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Abstract In order to describe the nonlinear distribution of the image dataset, researchers propose a mani-

fold assumption, called manifold learning (MAL). The geometry information based on a manifold is measured

by the Riemannian metric, such as the geodesic distance. Thus, owing to mining the intrinsic geometric struc-

ture of the dataset, we need to learn the real Riemannian metric of the embedded manifold. By the Taylor

expansion equation of the Riemannian metric, it clearly indicates that the Riemannian metric is relative to

the Riemannian curvature. Based on it, we propose a new algorithm to learn the Riemannian metric by

adding the curvature information into metric learning. By optimizing the objective function, we obtain a

set of iterative equations. We call this model curvature flow. By employing this curvature flow, we obtain

a Mahalanobis metric that approaches the Riemannian metric infinitely and can well uncover the intrinsic

structure of the embedded manifold. In theory, we analyze several properties of our proposed method, e.g.,

the boundedness of the metric and the convergence of curvature flow. To show the effectiveness of our

proposed method, we compare our algorithm with several traditional MAL algorithms on three real world

datasets. The corresponding results indicate that our proposed method outperforms the other algorithms.
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1 Introduction

As a nonlinear distribution of the sample set, the manifold-based assumption has been widely applied in
many aspects of machine learning [1]. For example, for a set of data points with high dimensional feature
representation, we suppose this dataset is sampled from a nonlinear manifold that is embedded into the
high dimensional feature space, and then we can reduce the dimension of these data points by using
the mapping from the embedded manifold to the ambient space. We call this machine learning method
manifold learning [2, 3] which aims to uncover the low-dimensional embedded intrinsic structure of the
dataset. Manifold-based assumption also applies in other machine learning tasks, such as cluster and
classification [4]. For example, in computer vision, datasets in different classes can be seen as distributed
on multiple manifolds. Since the manifold is a discrete geometric space, the process of the machine
learning task based on manifold structure usually involves some geometric structure mining [1]. For
example, in cluster task, it uses geodesic distance to measure similarity between two points which are
sampled from a manifold. However, due to the nonlinear distribution of the embedded sub-manifold,
we need to obtain the global structure of the manifold by aligning the local geometric structure of the
manifold.

The common manifold learning algorithms are mainly divided into two classes [5]. One class is called
global structure preserved algorithms which aim to preserve the global structure of manifold during
dimension reduction, such as Isomap [2]. Another class is called locally preserved methods which preserve
the local geometric structure of manifold, such as LEP [6], LLE [3], HLLE [7], and LPP [8]. When
mining the local or global geometric structures, these algorithms assume that each local patch of the
embedded manifold is close to the Euclidean space and use the Euclidean metric to measure the local
distance of the manifold. However, for the Riemannian manifold [9], the intrinsic geometric structure is
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determined by the corresponding Riemannian metric. In the process of manifold learning, it is essential
to learn an appropriate metric in a low dimensional space, so that the corresponding low dimensional
representation can well maintain the geometric structure of the high dimensional data points. In the
cluster or classification task, to accurately represent the geodesic distance between two points, we also
need to know the Riemannian metric of the manifold. Therefore, it can be seen from the above analysis
that the machine learning tasks based on manifold structure cannot avoid Riemannian metric learning.

1.1 Related work

In machine learning, the main purpose of dimensionality reduction for high-dimensional data is to find a
suitable low-dimensional space in which learning can perform better than in the original space. In fact,
each space corresponds to a distance metric defined on the sample attribute, and finding the suitable
space is essentially looking for an appropriate distance metric. Therefore, manifold learning is equivalent
to metric learning [10].

Metric learning was first put forward by Xing et al. [11] in 2002, which was proposed to learn a
symmetric distance matrix to measure the similarity relationship between any two points. It can be well
applied in cluster learning tasks. In recent years, metric learning has made great progress. Almost all
metric learning algorithms ultimately are translated into an objective function optimization problem with
several constraints [11]. In the optimization process, one method is to add all the constraint conditions
to the objective function, which is called offline learning. One problem is the optimization process will
become very complex if the number of constraint conditions is very large. To overcome this limitation,
some researchers proposed online metric learning which optimizes the objective function step by step
by inputting one constraint each time [12]. The distance metric learned in this way is a global metric
that measures the similarity between any two points. In general, the distribution of some kinds of
datasets cannot be well measured with a global distance metric. For example, if the learned dataset is
distributed on a nonlinear Riemannian manifold, there is no global Riemannian metric on it, but only
local Riemannian metric in each local neighborhood. Based on this limitation, some researchers proposed
local metric learning [13, 14]. The algorithm [14] is proposed to learn a set of local metric basis, and
then the corresponding global metric between any two points is represented by the linear combination of
this set of metric basis. In this paper, we propose to learn the real Riemannian metric of the manifold
by mining the intrinsic geometric structure. As we all know, the global Riemannian metrics on the
Riemannian manifold is represented by the set of all local Riemannian metric defined on all local patches
of the whole manifold [9]. Therefore, we learn the real Riemannian metric based on the idea of local
metric learning.

