
SCIENCE CHINA
Information Sciences

. Supplementary File .

Efficient Middlebox Scaling for Virtualized Intrusion
Prevention Systems in Software-Defined Networks

Junchi XING1, Chunming WU2,1*, Haifeng ZHOU2,1, Qiumei CHENG1,
Danrui YU1 & Mayra MACAS1

1College of Computer Science, Zhejiang University, Hangzhou 310027, China;
2Zhejiang Lab, Hangzhou 311100, China

The supplementary file has the following organization. Appendix A states the problem of this paper. Appendix B

provides the design of the Middlebox Scaler module of ESBox. Appendix C describe the design of the Flow Distributor

module of ESBox. Appendix D evaluates the performance of ESBox. And Appendix E discusses the related work.

Appendix A Problem Statement

Software-based middlebox (e.g. virtual machine (VM), container) transforms the implementation of network functions and

has the capability of being scaled (horizontally or vertically) to make it adjust to the input, variable workload. Therefore,

it can be used as the agent node of VIPS for handling traffic volumes that vary frequently and significantly [4,5]. Moreover,

the SDN network paradigm can help to easily split and redistribute traffic to the scaled middleboxes rather than using

traditional hardware (e.g. route) [7,15]. However, given these benefits, a problem arises: how to achieve an efficient scaling

of middleboxes for VIPS, which is studied in this paper. An efficient scaling consists of two factors as follows.

First, the middleboxes should be synchronously scaled according to traffic volumes and rigorous IPS performance re-

quirements, with high resource usage. It is important to elaborately decide the number of middleboxes to be scaled out/in

to make the middleboxes just meet the current traffic volumes IPS performance requirements, simultaneously. A careless

scaling may provision too many middleboxes that run at low load or even idly. This leads to low resource usage, which con-

flicts with the important goal of resource optimization [16]. Otherwise, a careless scaling may under-provision middleboxes,

and traffic will congest the middleboxes and overload them, which results in failing to fulfill the performance requirements

of VIPS. For example, overloaded middleboxes typically cause high packet loss rate, which may omit malicious packets and

leave potentially attacks undetected [8]. Another example is that overloaded middleboxes need to buffer the in-flight traffic,

which increases the processing time of VIPS.

Second, the traffic should be distributed to the scaled middleboxes while reducing the overhead of flow detection state

sharing [14] and achieving load balance [15]. Assume that the middleboxes implement a per-flow level intrusion prevention

(e.g., Snort, Suricata 1)) for VIPS, the state of each flow must be completely maintained by a middlebox. However, in

some cases, flow has to be divided into some parts and distributed to multiple middleboxes, its flow detection state must

be shared by the middleboxes for semantic consistency [9, 10]. In practice, the sharing of flow detection state is typically

implemented based on the shared data store such as RAMCloud [17], Algo-logic 2), which incurs overheads for storage and

communication with the data store. Therefore, the traffic should be distributed to the middleboxes in the manner of avoiding

flow division, thus minimizing flow detection state sharing. Moreover, ensuring load balance for flows to middleboxes while

traffic distribution can improve the efficiency and reliability of the network.

Appendix B Middlebox Scaler

The middlebox scaler (MS) module scales out/in fewest middleboxes to match the time-varying traffic volumes during

runtime while guaranteeing rigorous IPS performance requirements. In this subsection, we describe the method to compute

the minimal number of middleboxes to be scaled given traffic volumes and IPS performance requirements in detail. In

addition, we present how MS can scale the middleboxes according to the computed results.

As shown in Figure B1, the traffic processing of ESBox is modeled as several M/M/1/K queueing systems [18].

