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Abstract Most methods for hyperspectral anomaly detection (HAD) construct profiles of background pix-
els and identify pixels unconformable to the profiles as anomalies. Recently, isolation forest-based algorithms
were introduced into HAD, which identifies anomalies from the background without background modeling.
The path length is used as a metric to estimate the anomaly degree of a pixel, but it is not flexible and
straightforward. This paper introduces the half-space tree (HS-tree) method from the theory of mass esti-
mation into HAD and proposes a metric involving mass information and tree depth to measure the anomaly
degree for each pixel. More specifically, the proposed HS-tree-based detection method consists of three main
steps. First, the key spectral-spatial features are extracted using the principal component analysis and
the extended morphological attribute profile methods. Then, the ensemble of HS-trees are trained using
different randomly selected subsamples from the feature map. Finally, each instance in the feature map
traverses through each HS-tree and the anomaly scores are computed as the final detection map. Compared
with conventional methods, the experimental results on four real hyperspectral datasets demonstrate the
competitiveness of our method in terms of accuracy and efficiency.
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1 Introduction

Hyperspectral images (HSIs) captured by imaging spectrometer contain hundreds or even thousands
of narrow spectral bands ranging from the visible to the infrared spectrum [1,2]. Due to their ex-
tremely high spectral resolution, HSIs provide approximately continuous spectral curves. HSIs viewed as
a three-dimensional data cube contain both spatial and spectral information. Hence, HSIs can provide
discriminative information for identifying physicochemical characteristics of different land covers, leading
to several applications such as unmixing [3], classification [4], anomaly detection [5]. Among them, hy-
perspectral anomaly detection (HAD) is widespread for several applications in military and other fields
such as military reconnaissance [6, 7], geological survey [8], and agriculture evaluation [9]. The HAD
is considered as a special type of target detection that detects rare and unique objects with different
spectral features from those of their surroundings without any prior spectral information on the target
and the background.

Several HAD methods have been developed in the past three decades. Most existing HAD approaches
can be roughly divided into three categories: statistical model-based, representation-based, and deep
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learning-based. The statistical model-based was proposed first and is widely applicable. A typical ex-
ample of the statistical model-based approach is the Reed-Xiaoli (RX) algorithm [10], which assumes
that the background distribution conforms to a multivariate Gaussian distribution and anomaly pixels
are recognized by computing the Mahalanobis distance between the test pixels and statistical charac-
teristics of the background. However, the multivariate Gaussian distribution model is insufficient for
real HSIs, and the background modeling process may be contaminated by anomaly pixels. Hence, some
improved versions of the RX detector have been proposed from different perspectives. A common ex-
ample is the background purification strategy [11-13], which simplifies background distribution to meet
the assumption. Taitano et al. [11] proposed a locally adaptable iterative RX (LAIRX) method that
purifies the background using RX detector iteratively until the detection results become unchanged. The
kernel-based technique is another important improvement approach [14-16]. Kwon et al. [14] introduced
the kernel-based technique and proposed the kernel-RX detector, which enlarges the difference between
anomalies and the background by mapping the input into a high-dimensional feature space. To reduce
the computational load of KRX, the cluster KRX [16] was developed. Tt classifies background pixels into
clusters and obtains the detection index using the singular value decomposition. Since the HSIs contain
different substances, researchers have developed the Gaussian mixture model-based HAD methods. The
representative work is the cluster-based anomaly detector [17], which classifies the HSI into some classes
and then identifies anomaly objects in each class using the RX detector.

Another category is the representation-based approach. Here, background pixels can be expressed
approximately as a set of typical spectra or bases, whereas anomalies cannot. The background joint
sparse representation [18] method assumes that background pixels are expressed by a few atoms in a
dictionary. For the collaborative representation based detection method [19], it assumes that background
pixels are approximately expressible by their spatial neighbors. In [20-22], anomalies and the background
are modeled by sparse and low-rank representations, respectively. By considering the mixed characteristic
of HSI, the spectral unmixing technique obtains the abundance map instead of original pixels for anomaly
detection [23,24]. Besides, the tensor decomposition-based [25] methods have been recently researched.

Moreover, deep learning-based HAD has drawn increasing attention. In [26], the autoencoder is adopted
to learn feature representation, and the reconstruction errors between the input and the recovered images
are used to identify anomalies. Moreover, the deep belief network [27] and transferred learning [28]
methods have been incorporated into HAD.

