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Dear editor,

In practical engineering, some certain transient and steady

performance, such as overshoot, adjustment time, and

steady-state error, need to meet specific requirements. In or-

der to ensure that the system state or tracking error remains

within a specific time-varying boundary, the prescribed per-

formance control (PPC) method is firstly proposed in [1].

Although the PPC method is widely investigated and used

at present, most of the existing methods need to derive the

transformation function many times [2, 3], which increases

the design complexity.

In this study, a new PPC design method based on the

sum of squares (SOS) technique is given to make the track-

ing error meet a desired time-varying constraint condition,

which has a simpler analysis process.

Problem formulation and main result. Consider a class

of nth order nonlinear systems given by the following form:

{

ẋi(t) = xi+1(t), 1 6 i 6 n− 1,

ẋn(t) = f(x(t)) + g(x)u(t) + d(t),
(1)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ R
n is the system

state vector. u(t) is the control input. y(t) = x1(t) is

the output. f(x(t)) is an unknown smooth nonlinear func-

tion, g(x(t)) is a nonzero nonlinear function, and d(t) is the

bounded disturbance.

The reference trajectory is given by the following model:

{

ẋr,i(t) = xr,i+1(t), 1 6 i 6 n− 1,

ẋr,n(t) = fr(xr(t)) + vr(t),
(2)

where xr(t) = [xr,1(t), xr,2(t), . . . , xr,n(t)] ∈ R
n is the state

vector of the reference model. yr(t) = xr,1(t) is the reference

output. fr(xr(t)) is an unknown smooth nonlinear function.

vr(t) is the bounded input, whose derivative is bounded.

The main objective of this study is to propose a new

controller design and analysis method so that y can track

yr with the desired transient and steady performance.

Define the tracking error er(t) as follows:

er(t) = x(t) − xr(t) = [er1, er2, . . . , ern]
T. (3)

The derivative of er(t) is obtained as

ėr(t) = Aer+Bg(x)u+BD(t)+B(f(x(t))−fr (xr(t))), (4)

where D(t) = d(t) − vr(t),

A =

(

a11 a12

a21 a22

)

, B =

(

b1

1

)

,

a11 ∈ R
n−1 is a zero vector, a12 ∈ R

(n−1)×(n−1) is an iden-

tity matrix, a21 = 0, a22 = aT11, and b1 = a11.

The control policy u is designed as follows:

u = g−1(x)(Kper + uf + ud + us + ub), (5)

where Kp = [r1, r2, . . . , rn−1, rn]. uf and ud are used to

compensate f(x(t)) − fr(xr(t)) and D(t), respectively. us

is a robust control input, which together with uf and ud

will be designed in the following part. ub is designed to

guarantee that the tracking error er1 meets the prescribed

performance, −Fb < er1 < Fb. The time-varying boundary

function Fb is given as

Fb = (F0 − F∞)e−ζt + F∞, (6)

where ζ > 0, F0 > 0, and F∞ > 0. It is assumed that

−F0 < er1(0) < F0, which means that there exists one pos-

itive constant ce such that F0 −|er1(0)| > ce. In this study,

it is assumed that ce 9 0.

Then, ub is designed as ub = −T (er1), where

T (er1) =
e2r1

Fb − er1
q(er1)−

e2r1
Fb + er1

(1− q(er1)) (7)

with

q(er1) =

{

1, er1 > 0,

0, er1 < 0.
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It can be found that Ter1 → +∞ and Ter1 → −∞ when

er1 → Fb and er1 → −Fb, respectively.

Substituting (5) into (4) , it is obtained that

ėr = Aer +BKper +Dqer +∆, (8)

where

Dq =

(

a11 0

dq a22

)

,

dq = −
er1

Fb − er1
q(er1) +

er1

Fb + er1
(1 − q(er1)),

∆ = B(uf + ud +D(t) + f(x) − fr(xr) + us).

Suppose that there exists one time instant tl > 0 such

that |er1(tl)| > Fb(tl). Then, define tβ as the first time in-

stant when −Fb < er1 < Fb is violated, which means that

0 < tβ 6 tl. Therefore, we have |er1(t)| < Fb(t) with t < tβ .

