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Abstract This paper investigates multiple access schemes for uplink and downlink transmissions in cel-

lular networks with massive Internet of Things (IoT) devices. Recall that single-carrier frequency division

multiple access and orthogonal frequency division multiple access, which are orthogonal multiple access

(OMA) schemes, have been conventionally adopted for uplink and downlink transmissions in narrow-band

IoT, respectively. Unlike these OMA schemes, we propose two non-orthogonal multiple access (NOMA)

schemes for cellular IoT with short-packet transmissions. Especially, a generalized expectation consistent

signal recovery-based algorithm is proposed to estimate active devices, channel state information and data

in uplink transmission, where all of the active devices are allowed to transmit their pilots and data through

the same resource block without authorization. On the other hand, the active devices estimated during

uplink transmission are grouped for downlink transmission with a trade-off between performance and detec-

tion complexity. Additionally, the data error rates are analysed for both uplink and downlink transmissions

with low-resolution analog-to-digital converters (ADCs), where the effects of critical parameters such as the

estimation error, ADC bits, packet length, and message bits are revealed. Both simulation and analytical

results are provided to demonstrate the excellent performance of the proposed NOMA schemes and algo-

rithms, especially for active device, channel, and data estimations. More importantly, the obtained results

show that the data error rate performance of downlink NOMA is superior to that of OMA when the message

bits of devices in one group are selected following the proposed strategy.
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1 Introduction

Machine-type communication (mMTC) has been considered a representative service category in 5G net-
works [1–3] because of its wide applications of the Internet of Things (IoT) such as smart city, smart
health care, factory automation, and autonomous driving [1, 4]. Notably, the number of IoT devices
is growing exponentially and will reach hundreds of billions in 2030 [5]. A ket to enhance connection
density is to provide device access over a large range. The cellular technique is one of the main access
techniques for IoT [5, 6]. In narrow-band IoT, single-carrier frequency division multiple access (SC-
FDMA) and orthogonal frequency division multiple access (OFDMA) have been adopted in uplink and
downlink transmissions, respectively, which are based on the conventional granted orthogonal multiple
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access (OMA) scheme [7], and orthogonal time/frequency resources are allocated to different devices.
Therefore, the conventional scheme cannot support the massive connections required of mMTC networks
owing to the high probability of collisions among devices. In addition, the significant signalling overhead
and excessive latency caused by complicated scheduling procedures are inefficient to send sporadic short
packets of IoT devices.

Recently, grant-free non-orthogonal multiple access (NOMA) schemes have been considered a com-
pelling alternative [8–12]. In grant-free NOMA schemes, devices transmit short data packets through
the same time/frequency resource without a granting procedure. Consequently, grant-free NOMA has
an excellent performance in terms of resource utilisation and latency/signalling overhead. Especially,
the active device and channel estimations in the uplink transmission are formulated as a sparse signal
recovery problem for grant-free NOMA schemes. Various compressed sensing-based algorithms have been
proposed to solve this problem [8,10,13–18]. In [18], approximate message passing is used to detect active
devices and estimate their channel state information (CSI) based on Gaussian pilot sequences. To main-
tain orthogonality and mitigate the inter-user interference, Ref. [19] proposed an active device detection
algorithm with Zadoff-Chu (ZC) sequences. To further improve active device detection and channel es-
timation performance over existing algorithms, the authors proposed an expectation propagation-based
technique in [8]. However, these existing algorithms are only suitable for linear measurements corrupted
by additive white Gaussian noise (AWGN) [20]. Therefore, Refs. [21,22] proposed message passing based
active device detection algorithms for multiple antennas case, which allow the measurement at the re-
ceiver in arbitrary form and shows that increasing the number of receiving antennas reduces the pilot
cost.

Although grant-free NOMA provides massive low latency connections and multiple receiving antennas
reduce the pilot length, there still exist different time offsets since signals from different devices arrive at
the receiver asynchronously [23]. This is because devices are geographically distributed and signals from
different devices begin to propagate at any time. Hence, we have to develop an effective grant-free NOMA
scheme with time offsets and improve the algorithms for activity, CSI, and data estimations. On the other
hand, to achieve the prominent spectral performance of multiple access, short data packet transmission,
and detection have been designed in [8, 10, 24–27]. For example, in [10], the authors proposed a greedy
algorithm to perform active device detection, channel estimation, and data decoding jointly for uplink
transmission. To reduce the system cost, a joint channel-and-data estimation method based on Bayes-
optimal inference has been proposed for the quantized uplink systems [24]. However, existing research
on cellular IoT mainly focuses on active device detection and channel estimation for uplink transmission.
One of the primary issues is to reveal impacts of the packet length, error propagation, and low-resolution
analog-to-digital converters (ADCs) on system performance.