M/M/1/K queueing system refers to a non-trivial queueing system. Specifically, the first ’M ’ indicates the customers

*Corresponding author (email: wuchunming@zju.edu.cn)
1) Suricata: https://suricata-ids.org/
2) Algo-logic systems: https://algo-logic.com/
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Figure B1 Modeling traffic processing of ESBox.

arrive at the queueing system according to a Poisson process, the second ’M ’ indicates the service time for customers are

exponentially distributed, ’1’ indicates the number of server in the queueing system is 1, and ’K’ indicates the queueing

system has a capacity of to accommodate K customers simultaneously. Such modeling is rooted in the following assumptions

and observations:

• Considering that each individual packet of traffic will be redirected to its allocated middlebox for detection and

prevention. Thus, we regard the packet and middlebox as the customer and server in the queue theory, respectively. As

widely applied in cloud performance analysis [19,20], the packet arrival rate of a middlebox follows a Poisson distribution,

and the service time follows an exponential distribution. Therefore, the traffic processing by a single middlebox can be

modeled as an M/M/1 queueing system.

• Under heavy traffic load conditions, the Snort application buffers in the middleboxes may fill up quickly and many

incoming packets may drop [21]. Hence, the capacity of a queueing system K is used to indicate the threshold after which

the middlebox starts to drop packets. Therefore, the M/M/1 queueing system can be extended to M/M/1/K.

• ESBox is able to scale out/in middleboxes. Thus, it is natural that more than one middlebox become involved in the

traffic processing, and we denote n as the number of middleboxes. Hence, we model the traffic processing of ESBox as n

M/M/1/K queueing systems.

Moreover, the inputs that the model handles are formalized as follows:

1.Traffic matrix: To formulate the dynamic traffic, we let TM = {λab|a, b ∈ U} be the traffic matrix (TM) at the present

time, where U is the set of the users, and λab is the packet arrival rate for the origin–destination pair user a to user b. In

practice, λab can be obtained from the data plane through the Openflow 3) protocol or other tools (e.g., sFlow 4)).

2.IPS performance metrics: Two metrics that are widely considered in IPS performance measurement [1] are as follows:

(1) Processing time of prevention (PTP) describes the time lapse between launch of attack packet and being filtered

by the IPS. (2) Prevention rate (PR) refers to the proportion of the packets completely processed by IPS in the total

transmitted packets. We let PTP and PR be the IPS performance constraint, which is the maximal threshold specified by

an administrator. Moreover, the processing time of a middlebox follows an exponential distribution with parameter µ, and

K is the queue capacity of a middlebox. µ and K in our model can be determined by trial in §4.1.
The MS is in charge of computing the number of middleboxes to be scaled out/in given TM , PTP , PR, µ, and K. To

guarantee high resource utilization, the middleboxes should be invested to a minimum. Thus, with the system model, our

goal is to compute the minimal total number of middleboxes n.

We can obtain the total packet arrive rate λt in the system by accumulating the elements in TM :

λt =
∑

a,b∈U

λab. (B1)

Owing to the limited capacity of each individual middlebox, processing a huge volume of traffic requires more than one

middlebox. To balance the load, traffic will be assigned to the middleboxes evenly. Thus, given λTotal, the packet arrival

rate of each individual middlebox is as follows:

λ =
λt

n
. (B2)

In addition, the packet process time in our system can be denoted as ϕ. Hence, given the middleboxes performances µ

and K, along with the incoming packet arrival rate λ, their relationship can be derived based on [18], and we can obtain

the middlebox delay:

ϕ(n) =
(1− ρK)(1− (K + 1)ρK +KρK+1)

µ(1− ρ)(1− ρK+1)2
, (B3)

where ρ = λ
µ
, representing the server utilization of the queueing system.

Furthermore, the packet loss rate ψ of the system can be expressed as follows [18]:

ψ(λ) =
ρK

K∑
k=0

ρk
(B4)

3) OpenFlow Switch Specification: https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-

v1.5.1.pdf
4) sflow: https://sflow.org/
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Subsequently, we substitute formula (B2) and into formula (B3) and (B4), to derive the relationship between n and ϕ, ψ,

respectively:

ϕ(n) =
1− (K + 2)( λt

µn
)K +K( λt

µn
)K+1 + . . .

