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Appendix A Notations

Throughout this paper, the security parameter is denoted by n ∈ N. We use p.p.t. for expressing ”probabilistic polynomial-

time”. Let [N ] denote the set {1, 2, · · · , N} for N ∈ N, and [A] all possible outputs of algorithm A. Given two sets A and

B, we denote {a | a ∈ A, a /∈ B} by A\B, or by A−B if B ⊆ A, and we denote the cardinality of A by |A|.
By convention, vectors are in column form and are denoted by bold lower-case letters, e.g., x; matrices are written as

bold capital letters, e.g., X, and the ith column of X is denoted by xi. The norm of a matrix is the norm (implicitly

the Euclidean `2 norm) of its longest column: ‖X‖=maxi‖xi‖. Standard big-O notation is used to classify the growth

of functions. Denote f(n) = Õ(g(n)) if f(n) = O(g(n) · logc g(n)) for some constant c, and denote f(n) = Θ(g(n)) if

f(n) = O(g(n)) and g(n) = O(f(n)). We say a function f(n) is negligible in n, denoted by negl(n), if f(n) = o(n−c) for

every constant c, and a probability is called overwhelming if it is 1− negl(n).

Appendix B Some background on lattices

First, we recall the definition of lattice:

Definition 1. A k-dimensional lattice of rank m 6 k is defined as

Λ(B) = {B · c | c ∈ Zm},

where B ∈ Rk×m consists of m linearly independent columns is called the basis.

For A ∈ Zm×kq , we have a special class of k-dimensional lattices:

Λ⊥(A) = {x ∈ Zk | A · x = 0 (mod q)}.

Definition 2. Given a lattice Λ of rank m, the ith (1 6 i 6 m) successive minimum λi(Λ) is defined as the smallest r > 0

such that Λ contains at least i linearly independent lattice vectors of norm at most r.

Using this definition, we describe a standard worst-case approximation problem on lattices, namely the Shortest Inde-

pendent Vectors Problem (SIVP), with the approximation factor γ = γ(k) being some function of the dimension.

Definition 3. An instance of SIVPγ is a full-rank basis B of a k-dimensional lattice Λ = Λ(B), and it asks to output a

set of k linearly independent lattice vectors S ⊆ Λ (view S as the set of its columns) such that ‖S‖6 γ · λk(Λ).

Two average-case lattice problems are widely used in cryptographic designs, namely the homogeneous/Inhomogeneous

Small Integer Solution (SIS/ISIS) problem [1] and the Learning with Error (LWE) problem [2], with hardness given by

worst-case to average-case reductions [2, 3] from SIVP.

Definition 4. Let χ be a probability distribution over Z. For s ∈ Zkq , let As,χ denote the distribution obtained by

sampling a ← Zkq and e ← χ, and outputting (a,aT · s + e) ∈ Zkq × Zq . LWEk,m,q,χ asks to distinguish m samples chosen

according to As,χ (for some s← Zkq ) and m samples chosen according to the uniform distribution on Zkq × Zq .

Definition 5. Given a uniformly random matrix A ∈ Zm×kq , as well as a uniformly random vector u ∈ Zmq ,

1. SISm,k,q,β asks to find a non-zero vector x ∈ Λ⊥(A) such that ‖x‖6 β;

2. ISISm,k,q,β asks to find a vector x′ ∈ {x ∈ Zk | A · x = u (mod q)} such that ‖x′‖6 β.
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Appendix C The model of VLR-GS

We follow the work of Boneh and Shacham [4]. Formally, VLR-GS consists of three p.p.t. algorithms:

1. GKg(1n, 1N ) : On input the security parameter and the group size, this algorithm outputs a group public key gpk,

and revocation tokens grt := {grt[i]}i∈[N ] as well as signing keys gsk := {gsk[i]}i∈[N ] of all group members.

2. GSig(gpk, gsk[i],m) : The signing algorithm takes as input the group public key, the signing key of some member

i ∈ [N ] and a message m, and outputs a signature σ.

