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Abstract An approximation method that can lower the computational complexity is presented to reduce

the processing time of model predictive control (MPC). The effects of the inaccurate inputs, which are

caused by the approximation errors, are reflected as input disturbances and are considered in the design of

the controller. The closed-loop system’s stability is guaranteed by a restricted Lyapunov-based constraint

and input constraints, ensuring that the states will be eventually bounded at a certain confidence level.

According to this paper, the effects of the bounded disturbance can be observed via a change in the stability

region. The relationship between the regions of the normal and approximated systems is highlighted. The

proposed MPC with input disturbance and guaranteed Lyapunov stability is employed in a chemical process,

and the simulation results indicate the efficiency of the proposed method.
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1 Introduction

Control optimization in nonlinear systems has attracted wide publicity, and many optimization methods
have been applied in several industrial processes successfully [1–4]. As one of the optimization control
methods, model predictive control (MPC) can solve an optimization problem with large multivariate
constraints within a finite prediction horizon in each sampling time. It can explicitly accommodate
constraints [5, 6]. Therefore, it is widely recognized as a practical, high-performance control technology.
It has been successfully employed in several linear and nonlinear systems in the process industries and
is gaining popularity [7–9]. However, one major drawback limiting its online application is that the
optimization problem with large multivariate constraints can be time-consuming [10]. Hence, several
projects are undertaken to increase computational speed. Machine learning has recently emerged as a
popular method to emulate a well-designed controller and optimize the original controller design [11–13].

Several studies have utilized machine learning methods to approximate the MPC control law (i.e., the
control action obtained by solving the optimization problem of MPC). Cseko et al. [14] presented a radial
basis function-based neural network approximation to replace the explicit MPC controller. Lucia and
Karg [15] have used deep learning techniques to develop a robust nonlinear MPC controller. Cao and
Gopaluni [16] proposed a new “optimize and train” method for the large-scale problems based on the
deep neural network approximation of the MPC control law. These studies aim at developing effective
computational methods through the learning-based MPC for real-time application and solving large-scale
problems. The influence of the approximation may not be based on the main object. Chen et al. [17]
guaranteed the approximated control inputs by projecting them onto the polyhedral region related to
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the maximum positive invariant set of the system while they indicate the need to consider stability.
Finally, Hertneck et al. [10] presented a robust MPC design considering the statistical learning bounds.
Furthermore, the stability analysis is performed to guarantee robust inputs.

The effect of approximation in the Lyapunov-based MPC (LMPC) is also considered in this paper.
Because structural errors are always present, the learning-based controller can be considered an approx-
imation (not exact match) of the original one. The errors are determined by the chosen model type, and
the obtained dataset is used in the learning process. The approximation error can be thought of as the
input disturbance of the system, which will affect the performance of the closed-loop system. With input
disturbance, the system’s recursive feasibility and stability should be re-evaluated to meet the system’s
constraints.

In the feasibility and stability analysis of MPC problems, the disturbance of the controlled system
may affect the control performance, such as the external disturbance and time delays [18–21]. Some
studies are conducted to tackle these problems and ensure stability. Pannocchia et al. [22] presented
that systems with soft terminal region constraints controlled by suboptimal MPC can be inherently
robust. Allan et al. [23] provided sufficient conditions on a well-chosen initial guess for robust stability
in suboptimal MPC with hard terminal region constraints. Pourdehi and Karimaghaee [24] proposed a
systematic Lyapunov-based approach for reset control of the nonlinear time-delay, for which the stability
is ensured by Lyapunov-stability theory. Choomkasien et al. [25] designed MPC for an industrial process
with input time delay. Thus, analyzing the stability with the existence of various disturbances is crucial.
Developing an MPC method with guaranteed feasibility and stability is meaningful for the systems with
input disturbance caused by the approximation.

An approximation method is presented in this paper to increase the computational speed of the con-
troller with guaranteed feasibility, where the approximation errors are bounded in certain confidence.
The input disturbance of the system reflects the deviation of the controller approximation. The influ-
ence of input disturbance on a Lyapunov-based controller is discussed. Considering the stability of the
closed-loop system, the regions where the state can be ultimately bounded are redefined. Compared
with those articles whose main purpose is achieving reductions in computational time of MPC, our work
further considers the stability problems caused by the approximation. In [10], the design of robust MPC
is presented considering stability analysis. However, we propose the design of the Lyapunov-based MPC
under the influence of approximation error, and the result can be different owing to the inconsistency in
the principle of ensuring system stability.