1.2 Limitations of traditional manifold learning

As we know that the Riemannian metric is not isometric to the Euclidean metric, one main reason is
the existence of the Riemannian curvature of the Riemannian manifold. Some researchers [15] proposed
to add the curvature information into the semi-supervised model as a regularization item. However,
it cannot be applied to Riemannian metric learning. The global structure of the general Riemannian
manifold is very complex and its corresponding Riemannian metric structure is also complex, and thus
it is impossible to learn an accurate Riemannian metric just by a metric learning model.

Therefore, in order to understand the global structure of the Riemannian manifold, some mathemati-
cians put forward the concept of geometric flow, such as Ricci flow [16], with the aim of establishing
the differential equation of time variable between Riemannian metric and Riemannian curvature. Some
researchers [17, 18] proposed to use Ricci flow to rectify the similarity among datasets. Our previous
work [19] also proposed to add Ricci flow to manifold learning. However, the traditional geometric flow
has some limitations, and it cannot be applied to all kinds of manifolds, such as negative curvature mani-
fold. For general manifolds, we proposed to construct a new curvature flow. Based on this curvature flow
model, we could learn the Riemannian metric of discrete datasets distributed on any kind of manifold.
In our previous work [20], we have put forward this idea. This paper is an extension and in-depth study
of our previous work, which is mainly explained in Section 4.

1.3 Main contributions

The main contributions of this paper include the following points:
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• A new curvature flow is proposed. Based on this curvature flow, the Riemannian metric can be
learned more accurately.

• The chosen parameters are explained in detail during the iterative process of the discrete curvature
flow.

• The selection of constraints is proposed, so as to effectively reduce the complexity of the algorithm.
• Several properties of the curvature flow are theoretically analyzed and proved, such as the conver-

gence of curvature flow, the existence of the upper and lower boundary of the Riemannian metric matrix,
and the selection of parameters.

2 Basic knowledge

In this section, we focus on introducing some basic knowledge needed for our work. Firstly, we give
the relationship between manifold learning and metric learning. Secondly, we introduce the relationship
between the Riemannian metric and Riemannian curvature. Finally, we give the problem statement of
this paper. Suppose the input dataset is represented as {x1, x2, . . . , xN}, xi ∈ R

D, where N is the number
of data points and D is the dimension of each data point.

2.1 Metric learning

Metric is a criterion to measure the relative distance between data points. In mathematics, the concept
of metric usually satisfies four conditions: symmetry, nonnegative, triangle inequality, and identity. One
special metric is represented by a symmetric positive definite (SPD) matrix named Mahalanobis metric,
denoted by M . Based on this metric, the Mahalanobis distance between two points is shown as

dM (xi, xj) = (xi − xj)
T
M (xi − xj) . (1)

If the matrix M is set to I (unit matrix), then the metric is called Euclidean metric.
Since metric M is an SPD matrix, it can be decomposed as the following form:

M = WTW. (2)

The corresponding distance can be transformed into the following form:

dM (xi, xj) = (Wxi −Wxj)
T
(Wxi −Wxj) . (3)

If the order of matrix W is lower than the dimension of the input data point xi, the dimension of the
input dataset can be reduced by linear transformation. So here it can be shown that metric learning is
equivalent to manifold learning.

2.2 Riemannian metric

For the Riemannian manifold, the set of inner products defined on the tangent space of each point
is called the Riemannian metric [9]. The ability to accurately uncover the corresponding Riemannian
metric directly affects the efficiency of manifold learning. As we have shown, there only exists a local
Riemannian metric in each local patch. By the same approach as in the previous paper [20], we use the
unit decomposition theorem to represent the global structure of the Riemannian metric. The selection
of local neighborhood set also adopts the method mentioned in our previous paper [20]. In Riemannian
geometry, Riemannian metric is seriously relative to Riemannian curvature, which is shown by the Taylor
expansion of Riemannian metric [21]:

gij = gij |p + ∂kgij |px
k +

1

2
∂l∂kgij |px

kxl +
1

6
∂m∂l∂kgij |px

kxlxm + · · · , (4)

where

gij |p = δij ,

∂kgij |px
k = 0,

1

2
∂l∂kgij |px

kxl = −
1

3
Rikjl |px

kxl,

1

6
∂m∂l∂kgij |px

kxlxm = −
1

6
∇mRikjl|px

kxlxm.
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Figure 1 (Color online) Curvature estimation.

gij is the Riemannian metric and Rikjl is the Riemannian curvature.
By analyzing (4), it can be seen that the Euclidean metric is not isometric to the Riemannian metric

which is completely influenced by Riemannian curvature. Therefore, in order to learn the real Riemannian
metric of the dataset, it is crucial to excavate the Riemannian curvature first.