3. GVf(gpk,RL,m, σ) : The verification algorithm takes as input the group public key, a public revocation list RL ⊆ grt
and a candidate message-signature pair (m,σ), and it outputs a bit b; if b = 0, it means either (m,σ) is not valid or

its signer has already been revoked.

Definition 6. A VLR-GS scheme is correct, if for any n,N ∈ N, (gpk, grt, gsk) ∈ [GKg(1n, 1N )], i ∈ [N ] and any message

m, it holds except with negligible probability that:

GVf(gpk,RL,m,GSig(gpk, gsk[i],m)) = 1 ⇐⇒ grt[i] /∈ RL.

Implicit Tracing. Note that no open algorithm is explicitly given in the original syntax of VLR-GS. This is because

its verification algorithm can be used in the following manner for tracing purposes, assuming the possession of grt: given a

valid message-signature pair (m,σ), run GVf(gpk, grt[i],m, σ) for i ∈ [N ] and output the first index for which the verification

algorithm says 0; otherwise, output a symbol ⊥ indicating a failed trace. It can be easily checked if a VLR-GS scheme is

correct, this algorithm will always output the correct signer identity for honestly generated pairs.

Anonymity. Basically, two versions of anonymity have been defined for VLR-GS, namely full-anonymity and insider-

anonymity/selfless-anonymity. As indicated by the name, they differ in whether the adversary has access to the signing keys

of two challenge identities, as shown in Fig. C1 and Fig. C2 respectively. The following oracles are used in the experiments:

1. GSig(·, ·): on queries (m, i ∈ [N ]), this oracle returns σ ← GSig(gpk, gsk[i],m);

2. CorruptK(·): a set CK is initialized as ∅; on queries i ∈ [N ], this oracle returns the signing key gsk[i] of member i,

and add i into CK;

3. CorruptT(·): a set CT is initialized as ∅; on queries i ∈ [N ], this oracle returns the revocation token grt[i] of member

i, and add i into CT .

Definition 7. A VLR-GS scheme is called fully anonymous, if for any p.p.t. adversary A, the following advantage function

is negligible:

advfaA,GS(n) = |Pr[1← Exptfa,0A,GS(1n, N)]− Pr[1← Exptfa,1A,GS(1n, N)]|.
Definition 8. A VLR-GS scheme holds insider-anonymity, if for any p.p.t. adversary A, the following advantage function

is negligible:

adviaA,GS(n) = |Pr[1← Exptia,0A,GS(1n, N)]− Pr[1← Exptia,1A,GS(1n, N)]|.
For insider-anonymous VLR-GS schemes, the revocation token of a member can be easily derived from its signing key,

and this is actually why the adversary cannot be given the signing keys of challenge identities. This feature is admirable in

terms of storage, and it potentially eliminates the need for a trusted revocation authority.

Exptfa,bA,GS(1n, N)

1 : (gpk, grt, gsk)← GKg(1n, 1N );

2 : (i0, i1,m)← ACorruptT(·)(gpk, gsk);

3 : σ ← GSig(gpk, gsk[ib],m);

4 : b′ ← A(σ);
5 : return b′ if :

6 : CT
⋂
{i0, i1} = ∅;

7 : else return 0.

Figure C1 Full-anonymity for VLR-GS.

Exptia,bA,GS(1n, N)

1 : (gpk, grt, gsk)← GKg(1n, 1N );

2 : (i0, i1,m)← AGSig(·,·),CorruptK(·),CorruptT(·)(gpk);

3 : σ ← GSig(gpk, gsk[ib],m);

4 : b′ ← AGSig(·,·)(σ);

5 : return b′ if :

6 : CT
⋂
{i0, i1} = ∅, CK

⋂
{i0, i1} = ∅;

7 : else return 0.

Figure C2 Insider-anonymity for VLR-GS.