These three major categories of methods focus on background modeling, which builds profiles of back-
ground pixels, and identifies pixels not satisfying the profiles as anomalies. These methods are optimized
to model the background accurately, but not optimized to detect anomalies. Hence, the detection proba-
bility can be low in some scenes. Recently, the isolation forest (iForest)-based technique [29] that directly
differentiates anomalies without background modeling was introduced into HAD. The main idea is that
anomalies are more susceptible to isolation than background pixels in a tree structure. Therefore, they
possess shorter average path lengths [29] over a collection of isolation trees. In 2019, Li et al. [30] first
applied iForest for HAD and further proposed the kernel iForest-based detector [31] in 2020. In [32], the
extracted multiple features instead of original pixels were used to construct isolation trees. In [33], an
isolation-based discriminative forest model is proposed. The metric is the path length for all iForest-based
detectors. However, it is a global metric, which is unable to rank local anomalies. Moreover, path length
has many definitions, depending on the construct used to define the length [34].

How can we define an appropriate and straightforward measure to rank anomaly? We provide the
answer in this paper by introducing a metric called the anomaly score, which involves the mass infor-
mation [34] and the depth of tree node. Furthermore, the half-space tree (HS-tree), a mass estimation
method, is adopted to compute the anomaly score. Its key advantages include: (1) it ranks in a data
cloud directly with simple counting and ensemble approach, leading to low computation load; (2) the
metric derived from HS-tree is straightforward and feasible, which can be used to rank global and local
anomalies.

More specifically, a novel HS-tree-based hyperspectral anomaly detector (HSTD) is proposed in this
paper. It constructs an ensemble of HS-trees and computes the anomaly score with those trees. The
proposed detection method comprises three main steps. First, since HSIs contain a mass of noisy and
irrelevant bands, we reduce redundancies and extract key spectral and spatial features of the HSIs. The
principal component analysis (PCA) and the extended morphological attribute profile (EMAP) methods
are successively applied to extract key spectral-spatial features. Second, the obtained feature map is used
as the input to train an ensemble of HS trees. Finally, each instance in the feature map goes through
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each HS-tree from the root node to a leaf node, and the anomaly scores of each instance are computed
to form the final detection map. Major contributions of our paper are summarized as follows.

(1) The HSI contains noisy and irrelevant bands and HS-tree performance is sensitive to these issues.
Thus, the key spectral-spatial features of the HSI are extracted using PCA and EMAP methods. The
feature map, not the original HSI, is used as the training set to build the HS-tree.

(2) So far, this is the first time that the HS-tree method is employed for hyperspectral remote sensing
applications. To evaluate the anomaly degree of a pixel, a metric, called anomaly score, is introduced
in our paper. Furthermore, to take advantage of local information, an improved metric, called the
relative anomaly score, is brought forward, which measures local anomaly degree by considering the local
distribution of data. The pixels with smaller scores are anomalies.

(3) Compared with other methods, our proposed method is concise, highly efficient, and parameter
insensitive. We verified these on real datasets and obtained competitive anomaly detection results.

The rest of this paper is organized as follows: mass estimation, HS-tree, and the metric used to estimate
the degree of the anomaly are briefly introduced in Section 2. The proposed method is presented in
Section 3. The experiments and analysis performed on four real datasets are presented in Section 4.
Finally, conclusion is given in Section 5.

2 DMass estimation and half-space trees

The number of instances in a region is defined as the mass. Two regions have the same mass if their
numbers of instances are equal, regardless of the properties of regions. The mass for an instance x is
estimated as the average of masses of all regions covering . The masses for all instances form the mass
distribution of a dataset, which offers a ranking from central to fringe instances. The instances with a
smaller mass are at the fringe and are anomalies. To build plenty of regions and estimate the mass for each
instance, we employ HS-tree, a practical mass estimation method. The HS-tree, as shown in Figure 1, is
an iterative half-space division operation, yielding several regions covering the instances in the dataset.
The mass of each region is obtained when the splitting operation is completed. Multiple HS-trees (i.e.,
the ensemble of HS-trees) generate different regions covering the instances. By definition, the mass for x
is the average of masses on all regions generated by the ensemble of HS-trees. The introductory insight
to this methodology is plain and intuitive. For theoretical deduction and proofs, refer to [34]. Here, we
employ HS-tree in HAD and review its implementation.