The major advantages of the proposed LMPC scheme are listed as follows.

• The proposed MPC considers the input disturbances derived from the approximation errors and
guarantees the stability of the closed-loop system at certain confidence. The stability conditions of the
proposed MPC-controlled system are also analyzed. It differs from those without the inputs disturbance
because the stability regions are redefined.

• An implementation method realized through a machine learning algorithm is proposed, where the
approximate errors are limited inside an acceptable range with a certain confidence level according to
Hoeffding’s inequality.

• The designed controller can be used for both tracking and economic optimization.

This paper is organized as follows. In Section 2, we review key concepts and notations before analyzing
nonlinear systems with input disturbance. In Section 3, the MPC controller is designed, and the stability
analysis is performed. Section 4 describes an implementation method that uses Hoeffding’s inequality
to simulate an approximate controller. The controller is employed in a continuous stirred tank reactor
(CSTR), and the simulation results are presented in Section 5. Finally, a conclusion is given in Section 6.

2 System and preliminaries

2.1 Notation

|·| denotes Euclidean norm of a vector; a continuous function α : [0, α) → [0,∞) is said to belong to class
κ if it is strictly increasing and α(0) = 0; we use Ωρ to denote the set Ωρ := {x ∈ R

nx |V (x) 6 ρ}; the
operator ‘/’ denotes A/B = {x ∈ R

nx : x ∈ A, x /∈ B}.
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Figure 1 The nonlinear systems with input disturbance.

2.2 Class of nonlinear systems

The structure of the nonlinear systems is shown in Figure 1, the controller is approximated by learning
techniques, and the output of the approximate controller serves as the input of the system. Therefore,
the real input consists of the output of the controller and the approximation error. The control object of
the designed controller can be considered as a system with input disturbance.

The nonlinear systems with input disturbance can be given as the following state-space representation:

ẋ (t) = f (x (t)) + g (x (t)) u (t) + l (x (t))w (t) , (1)

where x ∈ R
n denotes the vector of process state variables; w ∈ R

m denotes the state disturbance
vector; u ∈ R

p denotes the control input vector with input disturbance, which can be expanded into
u(t) = uc(t)+ue(t), uc ∈ R

p denotes the control input vector and ue ∈ R
p denotes the input disturbance.

f : Rn → R
n, g : Rn → R

n×p, and l : Rn → R
n×m are sufficiently smooth functions. The control input

vector uc is constrained in a convex set Uc := {uc ∈ R
p : |uc| 6 umax}, the input disturbances are bounded

as

Ee := {ue ∈ R
p : |ue| 6 δu}, (2)

where δu is a positive constant, and the real control input u is constrained in a convex set U := {u ∈ R
p :

|u| 6 umax + δu}. The state disturbances are bounded as

W := {w ∈ R
m : |w| 6 δw}, (3)

where δw is a positive constant.
The nominal system can be described by the following state-space model:

ẋn(t) = f(xn(t)) + g(xn(t))uc(t), (4)

where the system is considered without disturbances. For simplicity, we use the subscript n to distinguish
the real system from the nominal system. For both of these systems, we assume that f, g, l and k are
locally Lipschitz vector functions and f(0) = 0, k(0) = 0.

2.3 Lyapunov-based controller

For the systems mentioned above, we assume that there exists a Lyapunov-based controller h(xn) = uc

that renders the origin of the nominal system of (4) is asymptotically stable for all the states xn inside
a given region Ωρ. And Ωρ is the stability region for the closed-loop system under the control of h(xn).
According to the converse Lyapunov theorems, we can find a continuously differentiable function V (xn)
and class K functions αi(·), i = 1, 2, 3, 4 that satisfy the following inequalities:

α1(|xn|) 6 V (xn) 6 α2(|xn|), (5a)

∂V (xn)

∂xn

(f(xn) + g(xn)h(xn)) < −α3(|xn|), (5b)
∣

∣

∣

∣

∂V (xn)

∂xn

∣

∣

∣

∣

6 α4(|xn|), (5c)

h(xn) ∈ Uc. (5d)
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Remark 1. In this paper, we choose the Sontag control law as h(xn) = [h1(xn), h2(xn), . . . , hp(xn)]
T,

which can be given as

hi (xn) =















−
LfV +

√

LfV
2 + γ|LgV |

4

|LgV |2
LgiV, |LgV (xn) | 6= 0,

0, |LgV (xn) | = 0,

(6)

where γ > 0 and g = [g1, g2, . . . , gp] , gi(·) : R
n → R

n. The stability of the closed-loop system under the
control law h(xn) is ensured and the detailed proof is similar to that in [26].