Traceability. As shown in Fig. C3, the adversary aims to produce a valid message-signature pair with some revocation

list, such that the specified tracing algorithm either fails or outputs someone not in the adversarial coalition. As a special

case, traceability implies the basic requirement of unforgeability [5] for digital signature when CK = ∅.
Definition 9. A VLR-GS scheme is traceable, if for any p.p.t. adversary A, the following advantage function is negligible:

advtrA,GS(n) = Pr[1← ExpttrA,GS(1n, N)].
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ExpttrA,GS(1n, N)

1 : (gpk, grt, gsk)← GKg(1n, 1N );

2 : (m,σ,RL)← AGSig(·,·),CorruptK(·)(gpk, grt);

3 : return 1 if :

4 : GVf(gpk,RL,m, σ) = 1,

5 : (m,σ) traces to someone out of CK\RL or the tracing fails,

6 : GSig(m, i) was never queried for i /∈ CK;
7 : else return 0.

Figure C3 Traceability for VLR-GS.

Appendix D The model of AE

Same as regular PKE, an AE scheme consists of three p.p.t. algorithms:

1. Kg(1n) : On input the security parameter, the key-generation algorithm outputs a pair of public/secret keys (pk, sk).

2. Enc(pk,m) : The encryption algorithm takes as input the public key as well as some plaintext, and it outputs a

ciphertext c.

3. Dec(sk, c) : The decryption algorithm takes as input the secret key and some ciphertext, and it outputs a plaintext

m or a symbol ⊥ indicating a decryption failure.

Definition 10. An AE scheme is correct, if for any n ∈ N, (pk, sk) ∈ [Kg(1n)], and any plaintext m, it holds with

overwhelming probability that:

Dec(sk,Enc(pk,m)) = m.

Exptind,bA,AE(1n)

1 : (pk, sk)← Kg(1n);

2 : (m0,m1)← A(pk);
3 : c← Enc(pk,mb);

4 : b′ ← A(c);
5 : return b′.

Figure D1 Indistinguishability for AE.

Exptkp,bA,AE(1n)

1 : (pk0, sk0)← Kg(1n), (pk1, sk1)← Kg(1n);

2 : m← A(pk0, pk1);
3 : c← Enc(pkb,m);

4 : b′ ← A(c);
5 : return b′.

Figure D2 Key-privacy for AE.

Security Properties. Besides the basic requirement of indistinguishability [6] for regular PKE (see Fig. D1), AE

additionally holds key-privacy [7], which is formalized by the indistinguishability experiment with roles of public keys and

plaintexts reversed (see Fig. D2). Intuitively, the ciphertext generated by AE not only conceals the original plaintext, but

also hides the public key under which it was encrypted.

Definition 11. An AE scheme is called secure, if both the following advantage functions are negligible for any p.p.t.

adversary A:

advindA,AE(n) = |Pr[1← Exptind,0A,AE(1n)]− Pr[1← Exptind,1A,AE(1n)]|;

advkpA,AE(n) = |Pr[1← Exptkp,0A,AE(1n)]− Pr[1← Exptkp,1A,AE(1n)]|.

Appendix E The (refined) model of VLR-HGS

We refer readers to Table E1 for symbols used in depicting VLR-HGS. In syntax, a VLR-HGS scheme consists of three

p.p.t. algorithms:

1. HKg(1n, T ) : On input the security parameter and some tree depicting the group structure, this algorithm outputs

a tuple of maps (hpk, hsk, hrt). The former two maps associate each α ∈ T with a public value hpk(α) and a secret

value hsk(α) respectively, while the map hrt specifies the revocation token hrt(α) for signer α ∈ L(T ).

2. HSig(hpk, hsk(α),m) : The signing algorithm takes as input the public map, the secret key of some signer and a

message; it outputs a signature σ.

3. HVf(hpk,RL,m, σ) : The verification algorithm takes as input a public map, a public revocation listRL ⊆ {hrt(α)}α∈L(T )

and a candidate message-signature pair; it outputs a bit b, and if b = 0, it means either (m,σ) is invalid or its signer

has been revoked.
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Table E1 Symbols used in depicting VLR-HGS.

Symbol Description

T a balanced tree with size polynomial in n.

δ the depth of T .

ρ the root of T .

L(T ) all signer/leaf nodes in T .

Sα signer/leaf node with index α.

Mβ the manager/inner node with β as indexes of all its direct children.

child(β) the index set of all direct children of manager β.

