, denoted by Score. Finally, the Score of all frames

in each video is normalized to the range of [0, 1].

Score∗(It) =
Score−minScore

maxScore −minScore
, (6)

where minScore and maxScore represent the minimum and

maximum values in the test video, respectively. Consider-

ing the temporal continuity of the events, a Gaussian filter is

applied to smooth the frame-level abnormality scores in the

temporal dimension. An anomaly can be detected based on

the abnormality score, as the score of the abnormal frame is

often higher than that of the normal frame.

Experiments and results. We compare the proposed

method with state-of-the-art methods [1–9] on the Avenue,

Ped2, and ShanghaiTech datasets, and area under curve

(AUC) and equal error rate (EER) results are presented

in Figure 1(b). A comparison of the AUC reveals that

our method achieves good AUC performance on the three

datasets, showing substantial competitiveness. On the Ped2

and Avenue datasets, the proposed method achieves an AUC

of 97.5% and 87.7%, respectively, exhibiting the best and

second-best detection performances among these methods.

In particular, although the ShanghaiTech dataset is a chal-

lenging dataset for video anomaly detection, our method

yields the highest AUC of 74.2%. As there are few methods

for obtaining the EER on the ShanghaiTech dataset, we do

not compare the EER results on this dataset. Compared

with DeepOC [4] and STCEN [6], although the EER of our

method is slightly worse on Avenue, the EER on Ped2 is

better by 2.1% and 1.3%, respectively. For other methods,

such as Deep-cascade [7] and STAE-optflow [5], we also ob-

tain better EER results.

Conclusion. In conventional video anomaly detection

based on deep learning, the deep network is optimized with-

out focus and the similarity between different normal frames

is ignored. To alleviate these issues, we designed a dual-

encoder single-decoder network to reconstruct frames and

proposed a training strategy involving reverse erasure based

on the reconstruction error and deep SVDD to regularize

the training of the network. With this training strategy, the

proposed model achieved high performance in terms of both

the AUC and EER. Future work will involve the application

of our training strategy to more complex tasks.
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