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Abstract To solve the subset sum problem, a well-known nondeterministic polynomial-time complete prob-

lem that is widely used in encryption and resource scheduling, we propose a feasible quantum algorithm

that utilizes fewer qubits to encode and achieves quadratic speedup. Specifically, this algorithm combines

an amplitude amplification algorithm with quantum phase estimation, and requires n + t + 1 qubits and

O(2(0.5+o(1))n) operations to obtain the solution, where n is the number of elements, and t is the number of

qubits used to store the eigenvalues. To verify the performance of the algorithm, we simulate the algorithm

with the online quantum simulator of IBM named ibmq simulator using Qiskit and then run it on two IBM

quantum computers called ibmq santiago and ibmq bogota. The experimental results indicate that compared

with the brute force algorithm, the proposed algorithm results in quadratic acceleration for the problem of

a set S with four elements and two subsets whose sum equals target w. Using the iterator twice, we obtain

success probabilities of 0.940± 0.004, 0.751± 0.040, and 0.665± 0.060 on the simulator, ibmq santiago, and

ibmq bogota, respectively, and the fidelity between the theoretical and experimental quantum states is calcu-

lated to be 0.944±0.002, 0.753±0.017, and 0.657±0.028, respectively. If the error rates of the experimental

quantum logic gates can be reduced, the success probabilities of the proposed algorithm on real quantum

devices can be further improved.
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1 Introduction

The subset sum problem (SSP) is a typical problem in the nondeterministic polynomial-time complete
(NPC) class [1] and is closely related to the knapsack problem [2]. It currently has a wide range of applica-
tions in encryption [3–5], resource scheduling and programming [6–8], and graph theory problems [9,10].
Taking a set as an example, the problem can be formally defined as follows: given a random integer set
S = {s1, s2, s3, . . . , sn−1, sn} with n elements and a target integer w ∈ (0, µ], where µ =

∑n
j=1 sj , the

problem is to determine whether there is a sequence x consisting of 0 and 1 that satisfies
∑n

j=1 sjxj = w.
If one or more sequences that satisfy the condition can be found, then w is the subset sum of set S;
otherwise, w is not.

For the SSP, commonly used calculation methods on classical computers include brute force, dynamic
programming [1], a greedy algorithm [11], a divide-and-conquer algorithm [12], and optimization [13–15].
In addition to using classical computers to solve this problem, many novel calculation methods can
also be used, such as molecular calculations [16–18], DNA or protein calculations [19, 20], soap film
calculations [21, 22] (please note that the soap film calculations were proposed by Isenberg [21] and
discussed by Aaronson [22]), and photonic calculations [23–26]. Although these algorithms have pseudo-
polynomial-time complexity in the best case, when the size of the set elements grows exponentially, the
algorithms degenerate to exponential time complexity [12].
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In terms of the classical complexity of the SSP problem, the brute force algorithm enumerates all the
subsets to verify whether there is a solution in time O(2n). Schroeppel and Shamir [27] improved the time
complexity to O(20.5n) with space complexity O(2n/4) through the left-right split approach. Thereafter,
Becker et al. [28] reduced the runtime to O(20.291n) by improving the representation of the algorithm
proposed by Howgrave-Graham and Joux [29], which is currently the best classical time complexity of the
SSP. In terms of the quantum complexity of the SSP problem, the authors [30–32] theoretically analyzed
the complexity with the quantum walk, and obtained a heuristic asymptotic time complexity of O(22n/3),
O(20.241n), and O(20.226n), respectively. However, these algorithms have exponential space complexity
and use a quantum memory model with quantum random access to maintain a merging tree, which is
currently difficult to implement on noisy intermediate-scale quantum systems. Therefore, none of these
three algorithms has been experimentally demonstrated and verified.

In [33], the authors used a classical and quantum hybrid algorithm to analyze the SSP, and obtained
a runtime of O(20.218n). Their primary strategy was a merge-and-filter operation that required the help
of classical memory. Chang et al. [34] designed a quantum adder network and used the Grover algorithm
to solve the SSP with a runtime of O(20.5n). Their algorithm required a total of 2nt1 + n + 3t1 + 5
qubits because of the classic encoding strategy, where t1 is the number of classical binary bits used to
encode all elements in S. In their experiment, they verified the example of S = {1} and w = 1 on a
nuclear magnetic resonance machine; however, they did not use the Grover algorithm to accelerate the
search for solutions. Daskin [35] converted the SSP into an optimization problem and applied quantum
amplitude amplification (AA) and quantum counting algorithms to select the maximum element less
than w. However, their algorithm could not determine whether there was one subset sum equal to w
and needed to select the upper limit of the number of measurements based on experience; however, their
strategy of coding with the quantum phase estimation (QPE) algorithm was valuable.