Riemannian curvature is a special high-order geometric quantity, which proposes to measure the non-
linearity of the Riemannian manifold [9]. In Riemannian geometry, Riemannian curvature is represented
by a fourth-order tensor. However, in machine learning, we only train a set of discrete data points. To
calculate the expression of Riemannian curvature at any point, some researchers [15] proposed to calcu-
late the analytic structure of the corresponding local neighborhood. In general, the analytic structure of
the space is estimated by a suitable multivariate polynomial function. However, this operation usually
has several problems, such as the local coordinate system is bad to determine, the parameter of the poly-
nomial function is bad to determine, and for the dataset with high dimension the time cost of estimating
polynomial is especially high. Therefore, it is impractical to represent the Riemannian curvature tensor
in this way, if the size of the dataset is especially large.

Back to our paper, the final purpose of this paper is to learn a proper Riemannian metric to uncover the
intrinsic geodesic distance between any two points more accurately. In the discrete dataset, the geodesics
among data points are independent of each other. Compared with the differential Riemannian manifold,
the manifold formed by the discrete dataset does not have many complicated geometric structures, because
the differential structure on the discrete dataset does not exist. Therefore, in this paper, we just consider
the geodesic curvature between any two points. In our previous work, we have pointed out that the
discrete geodesic curvature is shown as

|Rij | =
dM (xi, xk) + dM (xk, xj)− dM (xi, xj)

dM (xi, xk) + dM (xk, xj)
, (5)

where Rij represents the geodesic curvature between xi and xj , and xk is the intersection between the
tangent vectors of xi and xj . An intuitive illustration is shown in Figure 1.

2.3 Problem statement

As we have analyzed, our proposed method aims to use a local metric learning model combined with
geodesic curvature information to learn the Riemannian metric. The traditional metric learning model [12]
is represented as follows:

min
M

Dφ (M,M0) , (6)

where Dφ(·) represents the similarity relationship between two matrices, M0 is the initial metric.
Since there exists some prior information about the dataset, some constraints are added in the opti-

mization process. For example, in supervised learning, constraints are added to make the Mahalanobis
distance between data points in the same class as small as possible and the distance in different classes
as large as possible. At the same time, in order to make the metric meet some additional properties, a
regularization item is added to modify and punish the metric learning.

In this paper, we propose to learn a real Riemannian metric so that the Mahalanobis distance between
two points is as close as possible to the real geodesic distance. Therefore, for this purpose, the objective
function can be optimized based on the metric learning model as follows:

min
MR

Dφ (MR,M0) + λ (dge (xi, xj)− dMR
(xi, xj))

2
, (7)
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where MR represents the Mahalanobis distance that should be learnt, M0 is the initial Euclidean metric,
dge (xi, xj) represents the geodesic distance between xi and xj , and dMR

(xi, xj) is the Mahalanobis
distance between xi and xj .

In general, the learned manifold is embedded into a high dimensional feature space, therefore, the
curvature of the embedded manifold is relative to the ambient space. Measuring the curvature of geodesic
can be viewed as measuring the difference between geodesic distance and the corresponding Euclidean
distance. Therefore, the geodesic curvature can be approximately estimated as shown in (8), and the
corresponding discrete representation is shown in (5).

Rij =
dge (xi, xj)− dEu (xi, xj)

dge (xi, xj)
, (8)

where dEu (xi, xj) represents the Euclidean distance between xi and xj and Rij represents the geodesic
curvature between xi and xj .

Therefore, for the regularization item in the objective function, we can replace it with geodesic curva-
ture, and combining with (8) we can convert (7) into the following form:

min
MR

Dφ (MR,M0) + λ1|Rij |
2. (9)

In other words, our algorithm adds a regularization item about geodesic curvature in the optimization
process, so that in the process of learning, the curvature of geodesic is decreasing, and the Mahalanobis
distance is getting closer and closer to the geodesic distance.