T i all nodes at depth i ∈ {0, 1, · · · , δ}; specifically, T δ = L(T ).

Co{α(0),α(1)}
all nodes from some two leaves α(0), α(1) ∈ L(T )

to their first common ancestor, with α(0), α(1) excluded.

Remark 1. Our description is slightly different from the original syntax [8]. Specifically, now the domain of hrt consists

of only signer nodes. In fact, either VLR-GS or VLR-HGS is devoted to solve the issue of revoking the signing capability

rather than the tracing capability, thus it is syntactically unnecessary to generate tokens for managers. Hou et al. [8] chose

to do so because those tokens would be inputs to their tracing algorithm. However, such purpose is not essential to our

construction, since more efficient tracing strategies are employed.

On finding more efficient tracing algorithm. For general discussions, we denote the tracing algorithm

explicitly by HOpen, and separate the original definition for a correct HGS [8] into two aspects, namely correct verification

(Def. 12) and correct tracing (Def. 13). In [8], the verification algorithm is employed to do the tracing, thus the correctness

of the latter is inherited from that of the former (in their syntax). However, an efficiency concern is inherent to their

method, since the tracing cost of a manager is linear to its children number. Similar issue has been well solved in the

context of VLR-GS, e.g., in a generic sense [9], and our construction presents a more efficient tracing for VLR-HGS.

Definition 12. Given a VLR-HGS scheme, we say its verification algorithm is correct, if for any n, T , α ∈ L(T ), m and

(hpk, hsk, hrt) ∈ [HKg(1n, T )], it holds except with negligible probability that:

HVf(hpk,RL,m,HSig(hpk, hsk(α),m)) = 1 ⇐⇒ hrt(α) /∈ RL.

Definition 13. Given a VLR-HGS scheme, its tracing algorithm HOpen is correct, if for any n, T , α ∈ L(T ), m and

(hpk, hsk, hrt) ∈ [HKg(1n, T )], let σ = HSig(hpk, hsk(α),m) and let β0 := ρ 3 β1 3 · · · 3 βδ := α be the path from the

root to the signer, and it holds with overwhelming probability that:

HOpen(hpk, hsk(βi),m, σ) = βi+1, for all i = 0, 1, · · · , δ − 1.

Anonymity. This property preserves the identity privacy of honest signers. Full-anonymity [8] for VLR-HGS is depicted

in Fig. E1, where the adversary is given full signing keys. In this paper, we additionally define insider-anonymity for VLR-

HGS (Fig. E2), which by contrast denies A the signing keys of two challenge identities. Comparisons between these two

versions of anonymity are similar to what we have argued in the context of VLR-GS. The following oracles are used in the

experiments:

1. HSig(·, ·): on queries (m,α ∈ L(T )), return σ ← HSig(hpk, hsk(α),m);

2. HCorruptK(·): a set HCK is initialized as ∅; on queries α ∈ T , return the secret key hsk(α), and add α into HCK;

3. HCorruptT(·): a set HCT is initialized as ∅; on queries α ∈ L(T ), return the revocation token hrt(α), and add α

into HCT .

To exclude trivial cases, hrt(α(0)) and hrt(α(1)) should never be given to A assuming the correctness of verification; besides,

A cannot obtain hsk(α) with any α ∈ Co{α(0),α(1)} if the tracing algorithm is correct. Note that the adversary has formal

access to HCorruptK(·) and HCorruptT(·) only in challenge phase, because once the challenge identities are decided on,

unrestricted secret keys and revocation tokens can be obtained at once by the adversary.

Definition 14. A VLR-HGS scheme is fully anonymous, if for any p.p.t. adversary A, the following advantage function

is negligible:

advfaA,HGS(n) = |Pr[1← Exptfa,0A,HGS(1n, T )]− Pr[1← Exptfa,1A,HGS(1n, T )]|.