Table 1 compares the classical and quantum SSP algorithms with our proposed algorithm in terms of
runtime and memory consumption. The classical algorithm proposed in [28] has a runtime of O(20.291n),
which is faster than that of our algorithm. However, it requires more than O(20.256n) classical memory
resources. When n is large, the memory consumption of the algorithm becomes non-negligible, which
reduces the performance of the algorithm. However, we use quantum parallelism to encode and thus
require only n+ t+ 1 qubits. Therefore, our algorithm has advantages in space consumption.

In this work, we aimed to construct a feasible and straightforward quantum algorithm to solve the
SSP faster than the brute force algorithm and with less qubit consumption, which was further verified by
simulation and real quantum devices. The remainder of this paper is organized as follows. In Section 2,
we define the notations used in the paper and introduce the QPE and AA algorithms, which are used
as building blocks in our algorithm. In Section 3, we present our algorithm, QSSP, and describe how to
combine the QPE and AA algorithms to handle the SSP. In Section 4, we analyze the qubit consumption,
time complexity, and success probabilities of our algorithm. In Section 5, we use Qiskit [36] to validate
our algorithm, and deploy it in real quantum devices through the IBM Q Experience [37]. Finally, we
present our conclusion and discuss future work in Section 6.

2 Preliminaries

2.1 Notations

| · · · 〉 denotes a quantum state, and 〈· · · | denotes the conjugate transpose of a quantum state. A state
such as |1〉 represents all the qubits in this state are ones and its bitwise negation is defined as |1̄〉 = |0〉.
Besides, the bold letters or words such as A or UQPE represent operators and their inverse operations are
recorded as A−1 or UQPE

−1. The Hardmard, Pauli-X, Pauli-Z and controlled-X gates are noted as H ,
X, Z and CNOT, respectively. CZ(j,k) and CNOT(j,k) mean the controlled-Z gate and controlled-X
gate, in which j acting as the control qubit to perform Z gate or X gate to the qubit k. The rotate gate

has a matrix form of R(θ) = ( 1 0

0 eiθ
), it is also called U1 gate in the Qiskit [36]. The rotation gate along

the y-axis is called Ry(θ), it can be represented as Ry(θ) = ( cos(θ/2) −sin(θ/2)

sin(θ/2) cos(θ/2)
). The function that finds the

maximum (minimum) number is called max (min), and we use the notations ⌊· · · ⌋ and ⌈· · · ⌉ to represent
the floor and ceiling functions, respectively. The notation ± and error bar represent the standard error
(SE) of the samples. Specifically, SE = ∆s/

√
Ns, where ∆s is the sample standard deviation, and Ns is

the number of samples.
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Table 1 Heuristic asymptotic performance of various subset-sum algorithmsa)

Quantum Experiment Time(e) Space Algorithm

No Yes 1 O(1) Brute force

No No 0.5 O(2n/4) Left-right split [27]

No Yes 0.291 > O(20.256n) Moduli + representation + overlap [28]

Yes No 0.667 > O(n22n/3) Quantum walk [30]

Yes Yes 0.5 2nt1 + n+ 3t1 + 5 qubits Quantum search [34]

Yes Yes 0.5 n+ t+ 1 qubits Our work*

Yes No 0.241 > O(8 × 20.271n) Quantum walk + representation [31]

Yes No 0.226 O(20.226n) Quantum walk + representation [32]

Yes No 0.218 > O(20.2356n) Merge and filter + representation [33]

a) Time(e) represents the algorithm using O(2(e+o(1))n) operations. t1 is the number of classical binary bits used to encode

all elements in S, and t is the number of qubits used to encode all eigenvalues. The representation algorithm was introduced by

Howgrave-Graham and Joux in [29].

2.2 Quantum phase estimation algorithm

The QPE algorithm is an eigenvalue solver proposed by Kitaev [38] that estimates the phase of the
eigenvalue of a unitary operator U . Suppose that the eigenvalue of U has the form e2πiφ, and that
the corresponding eigenvector is |b〉. The QPE algorithm can return the approximate value of φ with
an accuracy determined by the qubits used to store the eigenvalue when inputting the eigenvector |b〉.
Usually, the QPE requires two registers to perform operations: the first register Reg0 contains t qubits
initialized to |0〉 and is used to store phases, and the second register contains n qubits initialized to |b〉 and
is used to store eigenvectors. The H gate is applied on all the qubits of Reg0, followed by the controlled
operator controlled-U2j applied on the second register with the j-th qubit acting as the control qubit;
then, the inverse quantum Fourier transform is applied to Reg0. We can read out the state of Reg0 on the
computational basis to obtain the estimation of φ. In total, the QPE algorithm requires t applications
of controlled-U2j and O(t2) other operations.

2.3 Amplitude amplification algorithm

The AA algorithm [39] is a generalized version of the Grover algorithm [40] and is used to amplify the
probabilities of the partial quantum states that we require. Suppose that we have the superposition state
of |ψ〉 = A|0〉 =

√

M/N |ψgood〉 +
√

(N −M)/N |ψbad〉 generated by algorithm A from state |0〉, where
|ψgood〉 is the state that we require, and |ψbad〉 is the state that we want to eliminate. The AA algorithm
repeats the iterator G to amplify the amplitude of |ψgood〉. The iterator G = UsUf contains two steps.

