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Abstract Using unmanned aerial vehicles (UAVs) for data collection has emerged as a promising technique

to achieve both time- and energy-efficient data gathering while keeping data fresh. In this study, two schemes

are proposed for flight cycle minimization and energy efficiency maximization to collect data from ground sen-

sors. We first minimize the flight cycle by jointly optimizing the wake-up scheduling of sensors, the trajectory,

and the time slot, which is a mixed-integer non-convex problem and difficult to solve directly. To this end,

we propose an iterative algorithm based on block coordinate descent and successive convex approximation to

decouple the original non-convex problem into two sub-problems and the constraints are turned to be convex

approximately. Furthermore, the energy efficiency is maximized since the limited energy is a critical issue in

UAV communication systems. We approximate the two subproblems as convex optimizations by introducing

slack variables and applying SCA. The approximate energy efficiency is a fractional expression, and we use

Dinkelbach’s method to solve it. Numerical results show that the flight cycle is minimized in the first scheme

with the data requirement satisfied, while in the second scheme, the energy efficiency is maximized with the

trade-off between the transmission data and the propulsion power consumption.
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1 Introduction

Unmanned aerial vehicles (UAVs) have attracted extensive attention due to their high mobility, swift
deployment, and low cost [1–3]. As a low-altitude platform, UAV may establish better wireless channels
with ground nodes due to line-of-sight (LoS) links, which can significantly enhance the system throughput
and save the transmit power [4]. In particular, UAVs can be deployed in various applications such as
seamless coverage [5], aerial base stations (BSs) [6], mobile relaying [7], and cellular data offloading [8].
Especially, there is increasing research effort on data collection enabled by UAVs due to their flexibility
and reliability.

For data collection purpose, UAVs can be deployed with inherent wireless sensor networks (WSNs)
where the sensing data are collected from ground terminals in [9–11], which have found many applica-
tions, such as precision agriculture, weather monitoring, and distributed estimation. Compared with the
conventional ground sensor networks, exploiting UAV as a flying data collector can gather sensing data
from distributed sensors efficiently and reliably, and each sensor node can transmit data in a much better
air-ground channel while guaranteeing fairness among users. An energy-efficient design in UAV-aided
WSN is proposed by Zhan et al. [12] to minimize the maximum energy consumption of all sensors. They
also investigate a multi-UAV enabled WSN to study the fundamental tradeoff between aerial energy cost
and ground energy cost in [13]. Therefore, UAV-aided data collection can enhance performance and
improve the lifetime of WSNs.
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Despite the wide utilization of UAVs, one critical issue is the limited endurance, which greatly restricts
the lifetime of UAVs and limits their applications [14–16]. Furthermore, it is also important to reduce
the flight cycle for a given task so that the subsequent missions can start as soon as possible. Thus,
time-efficient communication for minimizing the flight time is of paramount importance [17–20]. Zeng
et al. [17] minimized the mission time while ensuring high success probability of file recovery. Zhan et
al. [18] considered a general multi-UAV enabled WSN and proposed two schemes of hovering mode and
flying mode, aiming to minimize the maximum mission time among all UAVs. Gong et al. [19] considered
a scenario where a set of energy-constrained sensors are placed along a line and studied the flight time
minimization problem with the data upload requirement. They further studied a general scenario where
sensors are randomly located on a two-dimensional (2D) ground space [20].

On the other hand, it is worthwhile to mention that the minimum flight cycle does not mean the
minimum UAV’s energy consumption due to the complex factors, i.e., the UAV energy consumption also
lies in flying, hovering and other operations [21–23]. In [23], the UAV energy consumption was simulated
according to flight speed and operating conditions such as lifting and hovering. Zeng et al. [24] studied
the energy minimization problem of rotary-wing UAV and derived a rigorous energy consumption model
which can be applied in cellular network [25], wireless power transfer [26], and many other scenarios.
For this challenging non-convex problem, it applies successive convex approximation (SCA) to solve it.
The optimal transmission scheduling was proposed by Li et al [27]. To minimize the maximum UAV
energy consumption with the guarantee of bit error rate. Hua et al. [28] minimized the UAV power
consumption while satisfying the rate requirements of sensors. In fact, we prefer to study the energy-
efficient communication for collecting more data per unit of UAV’s energy consumption due to the limited
on-board energy. Zeng et al. [29] derived the propulsion energy consumption of fixed-wing UAVs as
a function of flying velocity and acceleration and studied the energy efficiency maximization problem
subject to the general constraints of UAVs and sensors. The design of energy-efficient communication
in a UAV-assisted backscatter communication network was proposed by Yang et al. [30] to maximize
the energy efficiency of the network. Pang et al. [31] investigated the maximum energy efficiency of
the mmWave-enabled NOMA-UAV networks via optimizing the UAV placement, hybrid precoding, and
power allocation.

Motivated by the above-mentioned studies, we investigate the data collection of limited-energy UAVs
from two aspects, time efficiency and energy efficiency. For time-efficient data collection, minimizing the
flight cycle can keep sensing data fresh and allow subsequent missions to start early. For energy-efficient
data collection, maximizing the energy efficiency ensures that the UAV collects more data with limited
energy. We consider a general scenario where a UAV is deployed to serve some energy-constrained ground
sensors. The main contributions of this paper are summarized as follows:

• First, we consider a general UAV-enabled WSN, where a rotary-wing UAV is dispatched to collect
data periodically from ground sensors with limited energy. Two optimization problems are formulated to
minimize the flight cycle and maximize the energy efficiency, via jointly optimizing the wake-up scheduling
of sensors, the UAV trajectory, and the time slot. Both the two problems are mixed-integer non-convex
problems with coupled variables, which are difficult to solve directly.

