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Video anomaly detection aims to learn normal patterns
and identify the samples deviating from normal patterns
as anomalies. In early research, methods based on hand-
crafted low-level features have been widely studied. How-
ever, the representation power of low-level features is in-
sufficient for describing various patterns, causing a bottle-
neck in handcrafted-feature-based anomaly detection. Re-
cent methods are typically used to build reconstruction or
prediction models based on deep learning to represent nor-
mal frames and detect anomalies based on the representation
error [1]. However, most existing detection methods based
on deep learning adopt the loss function, such as li-norm
and lo-norm, to calculate the reconstruction or prediction
error [2]. In these methods, all pixels in the frame are pro-
cessed equally, that is, the model loses its focus and does not
prioritize learning and reconstructing the complex regions
that are difficult to reconstruct during training. Conse-
quently, the model may not be able to obtain reconstructed
image with high quality foreground, since the simple back-
ground pixels dominate the optimization of model. Unfortu-
nately, such issue may reduce the performance of anomaly
detection, because the foreground is more important than
the stationary background in anomaly detection. Further,
existing reconstruction methods attempt to minimize the
difference between the reconstructed frame and its ground
truth [3]. Although similarity is guaranteed in the pixel or
even latent space, it is a one-to-one constraint, which ignores
the similarity of different normal frames.

Framework. To solve these problems, we propose a dual-
encoder single-decoder network, denoted by DESDnet, with
a novel training strategy, including reverse erasure based on
reconstruction error and deep support vector data descrip-
tion (SVDD) [4]. The workflow of the proposed method is
shown in Figure 1(a). The DESDnet is designed to extract
spatial and temporal features individually from the current
and past frames. The decoder simultaneously utilizes spatial
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and temporal features to reconstruct the current frame and
detect anomalies based on the reconstruction error. In the
training strategy, reverse erasure is employed to guide the
network to optimize in the expected direction by providing a
prior information, further improving the reconstruction ac-
curacy of the normal frame. Deep SVDD aims to enlarge
the difference between the reconstructed images of normal
and anomaly by controlling the features in the latent space.

Reverse erasure based on reconstruction error. We per-
form reverse erasure based on reconstruction error in the
training phase. Specifically, after each training iteration, the
pixel-level error between the target frame I; and the recon-
struction frame 1, ¢ is calculated. Based on whether the value
in error map is larger than a given threshold, the mask is
obtained by setting it to one or zero. Before the next epoch,
the raw frames from I;_ A to I; are multiplied pixel by pixel
with the mask to create the input data for the network, de-
noted by It/_ A to I]. Because the foreground contains many
moving objects, the reconstruction error of the foreground is
typically considerably larger than that of the background in
the frame. Considering this, we set the threshold as the av-
erage reconstruction error of the corresponding frame. Thus,
the erased frame retains most of the foreground pixels and
discards most of the background pixels, helping the model
to automatically form an attention mechanism to the fore-
ground. In this case, a natural assumption is that both the
simple background and the complex foreground will be re-
constructed with high quality. The uncertain change in the
input also makes the DESDnet more robust against noise.

Deep SVDD. To perform deep SVDD in the training
phase, an encoding network behind decoder, called map-
ping encoder, is added; it has the same structure as the
reconstruction encoder. The mapping encoder maps recon-
structed frame into the low-dimensional feature represen-
Deep SVDD expects these low-dimensional repre-
sentations to be fitted into a hypersphere with a minimum

tation.
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Figure 1 (Color online) (a) Workflow of the proposed model.

(b) Frame-level AUC/EER comparison on Avenue, Ped2, and

ShanghaiTech datasets with different methods. The best and second-best performances are represented in bold and underlined,

respectively.

volume, forcing the network to learn the common factor of
normal events. With this constraint, the reconstructed nor-
mal frames are as similar as possible, thus effectively in-
creasing the distance between the reconstructed normal and
abnormal frames. Wu et al. [4] employed deep SVDD to con-
strain the latent features of input frames, thereby essentially
constraining the encoder used to map the input frame. How-
ever, owing to the generalization of the decoder constructed
by convolutional neural network, we cannot guarantee that
anomalies cannot be represented even if the encoder is con-
strained, that is, the difference between the reconstruction of
the normal and anomaly may not be obvious. Consequently,
the method in [4] is not suitable for our model, because the
reconstruction error rather than the distance in the feature
space, is utilized to detect anomaly in our method.

Reconstruction encoder and prediction encoder. In the
DESDnet, the reconstruction encoder and prediction en-
coder are used to provide the spatial and temporal features
for the decoder, respectively. Skip connections are employed
between the prediction encoder and decoder to provide mul-
tiscale low-level features for image conversion. In the train-
ing phase, given the erased frames from I . to Ij, I] is
input into the reconstruction encoder to extract the appear-
ance features, and the frames from I;_, to I;_; are input
to the prediction encoder to extract the motion features.
Compared with using optical flow to capture motion pat-
terns, our method avoids the inaccuracy and high computa-
tional cost caused by optical flow calculation. In the testing
phase, the raw frames from I; A to I+ are input into the re-
construction and prediction encoders to extract the spatial
and temporal features of the video sequence, respectively.