In addition, the downlink NOMA scheme design for cellular IoT is another important issue due to
the limited computing capacity of IoT devices. In [28], a backscatter-NOMA is proposed for downlink
transmission of cellular IoT. The outage probabilities and ergodic rates are analysed. Furthermore, the
authors in [25] designed a three-phase transmission protocol operated in time division duplex (TDD)
mode, including the training phase, uplink data transmission phase, and downlink data transmission
phase. The closed-form expressions of uplink and downlink individual achievable rates are derived, and
the pilot length and data packet length are optimized under the rate constraint. However, imperfect CSI
might lead to a significant performance degradation of NOMA. It is impractical to assume that the active
devices and the CSI are estimated perfectly and the achievable rate of a short data packet is formulated
using the Shannon formula.

In this paper, we design the NOMA schemes for uplink and downlink cellular IoT with short-packet
transmissions and low-resolution ADC receivers. In uplink transmission, a grant-free access strategy is
adopted. Different from [8, 25], a generalized expectation consistent signal recovery (GEC-SR) based al-
gorithm is proposed to detect active devices, estimate their CSI, and detect their signals from the received
quantified signal. On the other hand, we propose a hybrid NOMA scheme for downlink transmission.
Especially, the active devices detected in uplink transmission are first grouped for the performance and
complexity trade-off. The downlink CSI is then estimated in each group by allocated orthogonal time
slots to the devices in the training phase. In the data transmission phase, power domain NOMA is
used within one group, and orthogonal resources are allocated to different groups. In order to further
reveal the system performance with short packet transmission, we use the finite block-length coding
(FBC) theory [29,30] to formulate the achievable rate of each device. The contributions of this paper are
summarised as follows.
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• Two short-packet non-orthogonal transmission schemes are proposed for uplink and downlink trans-
missions in cellular IoT. Especially, the potential active devices access to the network without authorisa-
tion and the message bits of active devices are modulated as short packets. Low-cost algorithms based on
the GEC-SR algorithm are proposed to estimate active devices, channels, and data from uplink receiving
ADC quantified signals. While the detected active devices are grouped for downlink transmission based
on uplink estimations, where a trade-off between performance and complexity is revealed.

• With the imperfect estimated CSI, the bit error rate (BER) performance of uplink non-orthogonal
short-packet transmission is obtained using a GEC-SR based linear minimummean square error (LMMSE)
detector, which shows the impact of error propagation caused by the active device detection on uplink
data detection. In addition, the average block error rate (BLER) of downlink NOMA with low-resolution
ADCs is derived in approximated closed-form, which quantifies the effect of channel estimation errors on
system performance.

• By investigating the impact of message bits of downlink transmission based on the analyzed average
BLER for a given block-length, we obtain a trade-off between the reliability and the effectiveness. Par-
ticularly, a device pairing strategy based on message bits is proposed to guarantee NOMA performance
compared with OMA. Simulation results demonstrate the accuracy of the active device detection, channel
estimation, and obtained analytical results. More importantly, the obtained results show that the BLER
performance of downlink NOMA is superior to that of OMA when message bits are selected according
to the proposed strategy.

The remainder of this paper is organized as follows. Section 2 describes the uplink and downlink short-
packet non-orthogonal transmissions in large scale cellular IoT. A low-complexity active device detection
based on GEC-SR and the BER of uplink data with the LMMSE detector are presented in Section 3,
whereas the downlink channel estimation and the performance analysis of short-packet transmission are
investigated in Section 4. In Section 5, numerical results and simulations are applied to verify the
performance of proposed algorithms and developed analysis. Finally, Section 6 concludes the paper.