µ( λt
µn

)× . . .

(K + 1)( λt
µn

)2K −K( λt
µn

)2K+1

(1− ( λt
µn

)K+1)2
+ dn, (B5)

ψ(n) = 1−
1− λt

µn

(µn
λt

)K − λt
µn

, (B6)

where dn is the network delay. Based on the formula (B5) and (B6), the computation of the minimum number of middleboxes

can be transformed into an optimization problem, which is formulated as follows:

mini. n (B7a)

s.t. ϕ(n) 6 PTP (B7b)

ψ(n) 6 PR (B7c)

n = 0, 1 . . . Nmax, (B7d)

where Nmax is the maximum number of middleboxes that can be invested in our system. This problem can be easily

computed by iterating on the values of n.

Afterwards, given n middleboxes in total, the number of middleboxes that each flow demands can be determined. To

approach this, Middlebox Demand Matrix (MDM) is used. Specifically, let MDM = {nab|a, b ∈ U} denote the number of

middleboxes demanded by the flow from user a to user b. For adapting to the traffic volume, nab is in proportion to λab,

thus we have:

nab =
λab

λt
× n. (B8)

Note that nab can be a decimal number, which means several flows may share a same middlebox. And MDM and n will

be output to the next module (i.e. Flow Distributor) for further distribution instruction.

In addition, to scale middleboxes according to the planned number n, this module should be able to adjust the number

of middleboxes. As mentioned before, a middlebox is a Docker container that encapsulates a Snort application. Hence, the

MS module calls the Docker Daemon commands to implements the adjustment. More specifically, to scale out middleboxes,

the MS must execute docker run. Similarly, for scaling in middleboxes, docker rm can be used. Furthermore, the Docker

Daemon commands will execute in parallel with the GNU Parallel 5) tool to accelerate the scaling process.

Appendix C Flow Distributor

The flow distributor (FT ) module is devoted to distributing the flows in TM to the n scaled middleboxes based on MDM

from the MS module. Dedicated forwarding rules will be installed into the SDN switches for distributing traffic to the

middleboxes and sending legitimate traffic to its original destination. Therefore, a careful flow distribution scheme is

needed to achieve the goal of 1) minimizing sharing of flow detection state and 2) load balance. In the subsection, firstly,

a flow distribution algorithm is introduced for reducing flow division, in order to minimize sharing of flow detection state.

After that, we present how the group table in SDN switches is used for load balance.

Appendix C.1 Flow distribution algorithm

A bad flow distribution algorithm will lead to unnecessary flow divisions that increase the sharing of flow detection state

meaninglessly. We herein summarize two kinds of unnecessary flow divisions. The first one is rooted in the improper flow

distribution priority (Example 1). The other one stems from the mismatch of the middlebox to the flow (Example 2). The

following toy examples explain the two unnecessary flow divisions.

Example 1: We consider two flows {f1, f2} with the required middlebox numbers of {0.6, 0.8}, respectively. Our goal is

to distribute these two flows to M1 and M2 with the capacities of 0.8 and 0.7, respectively. If f1 takes priority of f2, that

is, if we obtain that M1 can accommodate f1, we then distribute f1 to M1 directly and the spare capacity of M1 is 0.2.

Subsequently, we try distributing f2; however, neither M1 nor M2 can accommodate f2. Thus, we have to divide f2, which

results in one division compared with distributing f1 to M2 first and then f2 to M1.

Example 2: Consider the same flows and middleboxes as in example 1. Suppose we try distributing f2 first, but if

we mismatch M2 to f2, we have to divide f2 into two parts (i.e. 0.1, 0.7) and then allocate them to both M1 and M2.

Subsequently, we distribute f1 to M1. Consequently, one division is generated.

Motivated by the toy examples above, we find that the unnecessary flow divisions are avoidable. Thus, we regard

Proposition 1 as the principle for avoiding the unnecessary flow divisions. We herein describe a proof process for this

proposition.