Step 1. Apply the oracle operator Uf to mark the desired state and keep the other states unchanged
by the following equation:

Uf (|ψgood〉+ |ψbad〉) = −|ψgood〉+ |ψbad〉. (1)

Step 2. Perform the second reflect operator Us to amplify the probability of |ψgood〉, where Us is
defined as

Us = I − 2|ψ〉〈ψ| = −AUtA
−1, (2)

where Ut = I − 2|0〉〈0|. Let sin(θ) =
√

M/N and θ ∈ (0,π/2]. After j applications of operator G, the
state becomes

Gj|ψ〉 = sin((2j + 1)θ)|ψgood〉+ cos((2j + 1)θ)|ψbad〉. (3)

By measuring the state, we can obtain |ψgood〉 with a probability equal to sin2((2j+1)θ). Supposing that

the value of MN > 0 is known, we can set the iteration time to j = ⌊π

4

√

N/M⌋. Then, when we compute

Gj |ψ〉 and measure the system, the outcome is |ψgood〉, with a probability of at least max(1 − M
N ,

M
N ).

This conclusion is regarded as a quadratic speedup for the reason that if algorithm A has a success
probability of MN greater than zero, then after an expected number of NM applications of A, we can obtain

a good solution. Applying the above AA algorithm reduces the expected number to at most O(
√

N/M)
applications of A and A−1.
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Figure 1 (Color online) Schematic diagram of the proposed algorithm. All the qubits are initialized to |0〉. UQPE represents the

quantum phase estimation operator, FT−1 represents the inverse quantum Fourier transform, and qa represents the ancilla qubit.

3 Proposed algorithm

The main strategy of our proposed algorithm is to convert the problem of whether there is a subset sum
equal to w to the problem of whether there is a phase equal to zero. We encode each element of S and w
to a phase gate acting on one qubit, thereby generating a unitary matrix U with all the subset sums of
S and −w acting as its diagonal elements. Then, we use U to form the controlled operator and estimate
all the phases of the diagonal elements with equal weight through QPE. Thereafter, the AA algorithm
can be used to amplify the amplitude of |0〉, and we can obtain all the solution subsets with the indices
stored in the eigenvector register. In total, there are five steps.

(1) Encode S and w into rotate operators.

(2) Construct the controlled operator controlled-U2j used by QPE.
(3) Apply QPE to the equal superposition state of all the subset sums of S and −w.
(4) Utilize the AA algorithm to amplify the amplitude of |0〉.
(5) Use the controlled operator to obtain the final results and measure the state on a computational

basis.
The entire quantum circuit of the above five steps is presented in Figure 1, and the pseudocode of our

algorithm QSSP is outlined in Algorithm 1. Each step is explained in detail in Subsections 3.1–3.5.

Algorithm 1 QSSP

Inputs: |ψ〉 = |Reg1〉|qa〉|Reg0〉 = |0〉⊗n|0〉|0〉⊗t. // qa is the ancilla qubit.

Outputs: |Reg1〉|qa〉. // When |qa〉 = |1〉, the index of answer subset stores in Reg1.

Runtime: O(2(0.5+o(1))n) operations with success probabilities of P = sin2((2j + 1)arcsin
√

M/2n). When M ≪ 2n, we will get

P ≈ 1 after O(⌊π

4

√

2n/M⌋) iterations.

Procedure:

1: Build rotate operators Ri and Rw.

2: Construct oracle operator used by QPE through U = Rw ⊗ Rn ⊗ Rn−1 ⊗ · · · ⊗ R1.

3: Apply UQPE to |ψ〉.

4: Utilize AA iterator G
′ = UsUf for j 6 ⌊π

4

√

2n/M⌋ times.

5: Apply Ugather to gather the results and measure |Reg1〉|qa〉.

3.1 Encoding

The phase gate is a generalize method to encode the value to phase. Specifically, for the integer set
S = {s1, s2, s3, . . . , sn−1, sn} and target w, we scaler them so that both w̃ and s̃j are in (0,1) by

s̃j =
sj

∑n
j=1 sj + w

, w̃ =
w

∑n
j=1 sj + w

. (4)

Then, coding s̃j in the rotation gate applies to the j-th qubit, and coding w in Rw applies to the
(n+ 1)-th qubit by the following equations:

Rj =

(

1 0

0 e2πis̃j

)

, Rw =

(

1 0

0 e2πi(−w̃)

)

. (5)
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Figure 2 (Color online) Schematic diagram of controlled-U2j .

3.2 Controlled operator

The key of QPE is the oracle of controlled-operator and we first generate the oracle operator by

U = Rw ⊗Rn ⊗Rn−1 ⊗ · · · ⊗R1

=

(

e2πiw̃D 0

0 D

)

, (6)

where D is shown as


















eθ(−w̃) 0 0 · · · 0

0 eθ(s̃1−w̃) 0 · · · 0

0 0 eθ(s̃2−w̃) · · · 0

0 0 0
. . .