The main task of our method is to solve this objective function. The optimization function establishes
the relationship between the Riemannian metric and curvature. Because of the nonlinearity of the
Riemannian manifold, it is impossible for the objective function to obtain the optimal result at one time.
In Section 3, we give the optimization process using online learning model and analyze the relationship
between the optimization result and the curvature flow.

3 Algorithm

The main purpose of this section is to describe the overall process of our proposed algorithm in detail.
We need to solve three problems: the first one is to describe the optimization process of the objective
function in detail, the second one is to explain the selection of constraint point pairs, and finally, the
selection of parameters in the objective function should be described in detail.

3.1 Curvature flow

We have pointed out that the final purpose of our algorithm is to learn the Riemannian metric, so that the
geometric structure of the embedded manifold can be well mining. In the learning process, we still propose
to preserve the local structure of the manifold, so we add a set of constraints on the local neighborhood.
In order to avoid the limitations of offline learning, we use the online learning model [22, 23] to optimize
the objective function, which means that only one constraint condition is added to the objective function
at each iteration. The corresponding objective function can be transformed into the following form:

argmin Dφ (Mt+1,Mt) + λ1,t|Rt|
2,

s.t. fi (xj) · dMt
(xi, xj) < ρ,

(10)

where fi (xj) is defined as follows:

fi (xj) =

{

1, if xj ∈ Ui,

0, elsewise.

As the same method with our previous paper, we use Log-det divergence Dld (MR,M0) [24] to measure
the similarity Dφ (MR,M0) between two SPD matrices. So,

Dld (MR,M0) = tr
(

MRM
−1
0

)

− log det
(

MRM
−1
0

)

− d. (11)
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In the optimization process, we use the Lagrange multiplier method to solve the objective function.
The corresponding Lagrange multiplier formula is shown as follows:

L (Mt, λ1,t, λ2,t) = Dld (Mt+1,Mt) + λ1,t|Rt|
2 + λ2,t (fi (xj) · dMt

(xi, xj)− ρ) . (12)

The result is shown as

Mt+1 = [M−1t + 2λ1,tRtAik + 2λ1,tRtAkj − (2λ1,tRt − λ2,t)Aij ]
−1. (13)

We next use the Shermann-Morrison inverse formula [24] and obtain the following iterative formulas:

Γt = Mt −
2λ1,tRtMtAikMt

1 + 2λ1,tRtv
T
ikMtvik

, (14)

Ht = Γt −
2λ1,tRtΓtAkjΓt

1 + 2λ1,tRtv
T
kjΓtvkj

, (15)

Mt+1 = Ht +
(2λ1,tRt − λ2,t)HtAijHt

1− (2λ1,tRt − λ2,t) vTijHtvij
, (16)

where vij = xi − xj , and the same as vik and vjk.
We call this iterative process curvature flow. One reason is that the iterative process is a set of

equations about the metric and curvature. Unlike traditional geometric flows, such as Ricci flow, defined
on Riemannian manifolds, our curvature flow is learned from a set of discrete data points. Under this
curvature flow, the manifold structure continues to deform along the time axis and eventually converges
to a flat Euclidean space. The learned Mahalanobis metric can well uncover the geodesic distance between
data points.

3.2 Selection of constraints

In this subsection, we set the selection rules for constraints. In our previous work [20], we iterated
through all the point pairs in the neighborhood and optimized these constraints one by one during the
iteration of the objective function. This greedy method can result in a very large time consumption of the
optimization process. In this paper, we re-analyze the selection of constraints to minimize the number of
constraints without affecting the optimization results. Therefore, for this purpose, we set some selection
rules for constraint conditions, which are shown as follows:

• Since the Riemannian metric only has local representation, the constraint data point pair is limited
to the same neighborhood and the non-neighborhood is not selected.

• In the same neighborhood, we only choose the constraint between the center point and its non-center
point.

• Set a threshold δ, and select the point pairs where the Mahalanobis distance between them is greater
than δ.

Supposing the number of the minimum overlapping neighborhood sets is m, the number of sample
points in each neighborhood is K, then the number of constraints constructed based on our proposed
rules is approximate O (mK). Compared with the number of the input data points N , the number of
constraints constructed by this method is much smaller. Therefore, selecting constraints based on this
rule would greatly reduce the number of constraints.