• To tackle the flight cycle minimization problem, a general iterative algorithm using block coordinate
descent (BCD) [32] and SCA [33] is proposed. Specifically, we use BCD to transform the original problem
into two subproblems: the wake-up scheduling optimization with fixed trajectory and the trajectory
optimization with fixed wake-up scheduling. The two non-convex subproblems are approximated as
convex by SCA. The convergence and complexity of the proposed algorithm are also analyzed.

• For the energy efficiency maximization problem, we propose an algorithm based on BCD and SCA.
Two transformed subproblems are formulated: the wake-up scheduling and time slot optimization, as well
as the trajectory optimization. We transform the two subproblems into approximate convex optimizations
by introducing slack variables and employing SCA. Since the approximate optimization objective is a
fractional expression of trajectory, wake-up scheduling, and time slot, we use the Dinkelbach’s method [34]
to tackle the fractional programming (FP) problem and gain a suboptimal solution.

The rest of this paper is organized as follows. In Section 2, we introduce the system model and problem
formulation. Section 3 studies the flight cycle minimization optimization problem based on BCD and
SCA. Section 4 studies the energy efficiency maximization optimization problem via the Dinkelbach’s
method. In Section 5, we present the simulation results to illustrate the proposed algorithms, followed
by the conclusion in Section 6.

Notation. In this paper, matrix, vector, and scalar are denoted by bold uppercase letter A, bold
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Figure 1 (Color online) UAV-aided data collection in wireless sensor networks.

lowercase letter a, and lowercase letter a. ‖A‖ and ‖a‖ denote the Frobenius norm and the Euclidean
norm, respectively. AT represents the transpose of A. R

x×y denotes the space of x × y real matrices.
Finally, , means equivalence in definition.

2 System model

As shown in Figure 1, we consider the uplink communication in a UAV-aided WSN, where a UAV collects
data from ground sensors via time-division multiple access. The UAV flies at a fixed altitude H with a
maximum speed Vm and a flight cycle T . Denote the set of ground sensors as I , {1, 2, . . . , I}. The ith
sensor is located at Li = [xi, yi]

T ∈ R
2×1, and transmits at least Bi to the UAV in each cycle with an

energy budget of Ei, ∀i ∈ I. We divide the flight cycle T into N time slots, with the duration of each
time slot δt = T/N . Let N , {1, 2, . . . , N} denote the set of time slots. The number of time slots N
should be large enough to ensure that the location of the UAV is approximately unchanged.

Denote the 2D Cartesian coordinate of UAV in the nth time slot asw[n] = [x[n], y[n]]T, n = 1, 2, . . . , N ,
and the initial and final locations of a UAV are w[1] and w[N ], respectively. The UAV returns to its
initial location at the end of each flight cycle, and the maximum speed is denoted as Vm. As a result, we
have

w[1] = w[N ], (1)

‖w[n+ 1]−w[n]‖ 6 Vmδt, n = 1, . . . , N − 1, (2)

‖w[n+ 1]−w[n]‖2 6 γH2, n = 1, . . . , N − 1, (3)

where γ should be carefully chosen to guarantee that the UAV’s location is approximately unchanged
within each time slot.

Assume that the UAV only serves at most one sensor in each time slot. Define a binary variable Si[n]
to illustrate the wake-up scheduling of sensors, which implies that the UAV serves the ith sensor in time
slot n if Si[n] = 1, while Si[n] = 0 means that the ith sensor is not served by the UAV in the nth time
slot. Therefore, the wake-up scheduling of sensors should satisfy

Si[n] = {0, 1}, ∀i ∈ I, ∀n ∈ N , (4)
∑

i∈I

Si[n] 6 1, ∀n ∈ N . (5)
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Generally, the UAV-ground channel needs to consider both the LoS and non-LoS (NLoS) [35–37].
According to [38], the LoS probability can be approximated to 1 when the UAV is above 100 m, which is
suitable for the proposed scheme. Thus it can be assumed that the UAV-ground channels in this study
are dominated by LoS, which has been also adopted in existing literatures [29–31, 39, 40]. The distance
between the UAV and the ith sensor in the nth time slot can be expressed as

di[n] =

√

H2 + ‖w[n]−Li‖2, ∀i ∈ I. (6)

Therefore, the channel power gain from the ith sensor to the UAV can be modeled as

hi[n] =
ρ0

H2 + ‖w[n]−Li‖2
, ∀i ∈ I, (7)

where ρ0 denotes the reference channel power gain at the distance d0 = 1 m. Thus, the achievable
transmission rate for the ith sensor in the nth time slot can be expressed as

Ri
u[n] = Si[n]log2

(

1 +
PAρ0

(H2 + ‖w[n]−Li‖2)σ2

)

, (8)

where σ2 is the additive Gauss white noise at the UAV, and PA is the uplink transmit power of each
sensor. For the ith sensor, it needs to transmit Bi within N time slots with the energy constraint Ei,
which should satisfy

N∑

n=1

(Ri
u[n]δt) > Bi, ∀i ∈ I, (9)

N∑

n=1

(Si[n]PAδt) 6 Ei, ∀i ∈ I. (10)

For UAV-aided data collection, data freshness is a critical criterion. In addition, the finite on-board
energy of a UAV limits its endurance and performance. Therefore, in the following sections, the flight
cycle and energy efficiency are optimized for the data collection in UAV-aided WSNs, respectively.