...

0 0 0 · · · eθ(
∑

j s̃j−w̃)



















, (7)

where θ = 2πi, and the diagonal elements of D are formed by λk = eθ(δk−w̃), where δk is the k-th element
of all the subset sums of S̃ with the order {0, s̃1, s̃2, s̃1 + s̃2, . . . , s̃1 + s̃2 + · · · + s̃n}, which corresponds
to the eigenvector of the k-th standard basis. δk − w̃ = 0 if there is at least one subset sum equal to
w; therefore, we can judge whether w is the subset sum of the set by verifying whether the phase is
zero. Then, we add control qubits of each rotation gate in ascending order and construct the controlled
operator controlled-U2j , as illustrated in Figure 2.

3.3 Quantum phase estimation

At this stage, we add an ancilla qubit qa to encode w. Reg1, qa, and Reg0 are initialized with |ψ0〉 =
|Reg1〉|qa〉|Reg0〉 = |0〉⊗n|0〉|0〉⊗t. To generate all the possible sums of all subsets, we apply H⊗n ⊗X⊗
H⊗t to |ψ0〉, and the state becomes

|ψ1〉 =
(

1√
2n

2n−1
∑

k=0

|k〉
)

|b〉 =
(

1√
2n

2n−1
∑

k=0

|k〉
)

|1〉





1√
2t

2t−1
∑

j=0

|j〉



 . (8)

After that, the controlled-U2j and inverse Fourier transform are applied to the system. We finally gain
the state:

|ψ2〉 =
1√
2n

2n−1
∑

k=0

|k〉|1〉|φk〉. (9)

When |Reg0〉 = |φk〉 = |0〉, we have one subset sum equal to w, and the exact index of the subset is
represented by the binary form of k. Suppose that k = knkn−1 · · · k1, where k1 is the least significant bit.
When kj = 1, sj is an element of the solution subset; otherwise, sj is not. For convenience, we denote
the entire phase estimation operation above as operator UQPE.
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3.4 Quantum amplitude amplification

By the QPE algorithm, all subsets with a sum equal to w are associated with |Reg0〉 = |0〉. We can
use the AA algorithm to amplify their probabilities. Prior to this, we divide the quantum state of |ψ2〉
into the combination of a good state and bad state; the good state refers to the state of the subset that
sums to w (meaning that the eigenvector leads to |Reg0〉 = |0〉), while the other states are bad states.
Specifically,

|ψ2〉 =
1√
2n

∑

k∈good

|k〉|1〉|φk〉+
1√
2n

∑

k∈bad

|k〉|1〉|φk〉

=
1√
2n

∑

k∈good

|k〉|1〉|0〉+ 1√
2n

∑

k∈bad

|k〉|1〉|φk〉. (10)

Then, we need to construct the iterator G = UsUf = −AUtA
−1Uf , where operator Uf marks the state

when |Reg0〉 = |0〉, and Us amplifies its amplitude. Suppose that we have j + k qubits, that U is a k
qubit unitary operator, and that j qubits act as the control qubits. We define the multiple controlled
operator Cj,k(U) by the following equation:

Cj,k(U)|y1y2 · · · yj〉|ψ〉 = |y1y2 · · · yj〉Uy1y2···yj |ψ〉, (11)

where y1y2 · · · yj in the exponent of U means the product of bits y1, y2, . . . , yj . The operator U is applied
to the last k qubits if the first j qubits are all equal to one. Otherwise, nothing is done. Then Uf and
Ut can be defined as

Uf = X⊗tCt,1(Z)X
⊗t
, Ut = X⊗t+n+1Ct+n,1(Z)X

⊗t+n+1
. (12)

The Ct,1(Z) means all the qubits of Reg0 acting as control qubits to perform controlled-Z gate to the
ancilla qubit, and the Ct+n,1(Z) means all the qubits of Reg0 and Reg1 acting as control qubits to
perform controlled-Z gate to the ancilla qubit. Hence the revised iterator G′ can be expressed as

G′ = −UQPE ×Ut ×UQPE
−1 ×Uf . (13)

Assume that the number of elements in good is |good| = M . Since the total number is N = 2n, the
number of elements in bad is |bad| = N −M . When we apply operator G′ j times to |ψ2〉, we obtain

|ψ3〉 = G′j|ψ2〉 =
sin((2j + 1)θ)√

M

∑

k∈good

|k〉|1〉|0〉+ cos((2j + 1)θ)√
N −M

∑

k∈bad

|k〉|1〉|φk〉. (14)