The Lyapunov function V (xn) can be expressed as V (xn) = xT
nPxn, where P ∈ R

n×n is a positive
definite constant matrix. According to (5), we can obtain a region where V̇ is rendered negetive under
the controller h(xn) and we define Hc = {xn ∈ R

n|V̇ (xn) = LfV + LgV uc < −kV (xn), uc = h(xn) ∈
Uc} ∩ {0}, where k is a positive real number. Then, we give the definition of the closed-loop stability
region Ωρ as Ωρ := {xn ∈ Hc|V (xn) 6 ρ}, where ρ > 0 and Ωρ ⊂ Hc. To obtain Ωρ, with considering that
the system is a Lipschitz vector function, we can go through each possible state with small distance to
check if the state belong to Hc. An irregular region represents Hc in state space can be obtained. Then,
provided certain V , the largest ρ such that Ωρ ⊂ Hc can be obtained by linear searching method.

For x ∈ Ωρ, according to the Lipschitz property of f, g, l and boundedness of u,w, there exists a
positive constant M that satisfies

|f (x (t)) + g (x (t))u (t) + l (x (t))w (t)| 6 M. (7)

Consider the continuously differentiable property of V (xn) and the Lipschitz property assumed for
f, g, l. The following inequalities are available:

|(f(x) + g(x)u+ l(x)w)− (f(xn) + g(xn)uc)| 6 Lf |x− xn|+ Lg |x− xn|u
max + Llδw +Mgδu, (8a)

∣

∣

∣

∣

∂V (x)

∂x
(f(x) + g(x)u+ l(x)w) −

∂V (xn)

∂x
(f(xn) + g(xn)uc)

∣

∣

∣

∣

6 Lfv |x− xn|+ Lgv |x− xn|u
max + Llvδw +Mgvδu, (8b)

where Lf , Lg, Ll are Lipschitz constants associated with functions f, g, l; Lfv, Lgv, Llv are the Lipschitz
constants associated with functions LfV, LgV, LlV ; Mg is the maximum value of the function g; Mgv is
the maximum value of the function LgV .

The control objective is to ensure the stability of the closed-loop system under the influence of the
input disturbance. Then the controller can be realized by some approximate methods with bounded
errors for high sampling rate.

3 LMPC with input disturbance

3.1 Formulation

In this subsection, a set of indispensable stability constraints are included in the design of the MPC
controller to guarantee the stability of the closed-loop system. And the MPC controller is designed
via LMPC techniques, where the practical stability of the closed-loop system and the reduction of the
complexity in the optimization problem are guaranteed.

Considering the input disturbance, the controller h(x) is used to define a stability constraint for the
LMPC controller. Therefore, the parameters of LMPC should be designed to satisfy a certain condition
where the affection of the input disturbance is considered so that the controller can inherit the stability
and robustness properties of the Lyapunov-based controller h(x) and the convergence region of the state
can satisfy the state constraints. Furthermore, the input constraint should be a reduced set of Uc.

The optimization problem of the proposed LMPC is formulated as follows:

min
uc∈S(∆)

∫ tk+N

tk

L(x̃n(τ), uc(τ))dτ (9a)

s.t.
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˙̃xn(τ) = f(x̃n(τ)) + g(x̃n(τ))uc(τ), (9b)

uc(τ) ∈ Uc, (9c)

x̃n(tk) = x(tk), (9d)

∂V (x(tk))

∂x
g(x(tk))uc(tk) 6

∂V (x(tk))

∂x
g(x(tk))h(x(tk)), (9e)

where ∆ is the sampling period and the tk = k∆ is the sampling instant; the optimal variable uc ∈ S(∆)
takes piece-wise constant values that expressed as uc(τ) = u∗

c(τ |tk), τ ∈ [tk, tk+N ), and S(∆) is the
family of piece-wise continuous functions with the period ∆; L(·, ·) is the optimization object that needs
to be minimized; N is the control prediction horizon; x̃n is the predicted trajectory of the system.
Constraint (9b) is used to predict the state trajectory of the nominal system; constraint (9c) limits the
optimal control input uc; constraint (9d) defines the initial condition of the optimal problem.