Definition 15. A VLR-HGS scheme is insider-anonymous, if for any p.p.t. adversary A, the following advantage function

is negligible:

adviaA,HGS(n) = |Pr[1← Exptia,0A,HGS(1n, T )]− Pr[1← Exptia,1A,HGS(1n, T )]|.
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Exptfa,bA,HGS(1n, T )

1 : (hpk, hsk, hrt)← HKg(1n, T );

2 : (α(0), α(1),m)← AHCorruptT(·),HCorruptK(·)({hsk(α)}α∈L(T ), hpk);

3 : σ ← HSig(hpk, hsk(α(b)),m);

4 : b′ ← A(σ);
5 : return b′ if :

6 : HCT
⋂
{α(0), α(1)} = ∅,

7 : HCK
⋂

Co{α(0),α(1)} = ∅;

8 : else return 0.

Figure E1 Full-anonymity for VLR-HGS.

Exptia,bA,HGS(1n, T )

1 : (hpk, hsk, hrt)← HKg(1n, T );

2 : (α(0), α(1),m)← AHCorruptT(·),HCorruptK(·),HSig(·,·)(hpk);

3 : σ ← HSig(hpk, hsk(α(b)),m);

4 : b′ ← AHSig(·,·)(σ);

5 : return b′ if :

6 : (HCT
⋃
HCK)

⋂
{α(0), α(1)} = ∅,

7 : HCK
⋂

Co{α(0),α(1)} = ∅;

8 : else return 0.

Figure E2 Insider-anonymity for VLR-HGS.
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ExpttrA,HGS(1n, T )

1 : (hpk, hsk, hrt)← HKg(1n, T );

2 : (m,σ,RL)← AHSig(·,·),HCorruptK(·)(hpk, {hsk(β)}β∈(T −L(T )), hrt);

3 : return 1 if :

4 : HVf(hpk,RL,m, σ) = 1,

5 : [HOpen(hpk, hsk(T δ−1),m, σ)] = {⊥}, or

6 : [HOpen(hpk, hsk(T δ−1),m, σ)]
⋂

(L(T )−HCK\RL) 6= ∅,

7 : HSig(m,α) was never queried for α /∈ HCK;
8 : else return 0.

Figure E3 Traceability for VLR-HGS.

Traceability. This property depicts the robustness of a VLR-HGS system in terms of tracing. Given full revocation

tokens and the secret keys of all managers, the adversary can corrupt signers by querying HCorruptK(·), and obtain

signatures of the honest by querying HSig(·, ·). A success will be claimed, if A manages to output a valid message-

signature pair (m,σ) with some revocation list RL, such that all managers at the penultimate depth fail to trace, or there

exists a manager who opens this to someone out of the adversarial coalition.

For a traceable VLR-HGS scheme with correct tracing algorithm, a valid message-signature pair cannot be (with over-

whelming probability) honestly generated if the hierarchical tracing fails. In that case, misbehaviors will always be found

out by a joint work of all managers at the penultimate depth (whole-depth tracing in [8]) and nobody will be framed. Such

mechanisms reflect a detect-then-punish paradigm [10], and in practice, the whole-depth tracing would merely happen

considering the harsh punishments of misbehaving. On the other hand, if the hierarchical tracing does not fail, it will

always locate the actual generator not revoked. Besides the security it offers, such traceability definition is quite attractive

to us since it facilitates our construction as we will see.

Definition 16. An VLR-HGS scheme is traceable, if for any p.p.t. adversary A, the following advantage function is

negligible:

advtrA,HGS(n) = Pr[1← ExpttrA,HGS(1n, T )].

Appendix F Proof of verification correctness

Proof. Let (m,σ := (c0, c1, · · · , cδ−2, σ
′)) be a message-signature pair honestly generated by some signer α. By con-

struction, HVf(hpk,RL,m, σ) = 1 iff. GVf(gpk,RL,m, σ′) = 1. From the correctness of VLR-GS, GVf(gpk,RL,m, σ′) = 1

⇐⇒ grt[α] /∈ RL with overwhelming probability. Thus, HVf(hpk,RL,m, σ) = 1 ⇐⇒ hrt(α) /∈ RL with overwhelming

probability.