3.5 Obtaining the results

In state |ψ3〉, all the subsets that sum to w lead to |Reg0〉 = |0〉. Otherwise, the qubits of Reg0 have at
least one |1〉. Now, we use the ancilla qubit qa to obtain the results. We first flip all the qubits of Reg0
through the X gate. In detail,

|ψ4〉 = (I⊗n ⊗ I ⊗X⊗t)|ψ3〉 =
sin((2j + 1)θ)√

M

∑

k∈good

|k〉|1〉|1〉+ cos((2j + 1)θ)√
N −M

∑

k∈bad

|k〉|1〉|φ̄k〉. (15)

The φ̄k means all the qubits of Reg0 are flipped. Then apply Ct,1(X) to Reg0 and qa, we will get

|ψ5〉 = Ct,1(X)|ψ4〉 =
sin((2j + 1)θ)√

M

∑

k∈good

|k〉|0〉|1〉+ cos((2j + 1)θ)√
N −M

∑

k∈bad

|k〉|1〉|φ̄k〉. (16)

Ct,1(X) means all the qubits of Reg0 acting as control qubits to perform controlled-X gate on qa. Finally,
we can get the results from qa. These eigenvectors stored in Reg1 lead to |qa〉 = |0〉 that are the indexes
of answer subsets. In order to make the consistency with logic, we then use X gate to flip qa and get

|ψ6〉 = (I⊗n ⊗X ⊗ I⊗t)|ψ5〉 =
sin((2j + 1)θ)√

M

∑

k∈good

|k〉|1〉|1〉+ cos((2j + 1)θ)√
N −M

∑

k∈bad

|k〉|0〉|φ̄k〉. (17)

When measuring, we only need to measure the state of the ancilla qubit qa. If it is |1〉, we have a solution.
We measure the eigenvector register Reg1, which stores the detailed index of the solution subset. For
convenience, we define all operations used in obtaining the results as Ugather.
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4 Performance analysis

For set S = {s1, s2, s3, . . . , sn−1, sn}, we suppose that there are M subsets whose sum is equal to target
w. Now, we must determine the resource consumption and total runtime.

4.1 Qubit consumption

From our encoding strategy, to construct one controlled-U2j , we require n qubits to encode each element
of S, and one qubit to encode w. To distinguish all phases generated by the phase estimation algorithm,
we require min2

n

j,k=0 |φj − φk|, which can be represented by t qubits when φj 6= φk. That is

t =

⌈

log2

(

1

min2n

j,k=0,j 6=k |φj − φk|

)⌉

6









log2





n
∑

j=1

sj + w













= ⌈log2(µ+ w)⌉. (18)

Then the total qubits we need is n+t+1. Assume that all elements in S can be represented by classic bits
of t1 > 1, that is, sj 6 2t1 holds for j ∈ [1, n]. Since w ∈ (0, µ] will cause µ+w =

∑n
j=1 sj+w 6 2n×2t1,

our qubit consumption becomes

n+ t+ 1 6 n+ (log2(µ+ w) + 1) + 1

6 n+ log2(2n× 2t1) + 2

= n+ 2 + t1 + log2(2n)

6 n+ 2 + t1 + 2n, when n > 1

6 n+ 2 + t1 + 2nt1

< n+ 2 + t1 + 2nt1 + (3 + 2t1)

= 2nt1 + n+ 3t1 + 5. (19)

Therefore, our algorithm uses fewer qubits than the method in [34] when n > 1.

4.2 Time complexity

When we regardCj,1(U) and the basic single-qubit gate as a one-atom operation with the time complexity
of O(1), then the total complexity of our algorithm can be divided into three parts. The first part is the
QPE stage, which has one UQPE with operations of

CountQPE = t2/2 + 2nt+ 2t+ 1. (20)

The second part is the AA procedure with O(
√

2n/M) AA iterations, and the third part is the stage of
obtaining results with Countgather = t + 2 operations. For the second part, we know that each iterator
G′ contains one QPE, one inverse QPE, one operator Uf , and one operator Ut. The total number of
operations of one G′ is as follows:

CountG′ = t2 + 4nt+ 8t+ 6. (21)

From the AA algorithm, we need about ⌊π

4

√

2n

M ⌋ iterations to gain the maximum probability. So the

operations used in the AA stage are

CountAA =

⌊

π

4

√

2n

M

⌋

× CountG′ =

⌊

π

4

√

2n

M

⌋

(t2 + 4nt+ 8t+ 6). (22)

Combining these three stages, the AA procedure dominates the total complexity ofO(π4
√

2n/M(t2+4nt)).
Therefore, we can approximately use the number of iterations j of the AA operator G′ to express the
performance of our algorithm. When M ≪ 2n, we obtain a success probability P ≈ 1 after using j =
⌊π

4

√

2n/M⌋ AA iterations (see Subsection 4.3 for a detailed discussion); therefore, we use O(⌊π

4

√

2n/M⌋)
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applications of the AA iterator to represent our runtime. Suppose that (t2+4nt)/
√
M is not exponentially

large; that is, t is not in the form of O(2n). Specifically, if the maximum element of S is not equal to

O(2(2
n−1/n)), then (t2 +4nt)/

√
M is not exponentially large. For the convenience of analysis, let M = 1,

and let S be a random integer set of n (sufficiently large) elements. This is a difficult problem for
a classical computer because the probability of success is 1/2n, which is small. Considering that the
general case on classical computers is t = O(poly(n)), the complexity of our algorithm can be rewritten
as O(2(0.5+o(1))n), where o(1) = (log2(t

2 + 4nt))/n. For example, supposing that we randomly select
n = 221 ≈ 2 × 106 integers from (0, 242] to form S, we can use up to t = 64 qubits to store the
eigenvalues. Then, o(1) = 0.0000138 can be ignored compared with 0.5, and our complexity becomes
approximately O(20.5n). Compared with the brute force algorithm with a time complexity of O(2n), we
obtain a quadratic speedup.