5) GNU Parallel: https://www.gnu.org/software/parallel/
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Figure C1 Example of rules of group table for traffic redirection.

Proposition 1. The larger flows are prioritized over the smaller flows during the flow distribution. Further, provided

that a middlebox can accommodate the flow, we distribute the flow directly to the middlebox rather than divide the flow.

Proof. We assume F = {f1, ..., ft} is the set of flows with the required middlebox number of {n1, ..., nt}. Further, we

use NFDi to denote the Number of Flow Division for fi. We let M = {M1,M2, ...Mn} denote the middleboxes with the

corresponding capacities of {m1, ...,mn}. Our goal is to distribute a flow fi : ∀fi ∈ F to M .

1⃝ We divide fi into k(k > 2) parts with the needs of {n1
i , ..., n

k
i } and then distribute them to the middleboxes

{M1, ...,Mk}, respectively. Consequently, NFDi = k − 1.

2⃝ Alternatively, we distribute fi to Mr directly (where mr > ni), and NFDi = 0. We assume that ∃fj ∈ F : nj 6
Mr

∧
nj > (Mr − ni) and the entire fj is distributed to Mr, that is, NFDj = 0. Meanwhile, the entire fj cannot be

distributed to Mr because fi has fully or partially occupied Mr in 2⃝. Therefore, based on the distribution priority, we have

nj 6 ni; hence, in the worst case, we can divide fj into k parts with the needs of {n1
i , ..., n

k
i − (ni−nj)} and then distribute

them to the middleboxes {M1, ...,Mk}. Thus, NFDj 6 k − 1. Therefore, NFDi +NFDj in 2⃝ 6 NFDi +NFDj in 1⃝.

Otherwise, we assume that fj mentioned above does not exist, and naturally we have NFDi in 2⃝ < NFDi in 1⃝.

Based on Proposition 1, we present the flow distribution algorithm (Algorithm C1) for reducing the number of flow

divisions. A brief explanation is as follows. We use FDS to store the flow distribution scheme, where each distribution is

represented as [ab, i, ci]; this means we will allocate the ci capacity of Mi to the flow with the origin–destination pair of ab.

Lines 1 to 9 conduct the initialization of F and C, where F is the set of flows to which the middleboxes have not yet been

allocated, and C is the set of the available capacity of the middleboxes. Lines 10 to 30 are the loops to impose FDS with

the constraint of F ̸= ∅; this means the loop continues until all the flows are middlebox allocated. Lines 11 to 19 handle the

flows that cannot be accommodated by any middlebox capacity in C, thus requiring necessary divisions. Each such flow is

divided into several parts to reach the middlebox capacity. Lines 21 to 29 handle the flows sharing the middlebox capacity,

which may yield unnecessary divisions based on Proposition 1. Line 20 sorts F in descending order according to the flow

volumes to give priority to larger flows (we use merge-sort in this study). Subsequently, lines 22 to 29 search C to obtain

the middlebox capacity that can accommodate the entire flow and allocate it to the flow. In addition, flows that cannot be

accommodated by any element in C remain and will be handled in the next loop.

Because each loop of Algorithm 1 consists of the traversal of C in the traversal of F and the merge-sort of F, its complexity

is O(l(|F||C|+ |F|log2|F|)), and l is the loop count.

Appendix C.2 Rules of Group Table

Based on the flow distribution scheme FDS, the FT installs group table rules into the SDN switches for traffic redirection

while achieving load balance. Note that the rules can be installed into any switches as long as there is a resource pool for

middlebox scaling.

Indeed, the forwarding rules are the OFPT_FLOW_MOD messages defined by the Openflow protocol to modify the previous

forwarding rules. Furthermore, the traffic redirection to multiple scaled middleboxes is performed by the group table of

SDN switches, defined by the Openflow protocol. Rules in the group table include a list of action buckets, each of which

forwards a flow part to a middlebox. In addition, the flow volumes allocated to each action bucket are proportional to its

bucket weight, which can be used to achieve load balance. Moreover, the FT installs the forwarding rules into transport

the traffic from the middleboxes to its original destination.