Notations. The identity matrix, the all-one vector, and the all-zero vector of sizeM are denoted as IM ,
1M , and 0M , respectively. The distribution of a circularly symmetric complex (or real) Gaussian random
vector x with mean vector m and covariance matrix V is denoted as Nc(x;m,V ) (or N (x;m,V )). ⊙
denotes componentwise multiply and ⊘ denotes componentwise divide.

2 System model

We consider a single-cellular mMTC network, in which one single-antenna central base-station (BS)
and N single-antenna IoT devices located in the cellular. A block fading channel model with L symbol
durations is considered. To meet the massive connections of devices, different NOMA schemes are designed
for uplink and downlink transmission in cellular networks. On one hand, a grant-free NOMA scheme
is employed for uplink transmission, where unknown active devices are allowed to access the network
without authorization or scheduling. On the other hand, the detected active devices are paired/grouped
for downlink transmission due to the limited capacity of the IoT devices. A hybrid NOMA scheme is
proposed to serve each group of active users. Specially, the detected active devices are grouped based on
uplink estimations. Orthogonal time slots are allocated to all active devices for channel estimation in the
downlink training phase. The power domain NOMA scheme is used within each group for information
transmission and orthogonal bandwidth resources are employed among different devices groups [31]. The
details of theses two NOMA schemes for uplink and downlink of the cellular network are shown as Figure 1
and described in the following two subsections, respectively.

2.1 Uplink NOMA scheme

In uplink grant-free NOMA scheme, as shown in Figure 2, the transmission occurs in two phases and
it shows the time-domain structure of the received signal from multiple asynchronous devices. This
asynchronous communication may occur since the signals from different users arrive at the receiver
asynchronously. Without loss of generality, it is assumed that the signal transmitted by device 1 arrives
at the BS prior to that transmitted by device n̄ (n̄ = 2, . . . , N) by a time offset ∆n̄, ∆n̄ > 0. Note that
only a small fraction of potential devices are active and send their small packets sporadically in IoT [18].
In order to mitigate the asynchronous effect, a guard space is used to prevent the interference between
pilot and data symbols [23]. For example, the cyclic prefix (CP) can be utilized as the protection prefix
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Downlink of active device
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Figure 1 (Color online) Sporadic traffic scenario in cellular IoT.

if the non-orthogonal transmission is implemented on an orthogonal OFDMA tones [32]. We first detect
active devices and estimate their CSI in the training phase. The BERs of active devices’ data packets
are then obtained in the uplink data transmission phase.

2.1.1 Uplink channel training phase

The BS assigns a pilot sequence an = (an,1, . . . , an,Lp)T ∈ CLp

to device n (n = 1, 2, . . . , N) in advance,
where Lp < N and an,l is independently chosen from {−1, 1} with equal probability. It is assumed that
only a small portion of devices are active, and we define the device activity indicator as

̟n =

{

1, device n is active,

0, otherwise,
(1)

for n ∈ N , {1, 2, . . . , N}. Each device decides whether or not to access the channel with probability
ǫ in an independent manner [18]. Then, ̟n can be modeled as a Bernoulli random variable such that
Pr(̟n = 1) = ǫ, Pr(̟n = 0) = 1 − ǫ, ∀n. Let Tp, Td, and Tg represent the pilot transmission duration,
data transmission duration, and the guard interval duration, respectively. The receiver removes the data
of the guard position, and selects the remaining Lp as the received signals in the training phase. So there
are two types of observation windows. As shown in Figure 2, the part intercepted by the receiver in type I
observation window can not completely contain the pilot sequences of active devices. Then the inter-
symbol interference (ISI) will be introduced. Instead, type II completely contains the pilot sequences of
active devices and will not effected by data symbols. Therefore, the ISI can be perfectly eliminated if the
length of guard position is long enough for asynchronous time offset. The received signal at the BS for
active device and channel estimations is

yu,p =
∑

n∈N
̟nanh

u
n +wp , Axp +wu,p, (2)

where yu,p = (yu,p1 , . . . , yu,pLp )T ∈ CLp

, wu,p = (wu,p
1 , . . . , wu,p

Lp ) ∈ CLp

with wu,p
l (l = 1, 2, . . . , Lp), is

the independent AWGN following zero mean and σ2
p variance complex Gaussian distribution1), A ,

[a1, . . . ,aN ] ∈ CLp×N with |an|2 = 1 is the collection of pilot sequences of all devices, hu
n is the channel

between device n and the BS, and xp = (xp
1 , . . . , x

p
N )T ∈ CN with xp

n , ̟nh
u
n. We define hu

n as

hu
n =

gu
n√

1+dζ
n

, where gun ∼ Nc(0, 1), dn is the distance and ζ denotes the path loss factor. Then we have

hu
n ∼ Nc(0, λn) with λn = 1

1+dζ
n
.