If the predicted state x̃n is always kept in Ωρe
, then the actual state x will always be maintained in

Ωρ. The relationship between Ωρe
and Ωρ will be characterized in Theorem 1. Considering the effects of

the bounded disturbances w and ue, one important problem is how to define the region Ωρe
that ensures

the stability of the system with the control of LMPC and satisfies the following inequality:

ρe > max {V (x(t +∆)) : V (x(t)) 6 ρs} , (10)

where ρs is a small region that satisfies the robustness under the control of h(x) during the sampling
time ∆ for x ∈ Ωρ/Ωρe

, and the following inequation should hold as the disturbances are considered:

−α3(α
−1
2 (ρs)) + (Lfv + Lgvu

max)M∆+Mlvδw +Mgvδu 6 −εw/∆. (11)

In this paper, we consider two cases: the first one is LMPC, where the states are driven to the setpoints;
the second one is Lyapunov-based Economic MPC (LEMPC) for obtaining economic performance, where
the economic cost function is considered. And the constraint (9e) should be modified as

V (x̃n(τ)) 6 ρe, ∀τ ∈ [tk, tk+N ) , if tk 6 t′ and V (x(tk)) 6 ρe, (12a)

∂V (x(tk))

∂x
g(x(tk))uc(tk) 6

∂V (x(tk))

∂x
g(x(tk))h(x(tk)), if tk > t′ or ρe < V (x(tk)) 6 ρ. (12b)

Case 1. For the implementation of LMPC for tracking, constraint (9e) is effective so that the Lyapunov
function of the system decreases faster than that of the system with piece-wise constant control h(x(tk)).
Under this circumstance, the convergence of the closed-loop system is guaranteed so that the state of the
closed-loop system can be forced into Ωρs

within finite steps. Here, ρe is a small value, slightly larger
than ρs.

Case 2. For the implementation of LEMPC, the optimal process can be divided into two modes. A
specific time t′ is set here to distinguish the time period of the two modes. From the initial time t0 up
to t′, the LEMPC operates in the first mode, where the constraint (12a) is effective so that the economic
cost is optimized if the sampled state x(tk) is kept in Ωρe

; if the sampled state x(tk) is out of Ωρe
but kept

in Ωρ or the time instant is after t′, the LEMPC operates in the second mode, where the constraint (12b)
is effective so that the state of the closed-loop system can be enforced into the stability region in a finite
time. In this circumstance, ρe can be much larger than ρs for the state of the system is only required to
be regulate within a zone.

3.2 Stability

In this subsection, two propositions and one theorem will be given to analyze the stability of the system
with the effects of the input disturbance ue we mentioned above.

Proposition 1. Considering the system of (1) and (4), assume the initial states x(t0) = xn(t0) ∈ Ωρ.
There exists a K function fw(·, ·) satisfying

|xn(t)− x(t)| 6 fw(δu, t− t0) (13)

for all x(t), xn(t) ∈ Ωρ and ue(t) ∈ Ee, w(t) ∈ W with

fw(δu, t− t0) =
Mlδw +Mgδu
Lf + Lgumax

[

e(Lf+Lgu
max)(t−t0) − 1

]

. (14)
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The proposition above gives an upper bound of the deviation between the actual system and nominal
system under the same control input, and this upper bound takes into account the effects of the input
disturbance ue and process disturbance w.
Proof. Let ex = xn − x, and thus the time derivative of ex can be described as

ėx = ẋn − ẋ (15)

= f(xn) + g(xn)uc(t)− f(x)− g(x)u(t)− l(x)w(t).