The HS-tree is a special binary tree, which randomly selects a feature every time and recursively
divides the dataset into two equal-sized nodes at the mid-value of the selected feature. This half-space
split process continues until the predefined size limit of the leaf node s; or the depth limit of the tree h; is
reached. When all the training instances go through the tree structure, the size of the leaf node, referred
to as mass, and the depth of the current leaf node A will be unchanged. These two results, as the output
of the tree model, are used to define the anomaly score that quantitatively estimates the degree of the
anomaly of an instance.

A simple example is shown in Figure 1, where the HS-tree and anomaly score can be observed. A
data space with many 2-feature data is divided into two equal-sized subspaces recursively until the
abovementioned predefined conditions are met. Here, the size limit of the leaf node s; is 3 and the depth
limit of the tree h; is 4. This split process produces 10 regions, marked with different colors. It can be
observed that the instance x, is isolated through three splits, and the size of the region covering x, is
1. This implies that the mass of the region is 1 for the HS-tree, and we mark it as mass(x,) for the
sake of description. Besides, the number of splits is the key information, which influences the mass(x,)
value. Hence, the anomaly degree of x, can be simultaneously associated with the number of splits and
mass(x,), as shown in Figure 1(a). With respect to the tree structure shown in Figure 1(b), the anomaly
degree of x, is related to the mass and the depth of the current leaf node h (for this case, the values are
1 and 3, respectively). The anomaly degree of x for one HS-tree can be defined as

s (x) = mass (x) x 2", (1)

where s(x) denotes the anomaly score of x for a particular tree, mass(x) is the mass of a leaf node (or
region) containing @, and h is the current depth of the leaf node or the number of splits. From this
definition, s (x,) = 1 x 23 =8 and s (x;) = 4 x 2* = 64. Evidently, x, is likely an anomaly and x; is
likely a normal instance. The instance with a smaller anomaly score, which is the average value computed
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Figure 1 (Color online) Example of dataset partitioned by a simple HS-tree. (a) A space division process, involving a data
space being recursively split into two equal-sized subspaces. This process produced 10 regions. The instance x, is isolated through
three splits, the region size where the @, lies in is 1, and that for where the x; lies in is 4. (b) The HS-tree construction process
corresponding to (a). For this example, mass(¢,) = 1 and mass(ax;,) = 4.

using many randomly constructed HS-trees, is more likely an anomaly. The conclusion conforms to the
definition of mass for one instance. Hence, many HS-trees (i.e., the ensemble of HS-trees) will be built
from the above description. The final anomaly score S (x) is defined as

S@) =1 > s, &)

where ¢ is the number of HS-trees, s; (x) is the anomaly degree derived from an HS-tree. We note that
the HS-tree is built from a set of training instances, randomly selected from the dataset.

In a sense, the implementation of the HS-tree is similar to that of iForest. However, the difference is
that the HS-tree defines a unique form of tree growth and explores the information on the tree nodes.
The HS-tree can be considered as an extension of iForest, and the path length can be considered as a
proxy to the anomaly score [34]. When the mass of each node is fixed at 1, the anomaly score degenerates
to the path length. So far, mass estimation and HS-tree have not been introduced in any remote sensing
application. Our paper is the first attempt to apply this method to HAD.

3 Proposed method

The framework of the proposed algorithm is displayed in Figure 2. There are three main steps: (1)
extracting a spectral-spatial feature map of HSI; (2) using the feature map to train an ensemble of
HS-trees; (3) Detecting anomalies with the HS-trees.

3.1 Extracting spectral-spatial features of HSI

The HSIs are high dimensional image and contain noisy and irrelevant bands, and the HS-tree method is
inapplicable for extremely high dimensional data [35]. Thus, we reduce spectral dimension and extract
discriminant features of the HSI [36,37]. The PCA [38] is utilized to reduce the dimension of the HSI,
which constructs a linear transformation to preserve principal spectral features. The first ¢ principal com-
ponents (PCs) denoted as {PC;,PCs,...,PC.} are the extracted spectral features. For a comprehensive
description of the HSI, the spatial structural information is to be extracted. The EMAP can model the
spatial structural characteristics of the HSI according to different attributes setting [39]. This methodol-
ogy has been applied for spatial feature extraction in many hyperspectral remote sensing tasks [39, 40].
Based on the obtained PCs, the EMAP are computed as follows:

EMAP = {AP (PC;),AP (PCy),...,AP (PCJ)}, (3)

where AP is a multi-level decomposition of an input image based on the attribute filter [41]. The attribute
filter performs a morphological transform on the connected components (i.e., regions of connected pixels
which are equal intensity spatially) according to a given criterion (e.g., area, volume). Specifically, the
attribute filter gets the attribute value on a connected component according to the criterion 7', and
compares the value against a threshold A to complete the image processing. If the value of a connected
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Step2: Constructing ensemble of HS-trees
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Figure 2 (Color online) Framework of the proposed algorithm.

component C; meets T (C;) > A, C; becomes unchanged, otherwise it will be incorporated into an adjacent
region. If the connected component is incorporated into the region with lower intensity, the process is
called attribute thinning operation, otherwise it is called attribute thickening operation. In this paper, the
area attribute a is adopted as the criterion and the corresponding threshold sequence is set to {1, A2, A3}
Let ¢; and ~; represent the attribute thickening and thinning operations [42], respectively. The AP for
each PC is a combination of a series of attribute thickening and thinning operations:

AP(PCy) = {45, (PCi), 6%, (PCi), ¢}, (PC:), PCi, 73, (PCi), 73, (PCi), 24, (PCi) } - (4)

Since Eq. (4) contains both the spectral information and the spatial information, the EMAP composed of
APs is used as the low-dimension feature map D € RV*7s. Additionally, each row vector « in D denotes
an instance in this paper.

3.2 Constructing ensemble of HS-trees

Based on the feature map D, the HS-tree is trained. We randomly select M instances from D to obtain a
subsample D, which is used as a training set. The D, as the root node, will be divided into two equal-sized
nodes at a randomly selected feature ¢, and the split point mid, is the mid-value of the feature ¢q. These
two nodes are called the left node D; and the right node D,., respectively. The training instances in D are
filtered through one of the two nodes depending on which side of the split point the training instances
lie in. This node building process is repeated until the size limit s; or the depth limit h; is reached. The
leaf nodes, resembling the data buckets, keep countering and increasing as the training instances fall into
them. When all the instances in D go through the tree structure, the size and depth of all the leaf nodes
will be recorded. These two results are used to calculate anomaly degree in detection phase. Figure 1(b)
is an example of the construction process of the HS-tree. The HS-tree construction process is repeated ¢
times using different subsamples to obtain an ensemble of HS-trees. In our paper, h; = log, M is set by
default, while other parameters are set according to the parameter analysis in Subsection 4.4.

3.3 Detecting anomalies with trained trees

In this step, each instance in D goes through each HS-tree from the root node to a leaf node. The
anomaly score of each instance is computed as (1). Let {T1,T%,...,T.} be the HS-trees using different
subsamples, and s; (x;) denote the anomaly score of a test instance x; € D which goes through the tree
T;. It is worth noting that an instance traversing through different HS-trees may have different anomaly
scores. Hence, the anomaly score of each instance is an average of anomaly scores deriving from different
HS-trees. The anomaly score S (a) is computed according to (2):

=Y s, o)
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Although the anomaly score S (x;) may already be used to identify anomalies, it is inappropriate for
practical application. The value range of S (x¢) is very large and is not normalized to (0, 1]. Furthermore,
the anomaly score S (x;) dose not consider how isolated an instance is from its local neighborhood, and
local anomalies may be masked by the background clusters of low density. Thus, we borrow the concept
of relative density and further bring forward an improved metric called the relative anomaly score r; ()
to measure the anomaly degree of an instance. It is a proportion of anomaly scores as follows:

s ()

. A el 7 6
ri (@) si(mg) x M’ (6)
where s; (x;) is the anomaly score of the immediate father node of the leaf node where the x; falls into.
M is a normalization term which is the size of the subsample |D|. The r;(-) is normalized to (0,1].
Similarly, the final anomaly score is an average of relative anomaly scores over ¢ HS-trees as follows:

Riw) =+ Y ri () @

When each instance in D traverses through all trees, the relative anomaly score R (x;) is calculated to
obtain the final detection map.

4 Experiments and discussion

4.1 Datasets

Four HSI datasets collected from different scenes are utilized to assess our method performance. These
datasets have different characteristics, including the data acquisition sensors, the materials in the back-
ground, and the shape and type of anomaly objects. The pseudo-color images and the ground truth maps
which mark the locations of anomaly pixels are shown and processed in Subsection 4.3.