1) The variances of zero mean AWGNs of pilot and data transmission phases in this paper are assumed to be σ2
p and σ2

0 ,

respectively.
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Figure 2 (Color online) Time-domain structure of the received signals for uplink NOMA scheme.

2.1.2 Uplink data non-orthogonal transmission phase

Device n’s uplink message bits are modulated as xu
n chosen from the M -order constellation A when it

is active; otherwise, we use xu
n = 0 to represent that the device n is inactive. With spreading sequence,

sn = (sn,1, . . . , sn,Lu)T, slu ∼ Nc(0, 1/L
u), Lu = L− Lp, the received uplink data at the BS is

yu = SDiag(ĥu)xu +wu, (3)

where S = [s1, . . . , sN ] ∈ CLu×N , ĥu = (ĥu
1 , . . . , ĥ

u
N )T, xu = (xu

1 , . . . , x
u
N )T, and wu = (wu

1 , . . . , w
u
Lu)T ∈

C
Lu

, wu
l ∼ Nc(0, σ

2
0) is an AWGN vector in uplink data transmission phase. In order to reduce the cost,

the received signal in (2) is quantized by a uniform complex-valued ADC quantization Φc [33] with B
bits and step size ∆τ , therefore the quantized signal is

y
u,p
Φc

, Φc(y
u,p), (4)

where z = Axp. The B-bit uniform ADC quantizer with 2B bins is characterized by a set of 2B − 1

thresholds ∐ := [τ̂1, τ̂2, . . . , τ̂2B−1] ∈ R2B−1 with τ̂b0 = (−2B−1 + b0)∆τ , b0 = 1, 2, . . . , 2B − 1, such that
−∞ , τ̂0 < τ̂1 < · · · < τ̂2B−1 < τ̂2B , ∞. The quantized output is ∆τ (−2B−1 + b− 1

2 ), b = 1, 2, . . . , 2B,
defined by the interval (τ̂b−1, τ̂b] if the input falls in the b-th bin.

Similarly, the quantized output signal of (3) is

yu
Φc

, Φc(y
u) = Φc(SDiag(ĥu)xu +wu). (5)

2.2 Downlink NOMA scheme

For downlink transmission, we propose a hybrid NOMA scheme to serve the active devices detected in
the uplink, where the active devices are grouped due to the limited capacity of the IoT devices as well
as the trade-off between the performance and the complexity. Here, we first focus on two-device case
and the results can be easily extended to a general case in Subsection 4.2. Different from the uplink
NOMA scheme, a hybrid NOMA scheme is considered in downlink transmission [31]. Especially, the
power domain NOMA scheme is used within each group for data transmission and orthogonal bandwidth
resources are employed among different groups. Besides, orthogonal time slots are allocated to the active
devices of one group for downlink channel estimations before non-orthogonal data transmission.

2.2.1 Downlink channel training phase

In the downlink NOMA scheme, each active device i (i = u, v) in one group should estimate its channel
response before signal detection. During the channel estimation phase, the BS sends a special pilot
sequence2), φφφi ∈ CLq

(2Lq < L), to device i. The received training signal at the i-th device is

y
d,p
i = φφφih

d
i +w

d,p
i , (6)

2) For the general case, the sum of the length of the pilot sequence of all devices in one group is not large than the coherence

symbol durations.
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where w
d,p
i ∈ CLq

denotes the AWGN vector at the i-th device during the downlink channel estimation

phase. yd,p
i ∈ CLq

, and hd
i is the channel between device i and the BS. Due to the ADC at receiver, the

quantized y
d,p
i is

y
d,p
i,Φc

= Φc(y
d,p
i ) = Φc(φφφih

d
i +w

d,p
i ). (7)