Figure C1 shows an example of the forwarding rules and how they operate. Given a traffic flow from user a to user b, we

obtainMx,My , andMz from FDS as the middleboxes with the corresponding capacities of 1.0, 1.0, and 0.5. For simplicity,

we replace the port names with the switches that they are connected to, e.g., instead of the name of the port connected to

user b, we simply write b. The flow from user a is instructed by Rule 1 to output to Group 1. Subsequently, the flow is

divided into three flow parts with different flow volumes and is distributed to Mx,My ,Mz respectively, which is instructed
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Algorithm C1 Middlebox allocation algorithm

Require: MDM , the middleboxes demand matrix. n, the number of middleboxes.

Ensure: FDS, the flow distribution scheme.

1: Initialization:

2: for all nab in MDM do

3: fab ← nab

4: F.Append(fab)

5: end for

6: for i = 1; i <= n; i++ do

7: ci ← 1

8: C.Append(ci)

9: end for

10: while F ̸= ∅ do
11: for all fab in F do

12: for all ci in C do

13: if mi 6 fab then

14: FDS.append([ab, i, ci])

15: fab ← fab − ci
16: C.Remove(mi)

17: end if

18: end for

19: end for

20: Sort F in descending order.

21: for all fab in F do

22: for all ci in C do

23: if ci > fab then

24: FDS.append([ab, i, ci])

25: ci ← ci − fab
26: F.Remove(fab)

27: end if

28: end for

29: end for

30: end while

by Group 1. Finally, the flow parts that have been handled in the middleboxes are distributed to user b, instructed by

Rules 2 to 4.

In addition, the rules installed in the last distribution interval will be deleted by the OFPT_FLOW_MOD message ahead of a

new flow distribution.

Appendix D Evaluation

Several experiments were performed to evaluate the performance of ESBox with our prototype. We are interested in

answering the following questions: Q1: Can ESBox scale out/in middleboxes according to the dynamic traffic volumes and

guarantee the IPS performance requirements? (Experiment 1) Q2: Can ESBox scale out/in middleboxes while achieving

high resource usage? (Experiment 2) Q3: Can ESBox save flow detection state sharing? (Experiment 3) Q4: To what

extent can ESBox affect the throughput of the users? (Experiment 4)

Appendix D.1 Experimental Setup

Control plane construction: ESBox was implemented as an SDN application on the Ryu 4.23, a popular SDN controller.

ESBox contains approximately 800 lines of python code. And the Ryu was run on a server with 16GB of memory and Intel

4-core i5-5287u 2.0GHz processor.

Data plane construction: The Docker 17.03.2 was used, a lightweight container with the image of Ubuntu 14.04, con-

figured to use 200MB RAM, to create the operating environment of each user and middlebox. Snort 2.9.11.1 tool was

encapsulated in the middlebox and configured in in-line mode to enforce the detection and prevention for the received
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Figure D1 Experimental network topology. Figure D2 Probability Density Function of the Process-

ing Time.

traffic. Lightweight MySql Database 6) is used as the database for storing the shared flow detection states of Snort. CI-

CIDS2017 dataset 7), the common-used dataset for intrusion detection test including both normal and abnormal traffic was

chosen as our test traffic. Moreover, Tcpreplay 8) tool running on the user container was used to send the test traffic. Open

vSwitch (OVS) 2.3.2 was used as the SDN switch to interconnect the users as well as the users and the middleboxes. The

layout of the SDN switches was based on the real topology from Abilene dataset, as shown in Figure D1. The data plane

of our experiment ran on a server with 16GB of memory and Intel 4-core Xeon E5-2609 v2 2.5GHz processor. This server

was linked to the server above with the mean delay of 0.754ms.