3.3 Parameter selection

From the algorithm iteration process above, we can see that the curvature flow is affected by two parame-
ters λ1,t, λ2,t. In this subsection, we explain the selection of these two parameters. These two parameters
respectively control the effect of curvature item and constraint conditions in the optimization process. If
λ1,t is large, the curvature of geodesic between two points would be reduced, while the corresponding Ma-
halanobis distance would be very large under this learned metric. If λ2,t is large, the learned metric can
keep the local structure of each neighborhood well, but cannot reduce the curvature value between data
points too much. Therefore, we should choose suitable parameters, so that the learned metric achieves
the optimal result. In order to select the suitable parameters, the learned metric under these parameters
should satisfy the following three conditions:
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• The metric Mt+1 satisfies the semi-positive property, that is Mt+1 � 0, equivalently M−1t+1 � 0.
• The metric Mt+1 still retains the local geometry between the neighborhood points, that is

(xi − xj)
T
Mt+1 (xi − xj) < ρ.

• Both parameters should be non-negative:

λ1,t > 0, λ2,t > 0.

For the first condition, we can get the corresponding representation as follows:

M−1t+1 = M−1t + 2λ1,tRtAik + 2λ1,tRtAkj − (2λ1,tRt + λ2,t)Aij � 0. (17)

For the second condition, we can obtain the following representation:

(xi − xj)
T
Mt+1 (xi − xj) < ρ. (18)

By computing these three inequality conditions, the parameters λ1,t and λ2,t are estimated as

λ1,t =
ηt

2Rttr (MtAkj)
,

λ2,t =
ηt

dij
tr[((Aik +Akj +Aij)Mt)

−1],
(19)

where ηt is a learning rate parameter, which is set to (0, 1), Aij = (xi − xj) (xi − xj)
T, the same as Aik

and Akj .
Based on the above three problems solved, the detailed algorithm process is shown in Algorithm 1. we

would give a detailed theoretical analysis of our proposed curvature flow in Section 4.

Algorithm 1 Riemannian metric learning based on curvature flow (CFML)

Input: Training data points {x1, x2, . . . , xN}, xi ∈ R
D, neighbor-size parameter K, distance threshold ρ, Euclidean metric M0,

slack parameter η;

Output: Riemannian metric MR, low-dimensional representations {y1, y2, . . . , yN}, yi ∈ R
d;

1. for i = 1 to N do

2. Find K-nearest neighbor set of xi, denoted as Ui;

3. end for

4. Find a minimum set of overlapping local neighborhoods {Ui}
m
i=1 ofM;

5. Initialization: t← 1, M0 = I, M1 ←M0, λ1,1, λ2,1;

6. Repeat

7. Update λ1,t, λ2,t using (19);

8. Update the curvature flow equations using (14)–(16).

9. Until Convergence;

10. Do: Singular value decomposition to MR using (2) and obtain WR ∈ R
d×D;

11. Return yi = WR · xi.

4 Theoretical analysis

In this section, we first attempt to analyze several properties of curvature flow, such as the convergence of
curvature flow and the boundedness of metric. Secondly, we give a detailed computational cost analysis
of this method.

4.1 Three properties

Theorem 1. If the metric Mt satisfies 0 � Mt � I during the iteration process, we can obtain
0 � Mt+1 � I.
Proof. Since λ1,t is negative, we can obtain directly

Γt � I, if Mt � I,

Ht � I, if Mt � I.
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First we prove that Mt+1 � 0. From the representation of Mt+1, we can see that to prove the semi-
definiteness of Mt+1, we only need to prove the semi-definiteness of Ht.

Ht = Γt −
2λ1,tRtΓtAkjΓt

1 + 2λ1,tRtv
T
kjΓtvkj

= Mt −
2λ1,tRtMtAikMt

1 + 2λ1,tRtv
T
ikMtvik

−
2λ1,tRtΓtAkjΓt

1 + 2λ1,tRtv
T
kjΓtvkj

� Mt −
2λ1,tRtMtAikMt

1 + 2λ1,tRtv
T
ikMtvik

−
2λ1,tRtMtAkjMt

1 + 2λ1,tRtv
T
kjΓtvkj

� Mt − 2λ1,tRtMtAikMt − 2λ1,tRtMtAkjMt. (20)

According to the choice of parameters, we know that λ1,t = ηt

2Rttr(MtAkj)
. Under this parameter, the

above inequality is transformed into the following form:

Ht � Mt − 2ηtMt. (21)

Therefore, from the above inequality, we can see that if ηt < 0.5, Ht � 0. Then, we can prove that
Mt+1 � 0.