Based on the Lipschitz property of f, g and the boundedness of ue, w and uc, ėx is bounded as

|ėx| 6 Lf |ex|+ Lguc(t) |ex|+ |g(x)ue(t)|+ |l(x)w(t)|

6 (Lf + Lgu
max) |ex|+Mgδu +Mlδw, (16)

where Mg,Ml are positive constants associated with functions g, l.
Considering that ex(t0) = xn(t0)− x(t0) = 0, it is proved that

|ex(t)| 6
Mlδw +Mgδu
Lf + Lgumax

[

e(Lf+Lgu
max)(t−t0) − 1

]

. (17)

Proposition 2. Considering the system of (1), there exists a quadratic function fv(·) that satisfies

V (x1)− V (x2) 6 fv(|x1 − x2|) (18)

for all x1, x2 ∈ Ωρ with
fv(s) = α4(α

−1
1 (ρ))s+Mvs

2, (19)

where Mv is a positive constant.
This proposition limits the difference of the Lyapunov function between two different states in Ωρ [27].

Theorem 1. Considering the system of (1) under the control of the proposed LMPC (9) for LEMPC, the
Lyapunov-based constraints (12) should be considered. Let εw > 0,∆ > 0 and 0 < ρs < ρmin < ρe < ρ,
which satisfies

ρe 6 ρ− fv(fw(δu,∆)), (20)

−α3(α
−1
2 (ρs)) + (Lfv + Lgvu

max)M∆+Mlvδw +Mgvδu 6 −εw/∆, (21)

and
ρmin = max {V (x(t +∆)) : V (x(t)) 6 ρs} . (22)

If x(t0) ∈ Ωρ, the state variable x(t) will always be bounded in Ωρ and be ultimately bounded in
Ωρmin

.
Proof. We prove the stability for the above two cases. First of all, we will give the feasibility analysis.
For LEMPC, the proof consists of three parts. The first one proves that if tk ∈ [t0, t

′) and x(tk) ∈ Ωρe
, the

state x(tk+1) will always be bounded in Ωρ. The second one proves that if tk ∈ [t0, t
′) and x(tk) ∈ Ωρ/Ωρe

,
the state x(t), t ∈ [tk, tk+1) will be ultimately bounded in Ωρe

. The third one proves that if tk > t′ and
x(tk) ∈ Ωρ, the state x(t) will be ultimately bounded in Ωρmin

. For LMPC, the proof is similar to Part III.
Feasibility analysis. If x(t) is bounded in Ωρ, the feasibility of the LMPC can be ensured since

the control law h(x(tk)) can always be a feasible solution that satisfies the input constraint (9c) and the
Lyapunov-based constraint (9e). Similarly, the control law h(x(tk)) still satisfies the Lyapunov-based
contraints (12a) and (12b). The premise of this condition (i.e., the state x(t) is always maintained in Ωρ)
will be proved in the following parts.

Part I. During the first operation mode, if x(tk) ∈ Ωρe
, then x(tk+1) ∈ Ωρ. According to the

Propositions 1 and 2, the relationship of the Lyapunov functions between the actual state x(tk+1) and
the predictive state x̃n (tk+1) can be obtained:

V (x(tk+1)) 6 V (x̃(tk+1)) + fv(fw(δu,∆)). (23)

Considering the condition of (20) and V (x̃(tk+1)) 6 ρe are satisfied, thus x(tk+1) ∈ Ωρ can be ensured.
Part II. During the first operation mode, if x(tk) ∈ Ωρ/Ωρe

, then x(t) will be bounded in Ωρe
based

on the control of LMPC.
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Considering the constraint of (9e) and the inequalities of (5),

∂V (xn (tk))

∂x
(f (xn (tk)) + g (xn (tk))uc (tk))

6
∂V (xn (tk))

∂x
(f (xn (tk)) + g (xn (tk))h (xn (tk)))

6 −α3 (|xn (tk)|) . (24)

For the actual system of (1), the time derivative of the Lyapunov function can be obtained as

V̇ (x(t)) =
∂V (x(t))

∂x
(f(x(t)) + g(x(t))u(t) + l(x(t))w(t))

6
∂V (x(t))

∂x
(f(x(t)) + g(x(t))u(tk) + l(x(t))w(t))

−
∂V (xn (tk))

∂x
(f(xn(tk)) + g(xn(tk))uc(tk))− α3(|xn(tk)|). (25)

Taking into account that x(tk) = xn(tk) and the boundedness of ẋ expressed in (7),

V̇ (x (t)) 6 −α3 (|x (tk)|) + (Lfv + Lgv)M∆+Mgvδu +Mlvδw. (26)