Parameter setting: We determined the parameters that are fundamental to ESBox by three trials. The first trial is to

determine the network delay dn. We measured the mean value of dn using the iPerf 9) tool, and obtained dn = 0.189

ms. The second trial is to determine the parameter µ of the exponential distribution of the processing time. We randomly

sampled 5,000 packets with various protocol and packet length from NSL-KDD dataset, sent the packets to one middlebox

at a rate of 1 packet/s to ensure each packet was fully processed, and measured the processing time of each packet. (The

measured probability density function (PDF) of processing time is shown in Figure D2.) Then, based on the measured data,

we obtained µ = 5.96 by using Maximum Likelihood Estimation 10). The third trial is to K, the capacity of the queue in a

middlebox. We randomly sampled the test traffic and input it at different rates to a middlebox for 50 times, we found that

the middlebox approximately started to drop packet when the rate is set to 21 packet/s. Thus, we determined K = 21 in

our prototype. Furthermore, the scaling time scale was set to 1 min.

Appendix D.2 Experiment 1: Scalability and IPS Performance Guarantee

This experiment is a proof-of-concept experiment to reveal the fact that ESBox can scale out/in middleboxes according

to the traffic while guaranteeing given IPS performance requirements. First, the traffic demands of common-used Abilene

dataset 11) were studied to generate the test traffic for driving the experiment. To highlight the traffic dynamics, the traffic

demand from Los Angeles to Chicago of in Abilene was focused. As per the dynamics of the traffic demand above, the test

traffic was sent at mean rates varying with time intervals of 1 min, as depicted in Figure D3.

As shown in Figure D1, the traffic from Los Angeles to Chicago was sent by the user attached with Switch 3 to the

user attached with Switch 8. Consequently, ESBox gathered the traffic statistics from Switch 3, adjusted the number of

middleboxes to handle the dynamics of the test traffic and installed forwarding rules into Switch 3, to redirect the test

traffic to the middleboxes. Further, the IPS performance constraints were set as follows: PTP was set to 0.5 s, 1 s, and 2 s,

in order to fulfill service level agreements (SLA) for legitimate users in different common scenarios, such as time-sensitive

application, the worst situation in time-sensitive application, and non-time-sensitive application. Moreover, PR was set to

90% and 95%, according to the experimental results of [21], the basic processing rate of a Linux-kernel-based IPS is around

90% while processing malicious traffic of the same order of magnitude as our test traffic. And we use ’95%’ to raise the bar

of the basic processing rate to test our prototype.

Figure D4 shows the number of middleboxes for the test traffic at different mean rates for 200 min and under the different

IPS performance constraints. By comparing Figure D4 with Figure D3, it is noticed that the number of middleboxes under

any IPS performance constraint is adjusted dynamically to follow the dynamic test traffic rates closely. Also, it is found

that there are approximative overlaps of the curves when PTP = 0.5 s and 1 s, respectively. This is because ESBox searches

the minimal number of middleboxes to simultaneously satisfy PTP and PR, but PR is satisfied before PTP under the

above conditions, thus the number of middleboxes is completely up to PTP .

6) MySQL: https://www.mysql.com/
7) CICIDS dataset: https://www.unb.ca/cic/datasets/ids-2017.html
8) Tcpreplay: https://tcpreplay.appneta.com/
9) Iperf: https://iperf.fr/
10) Maximum Likelihood Estimation: https://www.itl.nist.gov/div898/handbook/apr/section4/apr412.htm
11) Abilene: http://www.cs.utexas.edu/˜yzhang/research/AbileneTM/
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Table D1 Prevention rate under different IPS performance

constraints.