Next, let us prove that Mt+1 � I. First we give the iteration form of Mt+1:

I −Mt+1 = I −Ht −
2λ1,tRtMtAikMt

1− (2λ1,tRt − λ2,t) vTijHtvij
. (22)

With proper scaling, the above inequality can be translated into the following form:

I −Mt+1 � I −Mt + λ1,tRtMtAikMt + λ1,tRtΓtAkjΓt −
(2λ1,tRt − λ2,t)MtAijMt

1− (2λ1,tRt − λ2,t) vTijMtvij
. (23)

When the learning rate parameter ηt → 1, we can prove that I −Mt+1 � 0.
The purpose of this paper is to study a new Mahalanobis metric, so that the Mahalanobis distance

between any two neighborhood points is constantly approaching the corresponding geodesic distance.
In other words, under the new Mahalanobis metric, the geodesic curvature decreases continuously. We
present the detailed proof in Theorem 2.

Theorem 2. As the iteration process, the geodesic curvature between two points is decreasing under
the new Mahalanobis metric.
Proof. This theorem is proved mainly by the properties of similar triangles. By the definition of discrete
geodesic curvature in (5), if the change ratio of dMt+1

(xi, xj) is greater than the other two sides, the
geodesic curvature of xi and xj decreases in the iterative process.

In the following, we respectively give the Mahalanobis distance variation of the three edges in each
iteration:

∆dMt+1
(xi, xk) =−

2λ1,tRtdMt
(xi, xk)

1 + 2λ1,tRtdMt
(xi, xk)

−
2λ1,tRtdΓt

(xk, xj) cos
2θ3

1 + 2λ1,tRtdΓt
(xk, xj)

+
(2λ1,tRt + λ2,t) dHt

(xi, xj) cos
2θ1

1− (2λ1,tRt + λ2,t) dHt
(xi, xj)

, (24)

∆dMt+1
(xi, xj) =−

2λ1,tRtdMt
(xi, xk) cos

2θ1

1 + 2λ1,tRtdMt
(xi, xk)

−
2λ1,tRtdΓt

(xk, xj) cos
2θ2

1 + 2λ1,tRtdΓt
(xk, xj)

+
(2λ1,tRt + λ2,t) dHt

(xi, xj)

1− (2λ1,tRt + λ2,t) dHt
(xi, xj)

, (25)

∆dMt+1
(xj , xk) =−

2λ1,tRtdMt
(xi, xk) cos

2θ3

1 + 2λ1,tRtdMt
(xi, xk)

−
2λ1,tRtdΓt

(xk, xj)

1 + 2λ1,tRtdΓt
(xk, xj)

+
(2λ1,tRt + λ2,t) dHt

(xi, xj) cos
2θ2

1− (2λ1,tRt + λ2,t) dHt
(xi, xj)

. (26)
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Figure 2 (Color online) Intersection angles.

For the convenience of analysis, we give the following hypothesis:

A1 =
2λ1,tRtdMt

(xi, xk)

1 + 2λ1,tRtdMt
(xi, xk)

, A2 =
2λ1,tRtdΓt

(xj , xk)

1 + 2λ1,tRtdΓt
(xj , xk)

,

A3 =
(2λ1,tRt + λ2,t) dHt

(xi, xj)

1− (2λ1,tRt + λ2,t) dHt
(xi, xj)

.

The above incremental representation is then converted to the following representation:

∆dMt+1
(xi, xk) = −A1 −A2cos

2θ3 +A3cos
2θ1,

∆dMt+1
(xi, xj) = −A1cos

2θ1 −A2cos
2θ2 +A3,

∆dMt+1
(xj , xk) = −A1cos

2θ3 −A2 +A3cos
2θ2,

(27)

where the intersection angles θ1, θ2, and θ3 are shown in Figure 2.
It can be seen from the analysis of these three increments that the incremental ratio of ∆dMt+1

(xi, xj)
is larger than the other two increments. Therefore, under this metric, the geodesic curvature between xi

and xj is decreasing.
In Theorem 2, we have proved that the curvature decreases during the iterative process, while we do

not prove that the geodesic curvature converges to zero. In the next theorem, we prove the convergence
of curvature flow. The final conclusion is shown in Theorem 3.

Theorem 3. The curvature flow convergences if and only if there exists a metric with zero geodesic
curvature everywhere.
Proof. First suppose there exists a metric MT , under this metric, the geodesic curvature at any point
of the manifold is zero, that is RT = 0. Then we consider the next iteration metric MT+1 according to
(14)–(16) shown as follows:

ΓT = MT ,

HT = MT ,

MT+1 = MT−
λ2,TMTAijMT

1− λT v
T
ijMT vij

.

If the geodesic curvature is zero, the Mahalanobis distance is equivalent to the geodesic distance and
the parameter λ2,T is set to zero. That is

MT+1 = MT .