4.3 Success probability

Since we just focus on the situations where |φ〉 = |0〉 that will lead to |qa〉 = |1〉. When we set t so
that all phases are distinguishable. If there is no error, the total success probability after the j-th AA
iteration is then P = sin2((2j+1)arcsin

√

M/2n) according to (17). Let θ = arcsin(
√

M/2n) and we will
gain the maximum success probability P = 1 when (2j + 1)θ = π/2, that means j = (π− 2θ)/(4θ). But
j must be an integer number, let j = ⌊π/(4θ)⌋ and j̃ = (π− 2θ)/(4θ). Note that |j − j̃| 6 1/2, therefore
|(2j + 1)θ − (2j̃ + 1)θ| 6 θ. Since (2j̃ + 1)θ = π/2 that leads to | cos((2j + 1)θ)| 6 | sin(θ)|, we will get a
success probability of P = 1− cos2((2j +1)θ) > 1− sin2(θ) = 1−M/2n when iterations j = ⌊π/(4θ)⌋. If
M ≪ 2n, then P ≈ 1. Since θ > sin(θ) =

√

M/2n and j = ⌊ π

4θ ⌋ 6 ⌊π

4

√

2n/M⌋, we need O(⌊π

4

√

2n/M⌋)
iterations to gain the maximum success probability P ≈ 1.

5 Validation

5.1 Simulation

We used the set S = {2, 3, 5, 7} and w = 12 to validate our algorithm. We first simulated the algorithm
with the ibmq simulator through the open-source tool Qiskit [36]. The experimental circuit followed
Figure 1. To make all the phases distinguishable, we selected t = ⌈log2(

∑n
j=1 sj + w)⌉ = 5. In total,

there needed to be n + t + 1 = 4 + 5 + 1 = 10 qubits to perform operations. Of these, five qubits
Reg0 were used to distinguish all phases generated by QPE, four qubits Reg1 were used to encode the
set, and one ancilla qubit qa was used to code the target w and store the results. To illustrate the
speedup process, we obtained the results and measured the eigenvector register Reg1 and ancilla qubits
qa after each AA iteration, where qa is the least significant qubit. For each quantum circuit, we repeated
the measurement 8192 times. Each experiment was repeated five times. Figure 3 presents the test
results. The good states are 23 (|Reg1〉|qa〉 = |1011〉|1〉) and 25 (|Reg1〉|qa〉 = |1100〉|1〉). Therefore,
the subset indices are 1011 and 1100, which correspond to the solution subsets of {2, 3, 7} and {5, 7},
respectively. For iterations j = [0, 1, 2, 3], we obtained the success probabilities of these good states
as [0.124 ± 0.003, 0.773 ± 0.003, 0.914 ± 0.007, 0.293 ± 0.007]. From Section 4, the theoretical success
probabilities are [0.125, 0.781, 0.945, 0.330], which indicates that the simulation is consistent with the
theory. These results demonstrate that for a set with four elements and two subsets whose sum is equal
to w, we require two AA iterations to obtain the maximum success probability of 0.914 ± 0.007. In
contrast, using the brute force algorithm requires an average of eight iterations. Since 2 6 ⌊π

4

√

N/M⌋ =
⌊π

4

√

16/2⌋ = 2, this demonstrates the quadratic acceleration of our algorithm.
In fact, when the above simulation is performed, Qiskit decomposes the quantum circuit of our ex-

periment into a complete set of gates composed of single-qubit gates and double-qubit gates (CNOT).
Since each quantum gate has an error probability, the performance of our algorithm is related to the
error rates of the gate. In Figure 4, we illustrate the relationship between the success probabilities of
our algorithm in solving S = {2, 3, 5, 7} and w = 12 and the single-qubit gate error rates and CNOT
gate error rates. We explored the influence of the single-qubit gate error rates and CNOT gate error
rates on the probability of good states (|1011〉|1〉 and |1100〉|1〉) when the number of iterations was 1 and
2, respectively. The results indicate that when the single-qubit gate error rates and CNOT gate error
rates were approximately 10−6, we obtained a probability of success close to the theoretical value. When
the error rates of the quantum gate were greater than 10−5, the success probabilities of the algorithm
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decreased rapidly. In addition, in our example, the CNOT gate error rates had a slightly greater impact
on the success probabilities than the single-qubit gate error rates. Therefore, reducing the error rates
of the quantum gate to an appropriate range has significant meaning for improving the probabilities of
success of our algorithm.