The first dataset is the San Diego dataset, which was collected by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) from the San Diego airport area, CA, USA. The original size is 400 x 400, and a
part with the size of 100 x 100 in the top-left corner is chosen as the test image. The spectral resolution
is 10 nm and the spatial resolution is 3.5 m/pixel. It has 189 spectral bands ranging from 370 to
2510 nm, after removing water absorption, low SNR, and poor-quality bands. For this dataset, three
airplanes are taken as the anomaly objects, and the background mainly contains hangars, airstrips, and
meadows.

The second dataset is the HYDICE dataset, which was collected by the Hyperspectral Digital Imagery
Collection Experiment (HYDICE) over an urban area, CA, USA. The original size is 307 x 307, and a
part with the size of 80 x 100 is selected as the test image. It has 175 spectral bands ranging from 400
to 2500 nm, after removing water absorption, low SNR, and poor-quality bands. For this dataset, the
vehicles and buildings are taken as the anomaly objects, and the background mainly includes parking
lots, pools, roads and soils.

The third dataset is the Texas Coast dataset, which was collected by the AVIRIS sensor over an urban
area in the Texas Coast, TX, USA. The size of selected test image is 100 x 100. It has 207 spectral bands
ranging from 400 to 1350 nm, and the spatial resolution is 17.2 m/pixel. For this dataset, the houses are
taken as the anomaly objects and the background comprises highways, meadows, and vegetation. This
image is contaminated by the strip noises, therefore it is a challenge to recognize all anomalies accurately.

The fourth dataset is the Pavia dataset, which was collected by the Reflective Optics System Imaging
Spectrometer (ROSIS) over a city center in Pavia, Italy. The size of selected part is 108 x 120. It has 102
spectral bands ranging from 430 to 860 nm, and its spatial resolution is 1.3 m/pixel. The background
mainly includes a bridge and water, and the vehicles are generally taken as the anomaly objects.

4.2 Experimental setup

To assess the performance, the proposed HSTD method is in comparison with eight popular algorithms.
They are the RX detector [10], local RX (LRX) detector [10], cluster kernel RX detector (CKRX) [16], col-
laborative representation-based detector (CRD) [19], background joint sparse representation (BJSR) [18],
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low-rank and sparse matrix decomposition (LRaSMD) [20], and kernel isolation forest-based detector
(KIFD) [31]. Among them, the RX, LRX and CKRX are statistical modeling-based algorithms. The
CRD, BJSR and LRaSMD are representation-based methods. They employ collaborative representation,
sparse representation, and low-rank decomposition techniques, respectively. The KIFD is an up-to-date
detection algorithm based on iForest.

Two popular criteria are utilized to evaluate the detection performance quantitatively. One is the
receiver operating characteristic (ROC) curve which describes the relationship between the detection
probability (DP) and the false alarm rate (FAR). The DP and FAR are defined as

Pp Py

DprT, FApr, (8)
where Pp denotes the number of pixels which are identified correctly, Py denotes the total number
of anomaly pixels which are given in the ground truth, Pr denotes the number of pixels which are
misidentified as anomalies, and P denotes the total number of pixels in the image. Generally, the z-
coordinate is the FAR, and the y-coordinate is the DP. If the curve of a method is closer to the top-left
corner, it indicates the method has a better detection performance. The another is the area under the
ROC curve (AUC). A better detector has a larger AUC value.