IPS Performance Constraints

PTP (s) PR (%) Prevention Rate (%)

0.5 95 99.9

0.5 90 99.9

1 95 99.7

1 90 99.7

2 95 96.9

2 90 95.1

Moreover, the actual processing time of prevention and prevention rate were measured using the iPerf tool. Figure D5

shows the cumulative distribution function (CDF) of the measured processing times of prevention across the 3 PTP s. This

is sampled 60 times every minute. The results show that 93%,94.4%, and 100% of the traffic satisfy their PTP s. Table

D1 shows the prevention rate under the different IPS performance constraints. The results indicate that all the PRs are

satisfied.

Appendix D.3 Experiment 2: High Resource Utilization

To measure the resource utilization of ESBox, two alternative scheme are used as comparison: (1) Static: This scheme can

not scale middleboxes, to simulate the non-scalable VIPSes (e.g., [7,14,22,24,27,28,32]). Thus the number of middleboxes

provisioned is static, which is set equal to the mean value of the number of middleboxes scaled in ESBox. (2) BroFlow [11,12]:

This scheme scales out another middlebox whereas a middlebox is overload, and evenly redistributes the traffic to the

middleboxs. Moreover, it scales in two underloaded middleboxes to one and aggregates traffic to the middlebox remained.

We used BroFlow as our comparison example of scalable VIPS because it provides detailed scaling strategy, whereas other

schemes like [12, 31] do not. The same test traffic was used as Experiment 1. For each scheme, we recorded the average

number of middleboxes used per minute, the mean value of prevention rate and the processing time of prevention, based

on the log from the control plane.

Figure D6 presents the average number of middleboxes used under different IPS performance constraints. Moreover,

Figure D7 and Figure D8 illustrate the prevention rate and the processing time of prevention under different IPS performance

constraints, respectively. We make the following observations. First, ESBox uses fewer middleboxes than BroFlow, and

nearly same number of Stacic. Second, in any case, ESBox performs better in terms of higher prevention rates, and in most

case more stable and shorter processing time of prevention, than the other two schemes. Therefore, the result indicates

that ESBox has a higher resource utilization.

Appendix D.4 Experiment 3: Minimizing Flow Detection State Sharing

The test traffic was the same as that in Experiment 1. Note that this experiment did not compare with other VIPS scheme,

it is because that none of other VIPS achieves minimizing flow detection state sharing after the middlebox scaling. The

key difference with this experiment from Experiment 1 was that we created different numbers of origin–destination pairs

of users attached with Switch 3 and Switch 8 to send and to receive the test traffic, respectively. Further, the source and

destination users that send and receive the test traffic were selected following a Pareto distribution (ParetoD) [23] or a

random distribution (RandomD). The numbers of shared flow detection state that ESBox generated for redirecting test

traffic were recorded from the database we used. Considering that ESBox prototype lies primarily in the flow distribution
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Figure D6 Average number of middleboxes.
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Figure D7 Prevention rate measurement. Figure D8 Processing time of prevention measurement.
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Figure D9 Number of shared flow detection state. (a) 10; (b) 20; (c) 30 origin–destination pairs of users.

algorithm of its FT module to reduce the number of shared flow detection state. Thus, as a baseline, we replaced our flow

distribution algorithm with a random distribution scheme (DA) and recorded the number of such states generated.

The results are plotted in Figure D9. It is observed that our ESBox prototype always generated less flow detection state

records than the random distribution scheme. This demonstrates that ESBox significantly reduces the flow detection state

sharing.

Appendix D.5 Experiment 4: Impact on Traffic Throughput

During the reallocation of middlebox instructed by ESBox, the number of middleboxes may mismatch the traffic volumes

until the reallocation completes. Such mismatch leads to the buffering of in-flight traffic in the middleboxes, which is
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Figure D10 Impact on traffic throughput. (a) Increasing traffic volumes; (b) Decreasing traffic volumes.

expected to degrade the throughput of user traffic. In this experiment, we studied to what extent ESBox affects the

throughput. It is noteworthy that we did not compare ESBox with other VIPS scheme, because: according to Section

4.2, the prevention rate of ESBox is higher than the Static and Browflow schemes, which indicates the packet loss rate of

these two schemes is higher than ESBox. It can be inferred that these two schemes have a more serious traffic degradation.