5.2 Experiments

The simulation results indicate that we need 10 qubits to perform operations and two applications of the
AA iterator to obtain the maximum probability. We then considered how to implement this algorithm on
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Table 2 Calibration parameters of ibmq bogata and ibmq santiago archived on August 6, 2021 from the IBM quantum websitea)

Device Qubit Readout error (10−2) Single-qubit gate error (10−4) CNOT error (10−3)

q0 2.78 1.97 0 1:9.118

q1 2.29 2.81 1 2:8.288; 1 0:9.118

bogota q2 3.23 1.41 2 3:8.477; 2 1:8.288

q3 1.48 6.28 3 4:9.054; 3 2:8.477

q4 1.41 1.55 4 3:9.054

q0 4.94 5.67 0 1:9.770

q1 1.80 2.77 1 2:12.54; 1 0:9.770

santiago q2 4.33 9.54 2 3:14.94; 2 1:12.54

q3 0.76 2.31 3 4:5.568; 3 2:14.94

q4 1.31 1.78 4 3:5.568

a) It should be noted that these parameters are updated on a daily basis. In the column “CNOT error”, “j k” means that j is

the control qubit.
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Figure 5 (Color online) Simplified experimental circuits for SSP of S = {2, 3, 5, 7} and w = 12. We simplify the problem to

S = {1}, w = 1, and a single element of S has a probability of 1/8 to be selected. The AA stage contains iterations of [0, 1, 2, 3],

and the above circuit pertains to three iterations.

truly quantum devices. The IBM Q Experience [37] has allowed access to its cloud quantum computers.
There are more than 20 quantum qubits as of now, and the best-performing computer has reached a
quantum volume (QV) [41] of 128. However, licenses are only available for computers with a QV of up to
32. Therefore, we implemented our algorithm on machines called ibmq santiago and ibmq bogota, which
had five qubits and a QV of 32. The topological structures of these two machines are chains, and the
error rates of each are presented in Table 2,

Due to the limited qubits, our problem must be simplified. For the SSP of set S = {2, 3, 5, 7} and
w = 12, we know that two subsets {2, 3, 5} and {5, 7} satisfy this condition from the simulation results,
and there are a total of 16 subsets of S; therefore, the success probability is 1/8. We first divide {2, 3, 5}
and {5, 7} into the good state |1〉 and the other subsets into the bad state |0〉; therefore, we have the
state |ψ〉 =

√

1/8|1〉+
√

7/8|0〉. Then, we convert the problem into S = {1}, w = 1, and a single element
of S has a probability of 1/8 to be selected. Now, the eigenvector register Reg1 is one qubit, we use Reg1
to store the eigenvector. Then, we can apply Ry(2 × arcsin(

√

1/8)) gate to |0〉 to generate this state.
To distinguish all the phases of 0 and 0.5, we need one qubit to store the eigenvalue. In addition, we
need another qubit to encode w. After simplification, we need three qubits: Reg0 is formed by q0, Reg1
is formed by q2, and qa is q1. The experimental circuits are presented in Figure 5.

During the QPE, all the qubits are initialed to |0〉. Let |b〉 = (Ry(2 × arcsin(
√

1/8)) ⊗X)|0〉|0〉 and
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Table 3 The success probabilities of the simulator, ibmq bogata (device) and ibmq santiago (device) under different AA iterations

Iteration = 0 Iteration = 1 Iteration = 2 Iteration = 3

Ptheory 0.125 0.781 0.945 0.330

Psimulator 0.133 ± 0.010 0.782 ± 0.015 0.940 ± 0.004 0.332 ± 0.013

Pbogota 0.153 ± 0.018 0.694 ± 0.034 0.665 ± 0.060 0.448 ± 0.045

Psantiago 0.190 ± 0.024 0.726 ± 0.057 0.751 ± 0.040 0.425 ± 0.053
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Figure 6 (Color online) ρ is dense matrix of the theory, σ1 is the reconstructed dense matrix of ibmq bogota, and σ2 is the

reconstructed dense matrix of ibmq santiago. |111〉 is the desired state. The error bars represent the standard errors (one side) of

the samples. (a)–(c) Real parts of the theory dense matrix when the number of AA iterations is 0, 1, and 2. (d)–(f) Test results on

ibmq bogota when the number of iterations is equal to 2 and the fidelity is 0.657 ± 0.028. (g)–(i) Results on ibmq santiago when

the number of iterations is equal to 2 and the fidelity is 0.753 ± 0.017.

construct the oracle operator of QPE by

U = U1(−π)⊗U1(π) =

(

e0 0

0 e−iπ

)

⊗
(

e0 0

0 eiπ

)

=













e0 0 0 0

0 eiπ 0 0

0 0 e−iπ 0

0 0 0 e0













=

(

e2πiw̃D 0

0 D

)