Fusion module and decoder. To integrate appearance and
motion features, we adopt a two-dimensional convolution

layer followed by a Tanh activation layer as the fusion mod-
ule. The convolution kernel is 1 X 1 with a channel size of
512. The appearance and motion features are cascaded and
then input into the fusion module to obtain spatio-temporal
features. Compared with the fusion method of concatenat-
ing features, our method reduces the computational cost and
increases the representation ability of the network. Further,
the spatio-temporal features are input into the decoder to
reconstruct the frame.

Training loss. To constrain the reconstruction frame in
pixel and latent space, the training loss function is defined
as
(1)
where Aint, Argh; and Acompact are the hyperparameters cor-
responding to each loss, and these determine their contribu-
tion to the total training loss.

The intensity loss Liys is to maximize the pixel-by-
pixel similarity between the reconstruction frame I; and its
ground truth [, which is computed as

L= AintLint + Argergb + Acompacthompacta

Ling = |[Te — It|I3, (2
where t is the ¢-th frame, and ||.||2 represents l2>-norm.

Inspired by [5], we adopt a weighted RGB loss Lyg}, to
improve the similarity of successive frames and constrain
motion patterns.
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where N denotes the number of previous frames. The weight
of I1_; is %, which decreases with an increase in i, be-
cause the larger the distance between frames is, the greater
the difference between them is.
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Based on deep SVDD, we define the constraint on the
latent space as a feature compact loss:

1
Lcompact = R2 + — Zargmax{(), ”q)(ltv W) - c”% - R2}7
vn

t=1

()
where ¢ and R represent the center and radius of the hy-
persphere, and n is the number of frames. ®(Iz; W) is the
feature representation of I output by the network with pa-
rameters W. argmax{-} is the function to take the maxi-
mum. In (4), the first term aims to minimize the volume of
hypersphere and the second term is the penalty term of the
samples lying outside the hypersphere. v € (0, 1] is used to
weigh the volume and boundary losses of the hypersphere.

To constrain the reconstructions of all normal frames to
a reachable range, the mean of feature vectors of the recon-
struction frames extracted by the first epoch training model
is regarded as the center c. During the subsequent training,
the Euclidean distance between the feature representation
of the reconstruction frame and center ¢ is computed, and
then Lecompact is obtained. By minimizing the feature com-
pact loss of normal frames, the reconstruction images of all
normal frames will be more similar, whereas the reconstruc-
tion images of abnormal frames will be more different, so as
to increase the distinguishability of the anomaly.

Anomaly detection on testing data. During the testing
phase, the frames from I;_ A to I; are input into the DESD-
net, and reconstruction frame ft is obtained. In our method,
the patch with the largest reconstruction error in the test
frame is utilized to calculate the abnormality score, which
is conducive to highlighting the anomaly occurring within a
small region in the scene. Unlike [4], we employ deep SVDD
to constrain training rather than evaluate anomalies because
high-level features in the latent space inevitably lose details.
First, the partial score of each patch is defined as follows:

1 P2

S(P)=— > (Iij—1Ii;)? (5)

1Pl 5er
where P represents a patch in frame I, and |P| is the num-
ber of pixels in P. i, j indicates the spatial position of the
pixels. The partial score of the patch with the largest S(P)
in the test frame is then selected as the abnormality score of
the frame, denoted by Score. Finally, the Score of all frames
in each video is normalized to the range of [0, 1].

Score — min;
Score*([t) — Score

- , (6)
maXgscore — MINScore
where mingcore and maxgeore represent the minimum and
maximum values in the test video, respectively. Consider-
ing the temporal continuity of the events, a Gaussian filter is
applied to smooth the frame-level abnormality scores in the
temporal dimension. An anomaly can be detected based on
the abnormality score, as the score of the abnormal frame is
often higher than that of the normal frame.

Ezxperiments and results. We compare the proposed
method with state-of-the-art methods [1-9] on the Avenue,
Ped2, and ShanghaiTech datasets, and area under curve
(AUC) and equal error rate (EER) results are presented
in Figure 1(b). A comparison of the AUC reveals that
our method achieves good AUC performance on the three
datasets, showing substantial competitiveness. On the Ped2
and Avenue datasets, the proposed method achieves an AUC
of 97.5% and 87.7%, respectively, exhibiting the best and
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second-best detection performances among these methods.
In particular, although the ShanghaiTech dataset is a chal-
lenging dataset for video anomaly detection, our method
yields the highest AUC of 74.2%. As there are few methods
for obtaining the EER on the ShanghaiTech dataset, we do
not compare the EER results on this dataset. Compared
with DeepOC [4] and STCEN [6], although the EER of our
method is slightly worse on Avenue, the EER on Ped2 is
better by 2.1% and 1.3%, respectively. For other methods,
such as Deep-cascade [7] and STAE-optflow [5], we also ob-
tain better EER results.

Conclusion.
based on deep learning, the deep network is optimized with-
out focus and the similarity between different normal frames
is ignored. To alleviate these issues, we designed a dual-
encoder single-decoder network to reconstruct frames and
proposed a training strategy involving reverse erasure based

In conventional video anomaly detection

on the reconstruction error and deep SVDD to regularize
the training of the network. With this training strategy, the
proposed model achieved high performance in terms of both
the AUC and EER. Future work will involve the application
of our training strategy to more complex tasks.
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