It can be found that er1(t) is continuous. Therefore, it is

known that lim
t→t

−

β

|er1(t)| = Fb(tβ ).

For t ∈ [0, tβ), Theorem 1 can be obtained based on the

SOS technique.

Theorem 1. For the dynamics ėr = Aer +BKper +Dqer,

if there exist a matrix Y , a symmetric positive definite ma-

trix Q and a positive constant κ1, such that the following

condition holds:
(

−Nbe1Qbe −He(Dp1Q) −Q(Fb − er1)

−Q(Fb − er1) κ1I

)

is SOS, (9)

(

−Nbe2Qbe −He(Dp2Q) −Q(Fb + er1)

−Q(Fb + er1) κ1I

)

is SOS, (10)

where

Nbe1 = (Fb − er1)
2, Nbe2 = (Fb + er1)

2,

Qbe = AQ+QAT + BY + Y TBT,

Dp1 =

(

a11 0

dp1 a22

)

, Dp2 =

(

a11 0

dp2 a22

)

,

dp1 = −(Fb − er1)er1, dp2 = (Fb + er1)er1,

then we have

PA+ATP+PBKp+KT
p BTP+PDq+DT

q P < −
1

κ1
I, (11)

where P = Q−1, Kp = Y Q−1.

Remark 1. The SOS conditions (9) and (10) are given in

Theorem 1 to solve Kp. Fb acts as an independent variable

just like er1, which means that we need to declare the inde-

pendent variables er1 and Fb based on the SOS technique.

Based on the method given in [4–6], the neural net-

work approximation technology and the disturbance ob-

server method can be used to estimate f(x(t)) − fr(xr(t))

and D(t) with bounded estimation errors. The estimation

of unknown nonlinear function is defined as Ŵaσ(V x̄). The

estimation of disturbance is defined as D̂(t).

The control input uf , ud and us are designed as follows:

uf = −ŴT
a σ(V x̄), ud = −D̂(t),

us = −νssgn(e
T
r PB),

(12)

where P = Q−1, Q is obtained in Theorem 1, and νs is a

positive constant.

Then, Theorem 2 is obtained.

Theorem 2. For the tracking error dynamics (8), the con-

trol policy (5) can guarantee that limt→∞ ‖er(t)‖ = 0 with

the desired transient and steady tracking error constraint

−Fb < er1 < Fb.

Proof. Choose Vr = eTr Per as the Lyapunov function. If

νs is large enough, we can easily prove the boundedness of

tracking error er for t ∈ [0, tβ). Therefore, it is known that

us and ∆ are bounded.

Define the filter tracking error as ef (t) = [Υ, 1]er(t),

where Υ = [Z1, Z2, . . . , Zn−1]. Since er is bounded and

continuous, it is known that er1, ef and ėf are bounded for

t ∈ [0, tβ). Choose one appropriate positive constant mz to

ensure that Zi−1 = −mzZi−ri and Zn−1 = −mz−rn hold

for 2 6 i 6 n− 1.

Then, it is obtained that ėf (t) = −mzef (t) + ∆ef ,

where ∆ef = (mzZ1 + r1)er1 − Ter1 + ∆. The dynam-

ics ėf (t) = −mzef (t) is input-to-state stable. If er1 → −Fb

or er1 → Fb, it is known that Ter1 → −∞ or Ter1 → ∞

based on (7). Then, we have ėf → −∞ or ėf → ∞, which

is in contradiction with the boundedness of ėf . Therefore,

the tracking error |er1(t)| cannot approach the boundary Fb

for t ∈ [0, tβ), which means that tl does not exist [7].

Since er is uniformly continuous, the conclusion

limt→∞ ‖er(t)‖ = 0 can be obtained based on Barbalat

Lemma. Moreover, the tracking error constraint −Fb <

er1 < Fb can be guaranteed by the control policy (5).

Conclusion. For a class of uncertain nonlinear systems, a

new adaptive PPC method is proposed in this study. Based

on the SOS technique, one new transformation function and

the corresponding analysis method are given to guarantee

that the output tracking error remains within a prescribed

time-varying boundary.
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