3 Time-efficient data collection via UAV

In UAV-aided WSNs, time-efficient data collection is appealing for both UAVs and sensors to ensure the
freshness of data. Thus we first propose a time-efficient data collection scheme in this section.

3.1 Problem formulation

We aim at minimizing the UAV flight cycle via jointly optimizing the wake-up scheduling of sensors
S = {Si[n], ∀i ∈ I, ∀n}, UAV trajectory W = {w[n], ∀n} and the duration δt of each time slot with the
aforementioned constraints. Notice that N is fixed, and we turn to find the minimum δt. The optimization
problem can be formulated as

min
S,W ,δt

δt (11a)

s.t. (1), (2), (3), (4), (5), (9), (10), (11b)

which is mathematically intractable as it is a mixed-integer non-convex problem. To solve it effectively,
we set t̂ = 1/δt, and relax the binary variables Si[n] into continuous variables. The problem (11) can be
reformulated as

max
S,W ,t̂

t̂ (12a)

s.t. t̂ 6
Vm

‖w[n+ 1]−w[n]‖ , n = 1, . . . , N − 1, (12b)
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0 6 Si[n] 6 1, ∀i ∈ I, ∀n ∈ N , (12c)

t̂ 6
1

Bi

N∑

n=1

Ri
u[n], ∀i ∈ I, (12d)

t̂ >
1

Ei

N∑

n=1

(Si[n]PA), ∀i ∈ I, (12e)

(1), (3), (5). (12f)

Although relaxed, Eq. (12) is still difficult to solve because of the non-convex (12b) and (12d). In the
following subsections, we use BCD to split it into two subproblems and exploit SCA to handle them.

3.2 Subproblem 1: wake-up scheduling optimization

For any given UAV trajectory W , the wake-up scheduling optimization in (12) can be transformed as

max
S,t̂

t̂ (13a)

s.t. (5), (12b), (12c), (12d), (12e). (13b)

Note that in (8), Ri
u[n] is a linear function with respect to Si[n]. Thus, Eq. (13) is a standard linear

programming problem, which can be solved by optimization tools such as CVX.

3.3 Subproblem 2: UAV trajectory optimization

With fixed wake-up scheduling S, the UAV trajectory can be optimized by

max
W ,t̂

t̂ (14a)

s.t. (1), (3), (12b), (12d), (12e). (14b)

Since Eqs. (12b) and (12d) are non-convex, it is difficult to solve it directly to obtain the optimal
solution. Thus, we apply SCA to approximate the original function into a tractable one. Note that in
the (r + 1)th iteration, we first solve (13) and obtain solutions t̂r+1

S
and Sr+1. Then, for the constraint

(12b), it is equivalent to

‖w[n+ 1]−w[n]‖2 6
(
Vm/t̂

)2
, n = 1, . . . , N − 1, (15)

which is non-convex with respect to t̂. Apply the first-order Taylor expansion at the given point t̂r+1
S

as

(
Vm

t̂

)2

>

(
Vm

t̂r+1
S

)2

− 2V 2
m

(
t̂r+1
S

)3

(
t̂− t̂r+1

S

)
, (16)

where t̂r+1
S

is the optimal value of t̂ for (13) calculated in the (r + 1)th iteration. The right-hand side of
(16) is a linear function of t̂. Thus, the non-convex constraint (12b) can be approximated as

‖w[n+ 1]−w[n]‖2 6

(
Vm

t̂r+1
S

)2

− 2V 2
m

(
t̂r+1
S

)3

(
t̂− t̂r+1

S

)
. (17)

For the constraint (12d), we introduce Proposition 1 to handle it.

Proposition 1. The non-convex constraint (12d) can be approximated as

t̂ 6
1

Bi

N∑

n=1

Ri,lb
u [n], ∀i ∈ I, (18)

where
Ri,lb

u [n] = Ar
i [n] +Br

i [n]
(

‖w[n]−Li‖2 − ‖wr[n]−Li‖2
)

. (19)
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In (19), Ar
i [n] and Br

i [n] are constants defined as

Ar
i [n] = Si[n]log2

(

1 +
PAρ0

(H2 + ‖wr[n]−Li‖2)σ2

)

, ∀i, ∀n, (20)

Br
i [n] = −

PAρ0

(H2+‖wr[n]−Li‖
2)2σ2

1 + PAρ0

(H2+‖wr[n]−Li‖
2)σ2

log2e, ∀i, ∀n. (21)

Proof. Note that in the constraint (12d), Ri
u[n] is neither convex nor concave with respect to w[n], but

is convex with respect to ‖w[n]−Li‖. Thus, we replace Ri
u[n] with its first-order Taylor expansion, and

it can be lower-bounded as

Ri
u[n] > Ar

i [n] +Br
i [n]

(

‖w[n]− Li‖2 − ‖wr[n]−Li‖2
)

, Ri,lb
u [n], (22)

where wr[n] denotes the value of w[n] in the rth iteration. Since Ri,lb
u [n] is concave with w[n], the

non-convex constraint (12d) can be approximated as (18). Note that Eq. (22) shows that the solution
satisfying (18) also satisfies (12d), but the reversal is not true for the most part.