This is proved that the curvature flow convergences.
Next, suppose the curvature flow convergences, and then we have Mt → M∗, as t → ∞, which implies

that there exists a sequence ξn → ∞ such that

Mξn+1
−Mξn → 0.

Since the Mahalanobis distance metric Mt convergences, the distance between two points is constant,
thus λ2,ξn = 0. That is

Mξn+1
−Mξn = Rξn

(

−
2λ1,ξnMnAikMξn

1 + 2λ1,ξnRξnv
T
ikMξnvik

−
2λ1,ξnΓξnAjkΓξn

1 + 2λ1,ξnRξnv
T
kjΓξnvjk

+
2λ1,ξnHξnAijHξn

1− 2λ1,ξnRξnv
T
ijHξnvik

)

.
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As ξn → ∞, Mξn+1 −Mξn → 0, we have Rξn → R∗, R∗ = 0.

4.2 Computation cost

In this subsection, we give the time complexity analysis of our method. For the sake of analysis, we define
a set of symbols, the number of data points N , the input dimension D, the intrinsic dimension d, the
neighbor-size k, and the number of minimal neighborhood subsets. The computation cost of this method
is mainly contained in the following steps. (1) The time cost for obtaining the minimal neighborhood
subset is O(m2 (D + k)). (2) For the selection of neighborhood pairs, the time complexity of this step is
O (mk). (3) For the online learning iterative process, the time complexity of each iteration is polynomial.
(4) In the process of dimensionality reduction, it is actually to decompose the metric matrix, so the time
cost is O(dN2). Overall, the total time cost of our proposed method is polynomial.

5 Experiments

In this section, we mainly run a set of experiments to test the performance of our proposed algorithm.
First, we compare with several traditional dimension reduction algorithms and metric learning algorithms
on three real-world datasets, e.g., YTC dataset, USPS dataset, and Extended Yale Face B dataset (YFB
dataset). Secondly, we run experiment on two synthetic datasets, e.g., Puncture Sphere and Twin Peaks1).

5.1 Dataset

In this subsection, we first introduce the three real-world datasets in detail.

5.1.1 YTC dataset

The YouTube celebrity dataset short for YTC dataset collects 1910 video sequences of 47 subjects from
YouTube. The face regions of the original images from the video sequences are not all the same and
especially high. We resize the face region into 20 × 20 intensity image. Moreover, we transform each
20 × 20 pixel matrix into a 400 dimension vector. In this experiment, we respectively choose the video
sequences from 30 different individuals, and for each individual we choose 20 video sequences respectively.

5.1.2 USPS dataset

The USPS database consists of 9298 images. It refers to numeric data obtained from the scanning of
handwritten digits from envelopes by the U.S. Postal Service. The original scanned digits are binary
and of different sizes and orientations. The images here have been size normalized, resulting in 16× 16
gray-scale images, so the original dimension of this database is 256.

5.1.3 YFB dataset

The YFB dataset contains 2414 single light source images of 38 individuals each seen under about 64
near frontal images. For every subject in a particular pose, an image with ambient illumination is also
captured. The face region in each image is resized into 32× 32, so the original dimension of this database
is 1024.

5.2 Evaluation

In this experiment, the test procedures are mainly divided into two steps. For these three used datasets,
we first use our proposed method and several traditional manifold learning algorithms to reduce their
dimensions. Then, we use the K-nearest neighbor classifier to test the classification accuracy of different
datasets in the low dimensional space. Here, the classification accuracy is set to measure the dimension
reduction accuracy of different algorithms.

1) Wittman T. Manifold learning Matlab demo. 2015. http://www.math.umn.edu/wittman/mani.
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Figure 3 (Color online) The neighborhood preserving ratios of different dimension reduction algorithms about the YTC dataset

(a), USPS dataset (b), and YFB dataset (c).
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Figure 4 (Color online) The curvature distributions of the YTC dataset (a), USPS dataset (b), and YFB dataset (c).

5.2.1 Dimension reduction

In this subsection, to fully evaluate the performance of our proposed algorithm, we compare our method
with five traditional manifold learning algorithms (e.g., Isomap, LLE, LEP, HLLE, LTSA). We use these
algorithms to reduce the dimension of the three datasets. For YTC dataset, the corresponding lower
dimension is set to 20, for USPS dataset, the lower dimension is set to 10, and for YFB dataset, we
choose the lower dimension as 10.

We first test the sensitivity of these algorithms about neighbor size parameter K by computing the
neighborhood preserving ratio (NPR) during dimension reduction. The NPR is defined as

NPR =
1

KN

N
∑

i=1

|N (xi) ∩ N (yi) |, (28)

where xi represents the input data point and yi is the corresponding low dimensional representation;
N (xi) is the set of subscripts {j}, where xj is the K-nearest neighbor of yi; | · | represents the number
of intersection points.