Additionally, some critical parameters involved in the comparison experiments will be set. For the
HSTD method, there are four main parameters: the number of principal components ¢, the size of
subsample M, the size limit of leaf node s;, and the number of HS-trees c¢. According to the parameter
analysis in Subsection 4.4, the ¢ is set to 3 for the San Diego and Pavia datasets and is set to 6 for the
HYDICE and Texas Coast datasets. Since our HSTD method is insensitive to the changes of parameter
M, s;, and ¢, we set them to 5% of the total pixels, 2, 30, respectively. For the competitors, the optimal
parameters are set according to the corresponding papers. For the CKRX detector, the width of the
Gaussian radial basis function kernel is set to 40, and the number of clusters for four datasets is set to
150, 70, 100 and 70, respectively. As we all know, the detection performance of the LRX, CRD and
BJSR methods is closely related with the window size (the inner window Wi, and the outer window
Wout). Hence, the Wi, is changed from 3 to 19 and the W, is changed from 5 to 35, in order to select
the optimal window sizes. For the San Diego dataset, the (Wi,, Wout) is set to (17,35), (15,31) and
(15,31) for the LRX, BJSR, and CRD methods, respectively. For the HYDICE dataset, the (Wi, Wout)
is set to (3, 5) for the LRX, BJSR and CRD methods. For the Texas Coast dataset, the (Wi, Wout) is set
to (3,7), (3,21) and (3,21) for the LRX, BJSR, CRD methods. For the Pavia dataset, the (Wi,, Wout)
is set to (3,7), (3,21) and (3,21) for the LRX, BJSR, and CRD methods, respectively. For the LRaSMD
method, the rank value r is set to 5, and the cardinality k is set to 0.004 for four datasets. For the KIFD
method, the parameters ¢, ¢ and M are set to 300, 1000 and 3% x N (N is number of pixels in the HSI)
for four datasets, respectively.

4.3 Detection performance

For the San Diego dataset, the detection maps are shown in Figure 3. For the HSTD and KIFD methods,
the outlines and shapes of three airplanes are clear, although some background pixels are misidentified as
anomalies. The RX, CKRX and LRaSMD methods can locate the anomalies, but the shape information
is not clear. The LRX and CRD methods obtain low detection probability, and a small number of
anomalies are identified correctly. The BJSR method cannot suppress the influence of the background
effectively, and therefore there are more pixels misidentified than other methods. The ROC curves and
the AUC values are displayed in Figure 4. The AUC value of the HSTD method is 0.986, which is the
second highest in all competitors.

For the HYDICE dataset, the detection maps are displayed in Figure 5. Our proposed HSTD method
can detect all anomaly pixels. The RX, LRX, and CRD methods can restrain the background effectively,
but few pixels can be identified. The BJSR and CKRX methods are good at detecting anomalies, but
perform poorly in suppressing the background. The ROC curves and the AUC values are shown in
Figure 6. The AUC value of the HSTD method is 0.993, which is slightly smaller than the KIFD method.

For the Texas Coast dataset, the detection maps are shown in Figure 7. Obviously, all anomaly
targets are detected by the HSTD method. But the effect of background suppression is not satisfactory.
Compared with the KIFD method based on iForest, our HSTD method based on HS-tree detects nearly
all of the anomaly objects clearly. The ROC curves and the AUC values are shown in Figure 8. When
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Figure 3 (Color online) Detection maps obtained by different methods for the San Diego dataset. (a) Pseudo-color image;
(b) ground truth; (c) RX; (d) LRX; (e) CKRX; (f) CRD; (g) BJSR; (h) LRaSMD; (i) KIFD; (j) HSTD.
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Figure 4 (Color online) Detection accuracy evaluation for the San Diego dataset. (a) ROC curves; (b) AUC values.
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Figure 5 (Color online) Detection maps obtained by different methods for the HYDICE dataset. (a) Pseudo-color image;
(b) ground truth; (c) RX; (d) LRX; (e) CKRX; (f) CRD; (g) BJSR; (h) LRaSMD; (i) KIFD; (j) HSTD.

the false alarm rate is set to 1072, the detection probability is close to 1. The AUC value of the HSTD
method is 0.999, which is the highest in all algorithms.

For the Pavia dataset, the detection maps are displayed in Figure 9. we can find that the proposed
HSTD method can accurately locate and identify anomaly objects, although some background pixels,
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Figure 6 (Color online) Detection accuracy evaluation for the HYDICE dataset. (a) ROC curves; (b) AUC values.
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Figure 7 (Color online) Detection maps obtained by different methods for the Texas Coast dataset. (a) Pseudo-color image;
(b) ground truth; (c) RX; (d) LRX; (e) CKRX; (f) CRD; (g) BJSR; (h) LRaSMD; (i) KIFD; (j) HSTD.
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Figure 8 (Color online) Detection accuracy evaluation for the Texas Coast dataset. (a) ROC curves; (b) AUC values.

especially the edge of the bridge, are falsely detected as anomalies. The ROC curves and the AUC values
are shown in Figure 10. The AUC value of the HSTD method is 0.993.