Appendix G Proof of tracing correctness

Proof. Let (m,σ := (c0, c1, · · · , cδ−2, σ
′)) be a message-signature pair honestly generated by some signer α, and let

β0 := ρ 3 β1 3 · · · 3 βδ := α denote the path from the root to the signer. For managers βi, i = 0, 1, · · · , δ − 2, it

holds with overwhelming probability that Dec(hsk(βi), ci) = βi+1, assuming the correctness of AE; for the manager βδ−1,

first, grt[α] ∈ hsk(βδ−1) by our construction, and it holds with overwhelming probability that GVf(gpk, {grt[α′]},m, σ′) =

0 ⇐⇒ grt[α′] = grt[α] ⇐⇒ α′ = α by the correctness of VLR-GS. Taking both into consideration, it follows easily the

correctness of our tracing algorithm since the tree depth δ is polynomially bounded in n.

Appendix H Proof of anonymity

Proof. Let A denote a p.p.t. adversary against our construction in terms of insider-anonymity. Let α(0) ∈ α(0)
1 ∈ · · · ∈

α
(0)
t = α

(1)
t 3 α(1)

t−1 3 · · · 3 α(1) be nodes from two challenge identities α(0), α(1) to their first common ancestor α
(0)
t = α

(1)
t ,

1 6 t 6 δ. We consider a sequence of experiments defined as follows:

1. Expt0: defined exactly by adapting our construction to the experiment Exptia,0A,HGS(1n, T ) as shown in Fig. E2;

2. Expt1: the same as Expt0 except that the (δ − 1)st component in the outputted signature σ := (c0, c1, · · · , cδ−2, σ
′)

is generated by: cδ−2 ← Enc(pk
α
(1)
1

, α(1));

· · ·

i+ 1. Expti: the same as Expti−1 except that the (δ − i)th component in the signature is generated by: cδ−i−1 ←
Enc(pk

α
(1)
i

, α
(1)
i−1);

· · ·
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t+ 1. Exptt: the same as Exptt−1 except that the (δ − t)th component in the signature is generated by: cδ−t−1 ←
Enc(pk

α
(1)
t

, α
(1)
t−1);

t+ 2. Exptt+1: defined exactly by adapting our construction to the experiment Exptia,1A,HGS(1n, T ) as shown in Fig. E2.

By Def. 15 and the Triangular Inequality, we have:

adviaA,HGS(n) =|Pr[Expt0 = 1]− Pr[Exptt+1 = 1]|

=|Pr[Expt0 = 1]− Pr[Expt1 = 1] + Pr[Expt1 = 1]− Pr[Expt2 = 1]

+ · · ·+ Pr[Exptt = 1]− Pr[Exptt+1 = 1]|
6|Pr[Expt0 = 1]− Pr[Expt1 = 1]|+ |Pr[Expt1 = 1]− Pr[Expt2 = 1]|

+ · · ·+ |Pr[Exptt = 1]− Pr[Exptt+1 = 1]|.

Claim 1: For i = 0, 1, · · · , t− 1, |Pr[Expti = 1]− Pr[Expti+1 = 1]| 6 negli(n).

Except for cδ−i−2 ← Enc(pk
α
(0)
i+1

, α
(0)
i ) in Expti and cδ−i−2 ← Enc(pk

α
(1)
i+1

, α
(1)
i ) in Expti+1, the distributions of

σ := (c0, c1, · · · , cδ−2, σ
′) are identical. Since A cannot obtain hsk(α) for α ∈ Co{α(0),α(1)}, A has neither sk

α
(0)
i+1

nor

sk
α
(1)
i+1

. From the indistinguishability and key privacy of AE, we have:

|Pr[A(cδ−i−2) = 1 : cδ−i−2 ← Enc(pk
α
(0)
i+1

, α
(0)
i )]

− Pr[A(cδ−i−2) = 1 : cδ−i−2 ← Enc(pk
α
(0)
i+1

, α
(1)
i )]| = negl

(1)
i (n).

|Pr[A(cδ−i−2) = 1 : cδ−i−2 ← Enc(pk
α
(0)
i+1

, α
(1)
i )]

− Pr[A(cδ−i−2) = 1 : cδ−i−2 ← Enc(pk
α
(1)
i+1

, α
(1)
i )]| = negl

(2)
i (n).