In the (r+1)th iteration, through the approximate constraints (17) and (18), the given UAV trajectory
W r obtained in the rth iteration, the given wake-up scheduling Sr+1, and the time slot duration t̂r+1

S

obtained by solving the subproblem (13), the original subproblem (14) can be approximated as

max
W ,t̂

t̂ (23a)

s.t. (1), (3), (12e), (17), (18). (23b)

Since the left-hand side of the constraint (17) is convex with respect to w[n] and the right-hand side
of the constraint (18) is concave with respect to w[n], it can be verified that Eq. (23) is a convex
optimization problem, which can be tackled with optimization tools like CVX.

3.4 Overall algorithm

In conclusion, an algorithm is proposed to obtain the suboptimal solution to (12) by solving (13) and
(23) iteratively through BCD and updating the local point at each iteration. The detailed alternating
optimization is summarized as Algorithm 1.

Algorithm 1 SCA-based solutions to (12)

Input: Initialize the threshold ǫ, the trajectory W
0, and the iteration index r = 0.

1: while the increase of the objective value is greater than ǫ do

2: In the (r + 1)th iteration, solve the linear programming problem (13) for the given W
r calculated in the rth iteration to

obtain S
r+1 and t̂r+1

S
;

3: Solve the convex optimization problem (23) for the given W
r, Sr+1, and t̂r+1

S
to obtain W

r+1 and t̂r+1;

4: Denote the optimal solution as S
∗ = S

r+1, t̂∗ = t̂r+1, and W
∗ = W

r+1;

5: Update r = r + 1;

6: end while

Output: The final solutions W
∗, S∗, and t̂∗.

In the first step of Algorithm 1, an initial UAV trajectory W 0 should be set, and we adopt a simple
and systematic circular initialization as [41]. The center Cu and radius ru of the initial trajectory W 0

are determined by

Cu =

I∑

i=1

Li/I, (24)

ru = min

(
VmT

2π
,
‖Li −Cu‖

2

)

. (25)

For the convergence analysis of Algorithm 1, it is shown that with the given {W r,Sr} in the (r+1)th
iteration, the solution {W r,Sr+1} by solving (13) is suboptimal and non-decreasing over iterations.
On the other hand, for the given {W r,Sr+1}, the solution {W r+1,Sr+1} by solving the approximate
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problem (23) is suboptimal and non-decreasing over iterations. Moreover, the objective value of the
approximate problem (23) is a lower bound of the original subproblem (14). As a result, the objective
derived from Algorithm 1 is a lower bound of the original objective (12a) and is guaranteed to converge.

Then, we analyze the complexity of Algorithm 1. Since Steps 3 and 4 of Algorithm 1 can be solved
by the interior point method, the computational complexity is based on the complexity analysis of the
interior-point method [42]. Step 3 involves N − 1 linear matrix inequality (LMI) constraints of size 1,
N LMI constraints of size I and 2I LMI constraints of size N + 1, where IN + 1 represents the total
number of variables, and the complexity for solving Step 3 is

√
3NI + 2I +N − 1(IN + 1)((N − 1) +

NI3 +2I(N +1)3 + (IN +1)(N − 1+NI2 +2I(N +1)2) + (IN +1)2), i.e., O(I3.5N3.5(I +N)). Step 4
involves 1 linear equality constraint of size 4, N − 1 second order cone (SOC) constraints of size 5, N − 1
SOC constraints of size 4, I SOC constraints of size 2N + 1 and I LMI constraints of size 1. The total
number of variables is 2N + 1 and the complexity of solving Step 4 is O(IN3

√
N + I). Therefore, the

total computational complexity of Algorithm 1 is O(I3.5N3.5(I +N)).

4 Energy-efficient data collection via UAV

The time-efficient data collection scheme in Section 3 can save flight time to keep the freshness of data.
Nevertheless, the limited energy of UAV is another critical challenge, and the energy efficiency should be
maximized to collect more data with limited energy. Thus, we propose an energy-efficient data collection
scheme via UAV in this section.

4.1 Problem formulation

The total energy consumption of the UAV includes communication-related energy and propulsion energy.
We ignore communication-related energy when calculating energy efficiency because it is usually much
smaller than the propulsion energy of UAVs [43,44]. The UAV propulsion power consumption depends on
the UAV’s speed and acceleration. We ignore the consumption caused by acceleration, which is reasonable
when the acceleration time is only a small part of the total flight time [24]. For a rotary-wing UAV with
the velocity V , the propulsion power consumption can be modeled as

P (V ) = P0

(

1 +
3V 2

U2
tip

)

︸ ︷︷ ︸

blade profile

+Pi

(√

1 +
V 4

4v40
− V 2

2v20

)1/2

︸ ︷︷ ︸

induced

+
1

2
d0ρsAV

3

︸ ︷︷ ︸

parasite

,
(26)

where Utip, v0, d0, ρ, s, and A denote the tip speed of the rotor blade, the mean rotor induced velocity in
hovering, the fuselage drag ratio, the air density, the rotor solidity, and the rotor disc area, respectively.
P0 and Pi represent the blade profile power and the induced power when V = 0. From (26), we know that
the propulsion power of a rotary-wing UAV consists of three components, i.e., the blade profile power,
the induced power, and the parasite power.