Thus, these two scheme were not involved. The traffic forwarding path was the same as that in Experiment 1. The test

traffic highlights the change in traffic volumes (the increment is given by ∆) to incur reallocation, which includes the

following: (1) Increasing traffic volumes: The traffic volumes increase from 50, 500, 5k packets/s to 100,1k,10k packets/s

(∆ = 50, 500, 5k), respectively. (2) Decreasing traffic volumes: The traffic volumes decrease from 100,1k, 10k packets/s to

50,500,5k packets/s (∆ = −50,−500,−5k), respectively.

Figure D10(a) shows the impact on the throughput for the increasing traffic volumes. The solid lines, as baselines,

indicate the throughput of the traffic without ESBox. The dotted lines indicate the throughput of the traffic with ESBox.

The traffic increased at t = 10s with ∆ = 50, 500, 5k; thus, the reallocations were scheduled accordingly. We observed

two key findings from the experiment. First, ESBox demonstrates no impact on the throughput of the traffic when the

traffic volumes have no increment. Second, the duration of throughput degradation increases as the increment of the traffic

volumes increase. However, the duration is short (≈ 0.5 s) when ∆ = 50. Further, when ∆ = 5k, the duration is acceptable:

(≈ 18 s). It is remarked that the durations are the result of the time it takes our server to initialize the middleboxes, and

in practical situations, the degradation can be mitigated or even eliminated by using a high-performance server. Figure

D10(b) shows the effect on the throughput for the decreasing traffic volumes. It is observed that no throughput degradation

in ESBox when processing traffic with the decreasing volumes.

Appendix E Related Work

A body of solutions have used SDN techniques to enhance the security of network. Some SDN-based IPSs relied completely

on the SDN controller to implement its security functions. These solutions applied the SDN controller to aggregate statistical

information from the SDN switches in the data plane, analyze the information by a variety of means (e.g. deep learning [26],

extracting and aggregating features [28], sFlow analyzer [29], and Advanced Support Vector Machine [30]). Nevertheless,

these solutions may cause a heavy burden in the control plane.

Some SDN-based VIPSs can avoid the heavy burden aforementioned by deploying middleboxes within a function of IDPS

to the data plane. The control plane was simply responsible for steering the composition of middleboxes and redirecting

traffic to them. [14,27] focuses on improving the structural design of VIPS to enable effective intrusion detection and non-

monolithic NIDS provisioning. [22] proposes a traffic sampling rate adjustment method for fully utilizing the inspection

capability of malicious traffic while the total aggregate volume of the sampled traffic is kept below the maximum processing

capacity of the IDS middlebox. [7] maximally uses existing middleboxes and optimally routes traffic to the middleboxes. [24]

provides a management architecture of VIPS, which enables control distributed middleboxes in switches. [25] proposes a

flow-table sharing approach to protect the SDN-based cloud from flow table overloading DDoS attacks. [28] presents a

framework that automatically detects and mitigate DDoS attacks by the SDN controller. [32] designs a 2-phase algorithm

that can quickly select DPI middlebox and find routing paths for incoming flows in SDN. These approaches hardly support

scalability for handling ubiquitous traffic volume variations. However, they can be orthogonal to our approach in middlebox

management for VIPS.

Furthermore, existing VIPS solutions such as BroFlow [11, 12], DEIDtect [13], and AsIDPS [31] support horizontal

scaling of middlebox resources. However, the resource adjustment reacts to the awareness of overloaded or underloaded

middleboxes, not to the dynamics of traffic volume, which makes these solutions ex-post. Also, these solutions cannot

compute and then adjust the number of required middleboxes according to the traffic volumes, which leads to coarse-

grained scaling of middleboxes. The major difference between these work and our work lie in that ESBox reacts to real-time

traffic and provides fine-grained scaling with high resource usage.
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