After the experiments described above, it can be found that the tree-based methods, such as the KIFD
and HSTD, are adept at identifying the anomalies, but perform poorly in suppressing the background.
The main reason is as follows: the tree-based methods aims to split anomalies from background directly
without background profiling, and thus the background information is not explored adequately, leading
to high false alarm rate.

In addition, the time complexities are discussed. The HS-tree involves no distance calculation and
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Figure 9 (Color online) Detection maps obtained by different methods for the Pavia dataset. (a) Pseudo-color image; (b) ground
truth; (c) RX; (d) LRX; (e) CKRX; (f) CRD; (g) BJSR; (h) LRaSMD; (i) KIFD; (j) HSTD.
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Figure 10 (Color online) Detection accuracy evaluation for the Pavia dataset. (a) ROC curves; (b) AUC values.

Table 1 Computing time (in second) of different methods

Method San Diego HYDICE Texas Coast Pavia
RX 0.10 0.09 0.11 0.12
LRX 37.25 26.70 42.48 18.66
CKRX 4.32 1.92 0.93 2.31

CRD 3553.78 2194.31 3680.26 2694.65
BJSR 5.33 3.88 5.62 5.94
LRaSMD 31.10 20.20 37.43 13.93
KIFD 85.44 58.90 59.10 60.05
HSTD 1.03 0.86 0.95 1.04

is built using only a small subsample. Hence, the HS-tree is built very quickly. The construction of an
ensemble of ¢ HS-trees has time complexity O (h;M¢). The detection phase has time complexity O (h;Ne¢),
where NNV is the number of pixels in the image. Hence, the time complexity of the proposed method is
O (chi (M + N)). The computing time experiments are carried out on a machine with a 2.9-GHz CPU
and a 16-G memory. The computing time of different methods is shown in Table 1. It can be seen that
our method has less time cost than other methods except the RX detector.

4.4 Parameter analysis and discussion

The parameter analysis of the HSTD is discussed in this subsection. There are four main parameters: the
number of PCs ¢, the size of subsample M, the size limit of leaf node s;, and the number of HS-trees c.
Here, we use the AUC value to assess the effects of the parameters changes. The effects of the parameter
¢ on four datasets are shown in Figure 11(a). For the San Diego dataset, the AUC value decreases slightly
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Figure 11 (Color online) Effect of the four parameters on the detection performance. (a) The number of PCs ¢; (b) the size of
subsample M; (c) the size limit of leaf node s;; (d) the number of HS-trees c.

as the ¢ increases. For the Texas Coast and Pavia datasets, the AUC value changes slightly. For the
HYDICE dataset, the AUC value increases quickly at first, then reaches the peak at 6 and then decreases
slightly. The influences of parameter M on four datasets are shown in Figure 11(b). The parameter M
is set to 1%, 3%, 5%, 7%, 10%, 20%, 30%, 50% of the total pixels. It can be observed that the trends
of AUC values are irregular. For the HYDICE and Pavia datasets, the AUC values become larger as the
M increases. As to the San Diego and Texas Coast datasets, the AUC values become smaller slightly.
As shown in Figure 11(c), the AUC value is hardly influenced by the changes of the size limit s;. The
effects of the parameter ¢ are shown in Figure 11(d). The AUC values on four datasets increase at first,
then reach the peak at 30 and then keep stable. The ¢ = 30 is optimal parameter already, and further
increasing the c¢ is unnecessary, which may increase time complexities. To summarize, the proposed
method is insensitive to the most parameters, although the ¢ has a little influence on the performance.

5 Conclusion

In this paper, we introduce the HS-tree method from the theory of mass estimation into HAD and propose
a measure involving mass information and tree depth to assess the anomaly degree for each pixel. First,
our proposed method extracts the spatial-spectral features from the HSI using PCA and EMAP methods.
Then, a collection of HS trees is trained using different subsamples randomly selected from the feature
map. Finally, all instances in the feature map go through these trained HS trees and anomaly scores are
computed to form the final anomaly detection map. Our method is the first to apply HS-tree to HAD.
Furthermore, to take advantage of global and local information, we present a relative anomaly measure,
which assesses the anomaly degree locally. The experimental results show the competitiveness of the
proposed method in terms of accuracy and efficiency.

Since the HSTD algorithm splits anomalies from the background directly without background profiling,
the background information is not explored, leading to poor results of background suppression. Hence,
adding background information into our anomaly measure is our future focus.
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