We compare the NPRs of different algorithms with respect to (w.r.t) different neighbor-size parameter
values K. For these three datasets, K is set to K = {15, 20, 25, 30, 35, 40, 45, 50}, and the corresponding
comparison result is shown in Figure 3. From Figure 3, we can see that, for YTC dataset, the NPRs
of traditional manifold learning algorithms are especially low, mostly focusing on 0.1 to 0.3. For USPS
and YFB datasets, the NPRs of traditional algorithms are ranged 0.3 to 0.5. In general, the dimension
reduction results of traditional MAL algorithms are not very well. One obvious reason is that the
traditional algorithms do not consider the curvature information of the datasets, which has a great
influence on the results of dimension reduction.

The corresponding curvature distributions of these three datasets are shown in Figure 4. From Figure 4,
we can see that the average curvature value of YTC dataset is higher than the other two datasets. In
order to analyze the influence of curvature information on dimension reduction, we use CAML [25] and
our proposed algorithm CFML to compare with traditional MAL algorithms, and the results are shown
in Figure 3. For these two curvature-aware algorithms, they obviously outperform the traditional MAL
algorithms. Moreover, the NPRs of our proposed algorithm are higher than the CAML algorithm in
almost any case.
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Figure 6 (Color online) The visual embedding comparison of puncture sphere dataset: (a) original dataset, (b) PCA, (c) Isomap,

(d) LLE, (e) LEP, and (f) CFML.

5.2.2 Classification accuracy

In this experiment, we mainly compare our proposed algorithm with several existing dimension reduction
algorithms about the classification accuracies of these three datasets. The experiment is mainly divided
into two steps. The first step is to use dimension reduction algorithms to reduce the dimension of these
three datasets, and the dimension reduction results have been obtained in Subsection 5.2.1. In this
subsection, we do the second step to use the KNN classifier to compute the classification accuracy of
different datasets.

For YTC dataset, we respectively choose 15 video sequences per individual for training, and the rest
video sequences as a test set. For USPS dataset, we choose 400 images per subject for training, and the
rest for a test. And for YFB dataset, the training set is chosen 30 images per individual. Both the KNN
classifier and dimension reduction algorithms are influenced by the value of neighbor-size parameter K.
Thus we run a series of experiments to analyze the sensitivity of parameter K. The corresponding result
is shown in Figure 5. From experimental results on YTC dataset, we can see that our proposed algorithm
achieves the highest accuracy rate in all cases. For the curvature-aware algorithms, focusing on the
comparison between CAML and our proposed algorithm, our method outperforms CAML everywhere.

5.3 Visual embedding

Owing to visualizing the embedding results of datasets, we compare our proposed method with several
traditional manifold learning algorithms on two synthetic databases, e.g., Punctured Sphere and Twin
Peaks.

In this experiment, we use different algorithms to map the 3D synthetic databases into two dimensional
space. The intuitive embedding results are shown in Figures 6 and 7. From these two figures, we can
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Figure 7 (Color online) The visual embedding comparison of Twin Peaks dataset: (a) original dataset, (b) PCA, (c) Isomap, (d)

LLE, (e) LEP, and (f) CFML.

see that the embedding results of Puncture Sphere dataset and Twin Peaks dataset are highly sensitive
to the curvature information. The results of our proposed method outperform the other traditional
MAL algorithms. By the visually embedding comparison, we can see that for almost all general nonlinear
manifolds, the curvature information is necessary to be considered for the dimension reduction algorithms.

6 Conclusion

At present, almost all researchers use graph embedding ideas to reduce the dimensionality of dataset,
which does not consider the higher order geometric structure of the dataset. To precisely uncover the
intrinsic structure of the embedded sub-manifold, we attempt to consider the curvature information
of data points. Based on the idea of traditional geometric flow learning, we propose a new curvature
flow learning to learn a new Mahalanobis metric, which approaches the Riemannian metric infinitely.
In the experiment, we choose three real world datasets and run a series of experiments to compare
with traditional manifold learning algorithms. The comparison result shows that our proposed method
outperforms the other algorithms. The main contribution of our work presented in this paper is that we
give some properties of the proposed curvature flow model, such as the convergence of curvature and the
boundedness of Mahalanobis matrix, and get the full proof.

However, currently our method can only train on the small size dataset. For big data, owing to
insufficient CPU memory, it does not work well. In the future, we intend to combine deep learning model
to train our algorithm on big data.
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