As the flight cycle T is divided into N time slots, the UAV velocity in the nth time slot can be

approximately given by v[n] = ‖w[n+1]−w[n]‖
δt

= ∆n

δt
, where ∆n , ‖w[n+ 1]−w[n]‖. Thus, the propulsion

power consumption Pprop[n] in the nth time slot can be written as

Pprop[n] = P0

(

1 +
3v[n]2

U2
tip

)

+
1

2
d0ρSAv[n]

3 + Pi

(√

1 +
v[n]4

4v40
− v[n]2

2v20

) 1
2

= P0

(

1 +
3∆2

n

U2
tipδt

2

)

+
1

2
d0ρSA

∆3
n

δ3t
+ Pi

(√

1 +
∆4

n

4v40δt
4 − ∆2

n

2v20δt
2

)1
2

. (27)

Furthermore, with given W and δt, the UAV propulsion energy consumption Etot can be written as

Etot =
N∑

n=1

Pprop[n]δt = P0

N∑

n=1

(

δt +
3∆2

n

U2
tipδt

)

+
1

2
d0ρSA

N∑

n=1

∆3
n

δt
2 + Pi

N∑

n=1

(√

δt
4 +

∆4
n

4v40
− ∆2

n

2v20

) 1
2

. (28)
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According to (8), the total amount of information R̄tot during the period of T can be expressed as

R̄tot =
N∑

n=1

I∑

i=1

Ri
u[n]δt. (29)

Therefore, considering (28) and (29), the energy efficiency of the UAV-aided WSN can be expressed as

EE =
R̄tot

Etot
=

∑N
n=1

∑I
i=1 R

i
u[n]δt

∑N
n=1 Pprop[n]δt

. (30)

To maximize the energy efficiency by jointly optimizing the wake-up scheduling S = {Si[n], ∀i ∈ I, ∀n},
the UAV trajectory W = {w[n], ∀n} and the time slot duration δt, the optimization problem can be
formulated as

max
S,W ,δt

EE (31a)

s.t. (1), (2), (3), (4), (5), (9), (10). (31b)

The problem (31) is a fractional maximization with a non-concave numerator over a non-convex de-
nominator. In addition, the constraints (2), (9), and (10) are non-convex functions of coupled variables
S, W , and δt. Thus, Eq. (31) is non-convex and difficult to solve. We use BCD and SCA to transform
the non-convex problem approximately into two convex subproblems. For the fractional problem, it is
solved via the Dinkelbach’s method.

4.2 Subproblem 1: wake-up scheduling and time slot optimization

For any given UAV trajectory W , the wake-up scheduling and time slot optimization subproblem can be
formulated as

max
S,δt

EE (32a)

s.t. (2), (5), (9), (10), (12c). (32b)

Note that Ri
u[n]δt is a non-convex function of coupled variables S and δt. Furthermore, the expression

in (28) reveals that the first and second terms are convex functions with respect to δt, and the third term
is non-convex. To make (32) more tractable, we first introduce the slack variable a[n] as

a[n]2 =

√

δt
4 +

∆4
n

4v40
− ∆2

n

2v20
, ∀n ∈ N , (33)

which is equivalent to

δt
4 = a[n]4 +

∆2
n

v20
a[n]2, ∀n ∈ N . (34)

As a result, the third term of (28) can be replaced by Pi

∑N
n=1 a[n], which is linear for a[n]. Thus, the

total energy consumption of UAV in this subproblem is jointly convex with respect to δt and a[n], which
can be reformulated as

EA
tot =

N∑

n=1

PA
prop[n]δt = P0

N∑

n=1

(

δt +
3∆2

n

U2
tipδt

)

+
1

2
d0ρSA

N∑

n=1

∆3
n

δt
2 + Pi

N∑

n=1

a[n]. (35)

On the other hand, we can tackle the non-convex expression Ri
u[n]δt by introducing the slack variable

R t[i] such that

R t[i]
2
=

N∑

n=1

Ri
u[n]δt, ∀i ∈ I. (36)

After introducing two slack variables, we have

EE =

∑I
i=1 R t[i]2

EA
tot

=

∑I
i=1 R t[i]2

∑N
n=1 P

A
prop[n]δt

, (37)
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and Eq. (32) can be reformulated as

max
S,δt

a[n],R t[i].

∑I
i=1 R t[i]2

∑N
n=1 P

A
prop[n]δt

(38a)

s.t. R t[i]2 > Bi, ∀i ∈ I, (38b)

N∑

n=1

(Si[n]PA) 6 Ei
1

δt
, ∀i ∈ I, (38c)

δt
4 6 a[n]4 +

∆2
n

v20
a[n]2, ∀n ∈ N , (38d)

R t[i]2 6

N∑

n=1

Ri
u[n]δt, ∀i ∈ I, (38e)

(2), (5), (12c). (38f)

It can be shown that at the optimal solution to (38), the constraints (38d) and (38e) should be
satisfied with equality. This is because we can always increase R t[i] or reduce a[n] to make (38d) and
(38e) satisfied with equality and obtain a strictly larger objective (38a). Then, at the optimal solution
to (38), the constraints (38d) and (38e) are equivalent to (34) and (36). Therefore, Eqs. (32) and (38)
are equivalent.