Let ρs < ρe, and thus x(tk) ∈ Ωρ/Ωρs
is satisfied. According to the the properties of the Lyapunov

function listed in (5),

V̇ (x (t)) 6 −α3

(

α2
−1 (ρs)

)

+ (Lfv + Lgv)M∆+Mgvδu +Mlvδw. (27)

If Eq. (11) is satisfied, for t ∈ [tk, tk+1),

V̇ (x (t)) 6 −εw/∆, (28)

we can obtain that

V (x (t)) 6 V (x (tk)) ,

V (x (tk+1)) 6 V (x (tk))− εw, (29)

which proves that the state x(t) will be bounded in the stability region Ωρ forever and converge to Ωρe

in a finite number of sampling times.
Part III. During the second operation mode, if x(tk) ∈ Ωρ, then the Lyapunov function satisfies

V (x(tk+1)) 6 V (x(tk)) and the state will be bounded in Ωρmin
ultimately.

If x(tk) ∈ Ωρ/Ωρs
, the proofs shown in Part II is equally applicable and Eq. (29) is valid. Therefore,

we can obtain that the state variable x(t) will converge to Ωρs
with a finite number of sampling times.

For the definition of ρmin, if x(t) ∈ Ωρs
, the state at the next sampling point x(t + ∆) will be bounded

in Ωρmin
. Therefore, the state x(t) will be ultimately bounded in Ωρmin

for x(tk) ∈ Ωρ in the second
operation mode.

The relationship of these regions is given in Figure 2. We can see Ωρe
shrinks and Ωρs

extends. Ωρ

represents the stability region defined for the whole process, which means that the actual state of the
system x(tk) can be chosen in Ωρ to ensure the stability for the period [tk, tk+1).

Remark 2. Since the control law h(x) we used in this paper satisfies the input constraint (5d), the
region Ωρ can be constracted without the influence of input disturbance. Considering the construction
of Ωρ, it will remain the same if V (x) and h(x) remain unchanged.

4 Implementation

If a high sampling rate is required in the control structure, the online optimization may get computation-
ally intractable due to the burden under the online requirement. We approximate each local nonlinear
MPC controller κMPC by a mapping function expressed as κmap, which guarantees the execution efficiency
of the controllers by learning methods. The state variables x serve as the inputs in κmap. u is the output
of κmap that is expected to be equal to the output of κMPC (i.e., the control input uc). Then we use
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Figure 2 (Color online) The relationship of the regions.

Hoeffding’s inequality to ensure that the fitting errors are small enough to guarantee the feasibility of the
approximated controllers at a certain confidence level. The procedure is shown as follows:

(1) Given the lower bound of probabilistic µl to ensure the closed-loop system feasible, sample the
data of the MPC controller κMPC offline;

(2) Learning: κmap (x) ≈ κMPC (x);
(3) Validate κmap (x) based on Hoeffding’s inequality;
(4) If validated, the κmap (x) is feasible; else, change the parameters (i.e., increase the sample size r),

and goto (4).
During the process of validating the approximation of the κmap, we need to determine whether x(tk)

and κmap satisfy the constraints. Consider the Xp := {x(t), u(t) : u = κmap(x)}. The following indicator
function is defined to indicate whether the state in Xp is an effective one:

I (Xp) :=

{

1, u(t) ∈ U ,

0, u(t) /∈ U .
(30)

Consider r as the sample size, Xp, p = 1, 2, . . . , r, and assume that the initial condition of any sampling
is independent and identically distributed. Then the empirical risk is

µ̃ :=
1

r

r
∑

p=1

I (Xp). (31)

For any Xp, the feasibility and stability are guaranteed if I(Xp) = 1. Let µ := P [I(Xp) = 1]. Hoeffd-
ing’s inequality is used to estimate µ from µ̃ as follows:

P [|µ̃− µ| > εh] 6 2 exp
(

−2rεh
2
)

. (32)

Let δh = 2 exp(−2rε2h) serve as the confidence level and δh be given for the desired target. So P [I(Xp) = 1]
= µ > µ̃− εh is tenable with the confidence of at least 1 − δh. We give the lower bound of probabilistic
µl to guarantee the validity of the fitting results:

P [I(Xp) = 1] = µ > µ̃− εh > µl, (33)

where µl is also given for the desired target. The number of the state r can be adjusted to meet the
requirement. If Eq. (33) is satisfied, the validation is successful. If Eq. (33) is failed, we increase r until
Eq. (33) is satisfied. We set the maximum number of r to avoid getting stuck, and the fitting invalid if r
exceeds the maximum number.
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Table 1 Parameters value

Symbol Meaning Value

F Inlet flow rate 5 m3 · h−1

T0 Inlet temperature 300 K

V Reactor volume 1 m3

∆H Heat of reaction 1.15 × 104 kJ · kmol−1

k0 Pre-exponential factor 8.46 × 106 h−1

E Activation energy 5 × 103 kJ · kmol−1

R Gas constant 8.314 kJ · kmol −1· K−1

σ Liquid density 1000 kg · m−3

Cp Heat capacity 0.231 kJ · kg−1 · K−1

Qs Heat rate supplied to the reactor 1.73 × 105 kJ · h−1

CAs Steady-state concentration 2.44 kmol · m−3

CA0s Steady-state inlet concentration 5 kmol · m−3

Ts Steady-state temperature 321.95 K

Remark 3. To ensure the reliability of the approximated control law κmap, we randomly select enough
points in the stable region Ωρ for the approximation. And the distance between each selected point
is required to be as small as possible to achieve the full coverage of the region. Therefore, κmap is
designed for dealing with initial states x0 within Ωρ. However, lκmap should be retrained under some
circumstances (e.g., the economic cost function changes in the LEMPC or the Lyapunov-based control
law h(x) changes).

5 Simulation

In this section, we consider a well-mixed, non-isothermal continuous stirred tank reactor (CSTR) with

dCA

dt
=

F

V
(CA0 − CA)− k0e

− E
RT CA

2, (34a)

dT

dt
=

F

V
(T0 − T )−

∆H

σCp

k0e
− E

RT CA
2 +

Q

σCpV
, (34b)

where CA is the concentration and T is the temperature in the reactor. Let CAs and Ts denote the
concentration and temperature under steady-state, respectively, and then the states are defined as x =
[CA−CAs T−Ts]

T; CA0 is the inlet reactant concentration and CA0s is defined as the variable associated
with the steady-state; Q is the external heat input/removal and Qs is defined as the heat under steady-
state. The inputs are defined as u = [u1 u2]

T = [CA0 − CA0s Q −Qs]
T. The process parameters are

listed in Table 1.
The available inputs are defined in the following convex set: U := {u ∈ R

2 : |u1| 6 3.5 kmol · m3, |u2| 6
4.85× 105 kJ · h} and the Lyapunov-based control law is chosen as the Sontag control law we mentioned
in Remark 1.

We consider two cases: the first one is LMPC for tracking, the second one is LEMPC, where the
economic cost function is maximized. The specific parameters of the simulation, the desired set points
and the economic objective will be given in Subsections 5.2 and 5.3.

5.1 Controller approximation

A back propagation neural network (BPNN) with seven neurons in the first hidden layer and five neurons
in the second layer is adopted as the learning method to get the approximation of the LMPC. The two
states CA − CAs and T − Ts are the inputs of the BPNN. The approximation error that is considered
as the input disturbance should be chosen reasonably so that the stability regions can be founded. In
this study, we choose δu = [1.5 × 10−2, 2 × 102]T. For approximation, 2 × 106 data points (xn, un) are
sampled under the stable circumstance to create the learning samples, which are initialized randomly in
the stability region Ωρ for the reliability of the data.

Case 1. The approximation results of κmap (x) in LMPC are shown in Figure 3.
Case 2. The approximation results of κmap (x) in LEMPC are shown in Figure 4.
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Figure 3 (Color online) Approximation of the proposed LMPC controller.
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Figure 4 (Color online) Approximation of the proposed LEMPC controller.

To validate if the approximator satisfies Hoeffding’s inequality, we set the confidence of P [I(Xp) = 1]
as 99% and choose δh = 0.01 and the lower bound µl = 0.99.

Case 1. For the κMPC in LMPC for tracking, to satisfy (33), we increase the sample size r to 52030,
and the empirical risk is µ̃ = [0.99753, 0.99736].