. (23)

Since q1 is |1〉 during the entire QPE, we focus only on the bottom right block D, which generates phases
0 and 0.5. After the QPE, we have state |ψ2〉 = |Reg1〉|qa〉|Reg0〉 =

√

1/8|110〉 +
√

7/8|011〉. When
|Reg1〉 = |1〉, we have a phase equal to zero, and the success probability is 1/8. Next, we can apply
the AA iterator to amplify the amplitude of |1〉. To demonstrate the speedup process, we obtained the
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Figure 7 (Color online) ρ is dense matrix of the theory, σ1 is the reconstructed dense matrix of ibmq bogota, and σ2 is the

reconstructed dense matrix of ibmq santiago. The error bars represent the standard errors (one side) of the samples. (a)–(c)

Imaginary parts of the theory dense matrix when the number of AA iterations is 0, 1, and 2. (d)–(f) and (g)–(i) Results on

ibmq bogota and ibmq santiago, respectively.

Table 4 The fidelities of the simulator, ibmq bogata (device) and ibmq santiago (device) under different AA iterations

Iteration = 0 Iteration = 1 Iteration = 2 Iteration = 3

Fsimulator 0.996 ± 0.004 0.997 ± 0.003 0.944 ± 0.002 0.746 ± 0.003

Fbogota 0.939 ± 0.009 0.761 ± 0.027 0.657 ± 0.028 0.536 ± 0.037

Fsantiago 0.901 ± 0.027 0.856 ± 0.036 0.753 ± 0.017 0.570 ± 0.051

results and measured one qubit qa to obtain the success probabilities when |qa〉 = |1〉 after each iteration.
For each circuit, we repeated the measurement 1024 times. Each experiment was repeated five times.
Table 3 presents the success probabilities of the theory, simulator, ibmq bogata, and ibmq santiago after
different iterations. We obtained maximum success probabilities of 0.940 ± 0.004, 0.665 ± 0.060, and
0.751±0.040 on the simulator, ibmq bogata, and ibmq santiago when applying the AA iterator twice. In
contrast, N

M = 8 applications of the iteration are required on a classical computer when using the brute
force algorithm. These results experimentally demonstrate the quadratic acceleration of our algorithm.

To evaluate the generated state and demonstrate the speedup process comprehensively, we obtained the
results and measured all three qubits through state tomography [42] after each iteration, and calculated
the fidelity between the theoretical and experimental states. After we gather the results from the state
of |ψ2〉 = |Reg1〉|qa〉|Reg0〉 =

√

1/8|110〉+
√

7/8|011〉 generated by QPE through

Ugather|ψ2〉 = Ugather(
√

1/8|110〉+
√

7/8|011〉)
=
√

1/8|111〉+
√

7/8|000〉. (24)
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The good state we desired was |111〉. Figures 6 and 7 illustrate the real and imaginary parts for the
reconstructed matrix of the states generated by the theory, ibmq bogata, and ibmq santiago after each
iteration (0, 1, and 2). The value of (111, 111) in the real parts that correspond to the good state
that we want to keep increasing when the number of iterations increased. This demonstrates that the
amplitude algorithm was effective. Table 4 presents the fidelity calculated from the experimental results
by F = Tr

√√
ρσ

√
ρ, where ρ is dense matrix of the theory, and σ is the matrix reconstructed through

state tomography. From the experimental results, we obtained a fidelity of 0.944± 0.002, 0.657± 0.028,
and 0.753± 0.017 on the simulator, ibmq bogata, and ibmq santiago, respectively, when the number of
iterations reached 2. These results indicate that the simulator performed better than the two quantum
devices when the number of iterations was less than or equal to 3. If the error rates of the experimental
quantum logic gates can be reduced, the fidelity of executing our algorithm on real quantum devices is
expected to be further improved.

6 Conclusion and future work

For most computer scientists and mathematicians, finding an efficient way to solve NPC problems is of
great value. However, it is difficult to achieve this goal due to the high computation time and space
complexity required. Quantum computing has unique advantages for these problems due to quantum
parallelism and superposition. On this basis, we constructed a relationship between the SSP and quantum
circuit model, and then proposed a feasible quantum algorithm to solve it and obtain quadratic speedup
through AA iteration. At the same time, our coding method is practical and easy to implement. To
handle the SSP problem, five steps and n + t + 1 qubits are required for operation. To only determine
whether there is a solution, we need to measure only the ancilla qubit qa to obtain the results. To
obtain the actual solutions, we need to measure Reg1 to obtain the exact index of the solution subset
when the ancilla qubit is one. We observed that the quantum simulator performed better than real
quantum devices. Therefore, determining how to further reduce the error rates of real quantum devices
and improve the available qubits remains a vital problem for the implementation of our circuit. Our
algorithm can make full use of quantum parallelism to encode, and achieves a quadratic speedup with
less qubit consumption. Therefore, it can be further used in encryption [4] and resource scheduling [8].
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