However, Eq. (38) is non-convex due to the non-convex constraints (38b)–(38e) and the non-concavity
in the numerator of the objective (38a). First, we use SCA to handle the constraints (38b)–(38d). For
the constraint (38b), we introduce Proposition 2 to handle it.

Proposition 2. The non-convex constraint (38b) can be approximated as

R tlb[i] > Bi, ∀i ∈ I, (39)

where
R tlb[i]

∆
= R t(r)[i]2 + 2R t(r)[i]

(
R t[i]− R t(r)[i]

)
. (40)

Proof. In the (r+1)th iteration, since R t[i]2 is a convex function with respect to R t[i], for any given
local point obtained in the rth iteration R t(r)[i], we have

R t[i]2 > R t(r)[i]2 + 2R t(r)[i]
(
R t[i]−R t(r)[i]

) ∆
= R tlb[i]. (41)

Obviously R tlb[i] is a linear function with respect to the slack variable R t[i]. Thus, the non-convex
constraint (38b) can be approximated as (39).

Similarly, for the non-convex constraint (38c), the right-hand side is a convex function with respect to
δt. Thus, the right-hand side can be approximated by its first-order Taylor expansions over any given
local point δt

(r), which holds

1

δt
>

1

δt
(r)

−
(

1

δt
(r)

)2
(
δt − δt

(r)
) ∆
=

(
1

δt

)

lb

. (42)

Furthermore, for the constraint (38d), the right-hand side is a convex function with respect to a[n].
Thus, we have the following inequality by applying the first-order Taylor expansion at the given point
a(r)[n].

a[n]4 +
∆2

n

v20
a[n]2 > a(r)[n]4 + 4a(r)[n]3

(
a[n]− a(r)[n]

)
+

∆2
n

v20

(
a(r)[n]2 + 2a(r)[n]

(
a[n]− a(r)[n]

))
. (43)

For the constraint (38e), it can be reformulated as a standard SOC constraint because the hyperbolic
constraint z2 6 xy (x > 0, y > 0) will result in ‖[2z, x− y]†‖ 6 x+ y.

For the objective (38a), substituting the lower bound R tlb[i] for R t[i]2 in the numerator and the
objective can be reformulated as

EElb ,

∑I
i=1 R tlb[i]

∑N
n=1 P

A
prop[n]δt

6

∑I
i=1 R t[i]2

∑N
n=1 P

A
prop[n]δt

, (44)
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where EElb denotes the lower bound of (38a). By replacing the non-convex constraints (38b)–(38e) with
their corresponding lower bounds in (41)–(43), as well as the standard SOC constraint based on the
previous discussion, we have the approximate optimization problem as

max
S,δt

a[n],R t[i].

∑I
i=1 R tlb[i]

∑N
n=1 P

A
prop[n]δt

(45a)

s.t. R tlb[i] > Bi, ∀i ∈ I, (45b)

N∑

n=1

(Si[n]PA) 6 Ei

(
1

δt

)

lb

, ∀i ∈ I, (45c)

δt
46a(r)[n]4+4a(r)[n]3

(
a[n]−a(r)[n]

)
+
∆2

n

v20

(
a(r)[n]2+2a(r)[n]

(
a[n]−a(r)[n]

))
, ∀n ∈ N , (45d)

∥
∥
∥
∥
∥
∥

[

2R t[i],

N∑

n=1

Ri
u[n]− δt

]†
∥
∥
∥
∥
∥
∥

6

N∑

n=1

Ri
u[n] + δt, ∀i ∈ I, (45e)

(2), (5), (12c). (45f)

The objective (45a) is a fractional function with a concave numerator and a convex denominator, and
the constraints are all convex. Therefore, we can transform (45) into an equivalent convex problem via
the Dinkelbach’s method and solve it with CVX.

4.3 Subproblem 2: UAV trajectory optimization

For any given wake-up scheduling S and time slot duration δt, the UAV trajectory can be optimized as

max
W

EE (46a)

s.t. (1), (2), (3), (9). (46b)

The numerator of the objective (46a) and the constraint (9) are both non-concave with respect to
w[n]. Note that in (18), Ri

u[n] can be lower bounded by its first-order Taylor expansion Ri,lb
u [n], which

is concave with respect to w[n]. Thus, the numerator of the objective (46a) and the left-hand side of the

constraint (9) can be replaced by
∑N

n=1(R
i,lb
n [n]δt).