Case 2. For the κMPC in LEMPC, to satisfy (33), we increase the sample size r to 53500, and the
empirical risk is µ̃ = [0.99013, 0.99011].

To prove the efficiency of the approximation method, we choose 1000 random initial points over the
stable region in the two cases, and then we compare the online processing time between the control law
κMPC and κmap under the same circumstance.

Case 1. The LMPC took 0.8325 s on average and the approximate controller κmap took 0.0042 s. The
computational efficiency is increased by about 230 times.

Case 2. The LEMPC took 1.2532 s on average and the approximate controller κmap took 0.0061 s.
The computational efficiency is increased by about 200 times.

5.2 Performance of the LMPC considering input disturbance

In the simulation, the optimal objective is to minimize the tracking error, and the stage cost function is

L (x, ui) = ‖CA − CAs‖
2
10 + ‖T − Ts‖

2
1 . (35)

We set the starting time t0 = 0 h and the final time tf = 0.3 h. The sampling period ∆ = 0.01 h.
The LMPC horizon is chosen to be N = 10. A quadratic Lyapunov function V (x) = xTPx with

P = [[1060 22]T [22 0.52]T] is considered.
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Figure 5 (Color online) The trajectories of CA (a) and T (b) under control of the proposed LMPC (κMPC) and corresponding

approximator (κmap).
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Figure 6 (Color online) The variations of CA0 (a) and Q (b) under control of the proposed LMPC (κMPC) and corresponding

approximator (κmap).
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Figure 7 (Color online) The state trajectories under control of the proposed LMPC (κMPC) and corresponding approximator

(κmap).

We set the initial states as x0 = [0.56,−4.7]T, and the control objective is steering the states to the
origin (i.e., the equilibrium point CAs = 2.44 kmol ·m−3, Ts = 321.95 K).

The resulting CA and T are shown in Figure 5. The trajectories of them are given under the control
of the κMPC and κmap, respectively. It can be seen that under the influence of the approximation error
(i.e., input disturbance), the states can be stabilized and the differences between the steady states are
acceptable. The L(x, u) of κMPC is 0.988 while the L(x, u) of κmap is 1.030 which is 3.51% more than
that of κMPC. The variations of the inlet reactant concentration CA0 and the exchange of the external
heat Q are shown in Figure 6.

The stability region Ωρ can be derived according to the definition given in Remark 1. The result
is depicted as Figure 7. The state trajectories x and x′ are always bounded in Ωρ and tend to the
steady-state with the actions of the κMPC and κmap.
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Figure 8 (Color online) The trajectories of CA (a) and T (b) under control of the proposed LEMPC (κMPC) and corresponding
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Figure 9 (Color online) The variations of CA0 (a) and Q (b) under control of the proposed LEMPC (κMPC) and corresponding

approximator (κmap).
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Figure 10 (Color online) The state trajectories under control of the proposed LEMPC (κMPC) and corresponding approximator

(κmap).

5.3 Performance of the LEMPC considering input disturbance

In this case, the economic objective is to maximize the reactant rate by manipulating the inputs over the
whole process for tf , and the economic cost function of LEMPC can be formulated as

L (x, ui) = −k0e
− E

RT C2
A. (36)

We set the same simulation parameters as that in LMPC. And we also set the initial states as x0 =
[0.56,−4.7]T. The resulting CA and T are shown in Figure 8. Under the control of both the κMPC and
κmap, the states can be stabilized and bounded in the stable regions. The variations of the CA0 and
Q under the LEMPC controller are shown in Figure 9. The economic cost of the closed-loop system
under the control of κMPC is −2.8933× 105 over the simulation time and the economic cost of κmap is
−2.8777× 105. The error is about 0.5% of the system with LEMPC under the control of κmap.

The stability region Ωρ can be depicted as Figure 10. As the initial state is set in Ωρ, both of the state
trajectories under control of κMPC and κmap are bounded in Ωρ all the time and tend to the steady-state
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that maximizes the economic profit with the consideration of the stability.

6 Conclusion

In this paper, the approximate MPC achieved by learning methods can improve the computational
efficiency to simplify the process. The statistical error of the approximation is considered as the input
disturbance, and the controller is designed via LMPC techniques. The stability of the system is verified
if the input disturbance is limited within a certain range, and the influence of the inaccurate inputs is
reflected in the variation of the stability regions.
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