Considering that each component is independently generated, we have:

|Pr[Expti = 1]− Pr[Expti+1 = 1]|

=|Pr[A(cδ−i−2) = 1 : cδ−i−2 ← Enc(pk
α
(0)
i+1

, α
(0)
i )]

− Pr[A(cδ−i−2) = 1 : cδ−i−2 ← Enc(pk
α
(1)
i+1

, α
(1)
i )]|

6|Pr[A(cδ−i−2) = 1 : cδ−i−2 ← Enc(pk
α
(0)
i+1

, α
(0)
i )]

− Pr[A(cδ−i−2) = 1 : cδ−i−2 ← Enc(pk
α
(0)
i+1

, α
(1)
i )]|

+ |Pr[A(cδ−i−2) = 1 : cδ−i−2 ← Enc(pk
α
(0)
i+1

, α
(1)
i )]

− Pr[A(cδ−i−2) = 1 : cδ−i−2 ← Enc(pk
α
(1)
i+1

, α
(1)
i )]|

=negli(n) := negl
(1)
i (n) + negl

(2)
i (n).

Claim 2: |Pr[Exptt = 1]− Pr[Exptt+1 = 1]| 6 neglt(n).

Similarly, two distributions of σ := (c0, c1, · · · , cδ−2, σ
′) are identical, except that σ′ ← GSig(gpk, hsk(α(0)),m) in Exptt

and σ′ ← GSig(gpk, hsk(α(1)),m) in Exptt+1. As requested, A cannot obtain hsk(α) = gsk[α] or hrt(α) = grt[α] with

α ∈ {α(0), α(1)}. The oracle HSig can be perfectly simulated by the oracle GSig accompanied with public key encryption,

then by the insider anonymity of VLR-GS and the independence of all components, we have:

|Pr[Exptt = 1]− Pr[Exptt+1 = 1]|

=|Pr[A(σ′) = 1 : σ′ ← GSig(gpk, hsk(α(0)),m)]

− Pr[A(σ′) = 1 : σ′ ← GSig(gpk, hsk(α(1)),m)]| = neglt(n).

Finally, we have:

adviaA,HGS(n) 6 negl(n) :=
t∑
i=0

negli(n).

Another sequence of experiments (Expt′0,Expt′1, · · · ,Expt′t+1) can be similarly defined to prove full-anonymity, by

replacing the experiment Exptia,bA,HGS(1n, T ) with Exptfa,bA,HGS(1n, T ) as shown in Fig. E1. By exactly the same proof,

|Pr[Expt′i = 1]−Pr[Expt′i+1 = 1]| 6 negl′i(n) for i = 0, 1, · · · , t−1, and by essentially the same proof without discussions

on the oracle HSig, |Pr[Expt′t = 1]− Pr[Expt′t+1 = 1]| 6 negl′t(n). Therefore,
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advfaA,HGS(n) 6 negl′(n) :=

t∑
i=0

negl′i(n).

Appendix I Proof of traceability

Proof. Let A be a p.p.t. adversary against our construction in terms of traceability. For contradiction, assume A succeeds

in ExpttrA,HGS(1n, T ) in Fig. E3, namely A manages to output an (m,σ := (c0, c1, · · · , cδ−2, σ
′), RL) such that:

1. GVf(gpk,RL,m, σ′) = 1;

2. GVf(gpk, {grt[α]},m, σ′) = 1 for all α ∈ L(T ), or there exists some α /∈ (HCK\RL) such that GVf(gpk, {grt[α]},m, σ′) =

0;

3. HSig(m,α) was never queried for α /∈ HCK.

Besides, the oracle HSig can be perfectly simulated by the oracle GSig accompanied with some public key encryptions.

Thus, A will also succeed in the traceability experiment for VLR-GS in Fig. C3. Then we have:

Pr[1← ExpttrA,HGS(1n, T )] 6 Pr[1← ExpttrA,GS(1n, |L(T )|)] = negl(n).
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