Similar to Subsection 4.2, for the non-convex denominator
∑N

n=1 Pprop[n]δt, we introduce slack variables
b[n] > 0 and have

b[n]2 6

√

δt
4 +

∆4
n

4v40
− ∆2

n

2v20
, (47)

which is equivalent to
δt

4

b[n]
2 > b[n]2 +

∆2
n

v20
. (48)

Thus, the total energy consumption of UAV in this subproblem can be reformulated as

EB
tot =

N∑

n=1

PB
prop[n]δt = P0

N∑

n=1

(

δt +
3∆2

n

U2
tipδt

)

+
1

2
d0ρSA

N∑

n=1

∆3
n

δt
2 + Pi

N∑

n=1

b[n]. (49)

Similar to Subsection 4.2, the constraint (48) can be satisfied with equality, since we can always decrease
b[n] to increase the optimization goal. Although (48) is still a non-convex constraint, the right-hand side
is convex with respect to b[n] and w[n]. By applying the first-order Taylor expansion, the lower bound
can be obtained as (50).

b[n]2 +
‖w[n+ 1]−w[n]‖2

v20
>
(
b(r)[n]

)2
+ 2b(r)[n]

(
b[n]− b(r)[n]

)
− ‖w(r)[n+ 1]−w(r)[n]‖2

v20

+
2

v20

(
w

(r)[n+ 1]−w
(r)[n]

)T
(w[n+ 1]−w[n]) .

(50)
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Substituting the lower bound Ri,lb
u [n] for both the numerator of (46a) and the left-hand side of (9),

and replacing the non-convex (48) with it lower bound obtained in (50), (46) can be reformulated as

max
W ,b[n]

∑N
n=1

∑I
i=1 R

i,lb
u [n]δt

∑N
n=1 P

B
prop[n]δt

(51a)

s.t.

N∑

n=1

(
Ri,lb

n [n]δt
)
> Bi, ∀i ∈ I, (51b)

δt
4

b[n]2
6
(
b(r)[n]

)2
+ 2b(r)[n](b[n]− b(r)[n])− ‖w(r)[n+ 1]−w(r)[n]‖2

v20
+

2

v20

×
(
w

(r)[n+ 1]−w
(r)[n]

)T
(w[n+ 1]−w[n]) , ∀n ∈ N , (51c)

(1), (2), (3), (51d)

where (51a) has a concave numerator and a convex denominator with convex constraints. Hence it can
be tackled with the Dinkelbach’s method.

4.4 Overall algorithm

Following the similar discussion in Section 3, Algorithm 2 can be designed for the energy efficiency
maximization problem (31). The optimum obtained by Algorithm 2 provides a lower bound of the
objective (31a). First, since we replace the non-convex constraints with their lower bounds, the feasible
region of approximate subproblems (45) and (51) are subsets of that for the original subproblems (32)
and (46). Second, the approximate subproblem objectives (45a) and (51a) are both lower bounds of the
original problem objective (31a).

Algorithm 2 SCA-based solutions for (31)

Input: Initialize the threshold ǫ, the trajectory W
0, and the iteration index r = 0.

1: while the increase of the objective value is greater than ǫ do

2: In the (r + 1)th, solve the FP problem (45) by the Dinkelbach’s method for given W
r obtain in the rth iteration to obtain

S
r+1 and δt

r+1;

3: Solve the FP problem (51) by the Dinkelbach’s method for given W
r , Sr+1, and δt

r+1 to obtain W
r+1;

4: Denote the optimal solution as S
∗ = S

r+1, δt
∗ = δt

r+1, and W
∗ = W

r+1;

5: Update: r = r + 1;

6: end while

Output: The final solutions W
∗, S∗, and δt

∗.

The convergence and complexity of Algorithm 2 can be verified by similar discussion in Algorithm 1.
The complexity of Steps 3 and 4 in Algorithm 2 are O(I3.5N3.5(I +N)) and O(IN3

√
N + I), respectively.

Thus, the overall complexity is given by O(I3.5N3.5(I +N)), which is the polynomial complexity in the
worst case.

5 Simulation results

In this section, simulation results are presented to validate the two proposed schemes. Consider the
scenario where a UAV serves I = 6 ground sensors, which are randomly distributed in a 2 km × 2 km
area. The ith sensor needs to transmit Bi = B bit/Hz with an energy budget of Ei = E J, i ∈ I, and the
transmit power PA = 0.1 W. The UAV propulsion power consumption parameters are specified in Table 1,
and we can calculate that the optimal speed Vme to minimize the power consumption is 10.12 m/s. In the
simulation, the UAV flies periodically at a fixed altitude H = 100 m with a maximum speed Vm = 50 m/s.
The noise power is assumed to be σ2 = −110 dBm. The channel power gain at the reference distance of
1 m is ρ0 = −60 dB. Moreover, we divide the flight cycle T intoN = 60 time slots and set the discretization
factor γ = 0.1, unless otherwise specified.

Figure 2 shows the convergence of the two schemes, with E = 10 J and B = 70, 90 bit/Hz. As can
be observed, the flight cycle and the energy efficiency both converge quickly. Specifically, Algorithm 1
converges within 5 iterations and Algorithm 2 converges within 30 iterations with the threshold ǫ = 10−4.

In order to show the superiority of the two proposed algorithms, we introduce a benchmark scheme,
namely, Fly-Hover-Communicate, i.e., UAV hovers over each sensor to receive data, and flies to the
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Table 1 UAV’s propulsion power consumption parameters

Parameter Value Parameter Value

Blade profile power in hover P0 = 79.8563 W Induced power in hover Pi = 88.6079 W

Air density ρ = 1.225 kg/m3 Rotor disc area A = 0.503 m2

Tip speed of the rotor blade Utip = 120 m/s Mean rotor induced velocity in hover v0 = 4.03 m/s

Rotor solidity s = 0.05 Fuselage drag ratio d0 = 0.6
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Figure 2 (Color online) Convergence of the two proposed schemes.

next sensor with the maximum speed Vm after data transmission. In Figure 3(a), we illustrate the UAV
trajectories with two proposed schemes and the benchmark when E = 10 J. For the time slot minimization
trajectory, we can observe that the UAV path is getting closer to that of the benchmark when B increases
from 50 to 130 bit/Hz, although their speeds are quite different. This means that when B is sufficiently
large, the UAV will spend more time visiting and flying directly to the sensors to enjoy a better channel
so that more information can be uploaded to the UAV. For the energy efficiency maximization trajectory,
Figure 3(a) also shows that the flight distance is shorter than that of the time slot minimization scheme
when B is fixed. Furthermore, the UAV hovers around the sensors 2 and 4 for some time. This can
be expected since the energy efficiency maximization speed is mostly around Vme to reduce the UAV
propulsion power consumption while ensuring a good wireless channel, also shown in Figure 3(b).

Figure 3(b) plots the speed in the five trajectories of Figure 3(a). By combining Figures 3(a) and
(b), we can find that the flight cycle of Algorithm 1 is shorter than that of Algorithm 2. For the time
slot minimization scheme, the UAV almost keeps flying at the maximum speed Vm to minimize the flight
cycle. For the energy efficiency maximization scheme, the UAV’s speed fluctuates around Vme to minimize
the propulsion power consumption.

In Figure 4(a), we compare the flight cycle and energy efficiency of the two proposed schemes and
the benchmark with different B, where E is set to 10 J. It shows that the flight cycle of the three
schemes increases as B increases from 10 to 130 bit/Hz. This is because the UAV needs longer time to
transmit data to meet the growing B. Obviously, the time slot minimization scheme always outperforms
the other two schemes. We also observe that the energy efficiency of the energy efficiency maximization
scheme decreases while that of the other two schemes increases as B increases from 10 to 130 bit/Hz.
This is due to the fundamental trade-off between the total transmission data and the propulsion power
consumption. With the growth of B, T becomes larger, and both the propulsion energy consumption
and the total transmission data increase. When the propulsion energy consumption increases faster, the
energy efficiency decreases. Moreover, the maximal energy efficiency achieved by the energy efficiency
maximization scheme is significantly higher than the other two schemes.
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Figure 3 (Color online) (a) Optimized UAV trajectories of the two proposed schemes with the benchmark for different B;

(b) UAV flying speed versus time of the two proposed schemes with the benchmark for different B.
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Figure 4 (Color online) (a) Flight cycle T and energy efficiency EE versus the transmission data B in the three schemes;

(b) flight cycle T and energy efficiency EE versus the transmission energy E in the three schemes.

In Figure 4(b), we compare the flight cycle and the energy efficiency of the two proposed schemes
and the benchmark with different E, where B is set to 40 bit/Hz. It further verifies the superiority
of the two proposed schemes. One interesting note is that the flight cycle and the energy efficiency of
the benchmark and the time slot minimization scheme remain constant. For the time slot minimization
scheme, the reason is that when E satisfies the energy constraint (10), larger E has no effort on (10)
and the optimal solution. The same is true for the benchmark. Since the speed and flight cycle of the
two schemes are determined, the propulsion power consumption is constant independent of E, and the
energy efficiency is also constant. On the other hand, the flight cycle and the energy efficiency of the
energy efficiency maximization scheme increase as E increases. This is due to the trade-off between the
transmission data and the propulsion energy consumption mentioned earlier. When E increases, it should
first satisfy the data constraint (9) and the energy constraint (10), and the remaining E can be used to
continue to transmit more data which will increase the flight cycle. Therefore, both the propulsion energy
consumption and the total transmission data also increase. When the total transmission data increases
faster, the energy efficiency becomes higher. This trade-off also leads to the different trends of energy
efficiency in Figures 4(a) and (b).

Figures 5(a) and (b) illustrate the wake-up scheduling allocation of the two proposed schemes for
B = 30, 80, 130 bit/Hz. In Figure 5(a), to minimize the flight cycle, the sensor 2 and 4 are usually
allocated with fewer time slots because the UAV is closer to 2 and 4. The number of time slots becomes
more balanced with the increase of B. This is because each sensor needs more time to transmit data
when B increases. Figure 5(b) illustrates that the sensors 2 and 4 are allocated with more time slots,
since the UAV collects data from nearby sensors like sensors 2 and 4 at speed Vme, the transmission rate
is high and the energy consumption is low. Thus, more time slots allocated to the sensors 2 and 4 can
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Figure 5 (Color online) Wake-up scheduling allocation for different B with (a) time-efficient data collection scheme and

(b) energy-efficient data collection scheme.

improve energy efficiency.

6 Conclusion

In this paper, we study the uplink data collection in a UAV-aided WSN. By jointly optimizing the wake-
up scheduling of sensors, the trajectory and the time slot, we first study the time-efficient data collection,
i.e., the flight cycle minimization problem. Then, the energy efficiency is maximized for the UAV-aided
WSN to collect more data with limited energy. Two algorithms based on BCD and SCA are proposed to
solve the two non-convex problems respectively. Numerical results demonstrate the effectiveness of two
proposed algorithms compared with the benchmark.
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