2.2.2 Downlink data transmission phase

The message bits Bi of device i are encoded as a unit-power codeword, xd
i , with block-length Ld

i = L−2Lq.
For the fairness and the superposition coding with successive interference cancellation (SIC) in downlink
NOMA, we assume that the transmit powers at the BS are sorted as pv 6 pu based on the uplink
estimated channel gain3) |ĥu

v |2 > |ĥu
u|2 and Ld

i = Ld. Then the superposition codeword of one pair of
devices at the BS is xd

s =
√
pux

d
u +

√
pvx

d
v , where pj is the transmit power of device i, xd

i is the signal
intended for the i-th user satisfying E{|xd

i |2} = 1. The received signal at the i-th user is given by

ydi = hd
i (
√
pux

d
u +

√
pvx

d
v) + wd

i , (8)

where wd
i denotes the AWGN at the i-th user. Then the output signal of ADC is

ydi,Φc
= Φc(y

d
i ) = Φc(h

d
i (
√
pux

d
u +

√
pvx

d
v) + wd

i ). (9)

At device u, the signal of device v, xd
v , is always treated as interference. Then the received signal-

to-interference-and-noise ratio (SINR) for decoding its own signal is γu→u. The instantaneous BLER of
device u is approximated as

Eu ≈ Q

(

C(γu→u)− Bu

Ld

√

V (γu→u)/Ld

)

, (10)

where C(γu→u) = log2(1+ γu→u) is Shannon capacity, V (γu→u) = (1− 1
(1+γu→u)2

)(log2 e)
2 is the channel

dispersion, and Q−1(·) is the inverse of Q-function, Q(x) =
∫∞
x

1√
2π

e−
t2

2 dt.

In contrast, SIC is performed at device v. In particular, device v first decodes xd
u by treating xd

v as
interference. The received SINRs for decoding xd

u and xd
v at device v are γv→u and γv→v, respectively.

Similar to (10), we have the instantaneous BLERs Ev→u and Ev→v. Then the instantaneous BLER of
device v is approximated as

Ev = Ev→u + (1− Ev→u)Ev→v

(a)≈ Ev→u + Ev→v, (11)

where step (a) holds for the case that the signal of device u can be decoded successfully with high
probability. Moreover, we will design a coding strategy for each device pair to guarantee transmission
reliability later.

3 Detection and performance analysis for uplink transmission

In this section, we propose GEC-SR based detection methods for active device detection, channel esti-
mation, and data detection in the uplink transmission phase. In particular, the updated messages of the
proposed iteration algorithms are approximated by the complex Gaussian distribution with the projec-
tion operations and a joint active device detection and channel estimation method is presented. With
the estimated channel, a signal decoding method of active device is then proposed for the uplink data
non-orthogonal transmission.

3.1 Active device detection and channel estimation

Note that the MMSE estimator of xp in (4) is given by [34]

x̂p = E
[

xp|yu,p
Φc

]

=

∫

xpp(xp|yu,p
Φc

)dxp, (12)

3) For average power allocation, we allocate the transmit powers based on E{|ĥu
v|2} > E{|ĥu

u|2}, i.e., λu > λv .
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z

Figure 3 (Color online) The factor graph, where the circle refers to variable node while the square denotes factor node. In

addition, the message update rules are shown in [20].

where the expectation is taken over the posterior distribution p(xp|yu,p
Φc

) denoted as

p(xp|yu,p
Φc

) =
p(yu,p

Φc
|xp)p(xp)

p(yu,p
Φc

)
∝ p(yu,p

Φc
|xp)p(xp) =

∫

p(yu,p
Φc

|z)δ(z −Axp)p(xp)dz. (13)

The posterior probability in (13) is computationally intractable due to the discrete nature of the active
pattern. Thus, we aim at constructing a multi-variate Gaussian approximation of p(xp|yu,p

Φc
) and finding

the corresponding mean and variance that are close to that of p(xp|yu,p
Φc

) in iterative fashion.

As shown in Figure 3, we initialize the forward messages, p1,+0 (xp), p1,+1 (z), as complex Gaussian
distributions, i.e., p1,+0 (xp) ∝ Nc(x

p;m1,+
0 ,Diag(v1,+

0 )) and p1,+1 (z) ∝ Nc(z;m
1,+
1 ,Diag(v1,+

1 )). Then
the messages, pt+1,−

1 (z), pt+1,−
0 (xp), at the back direction (red line) are updated firstly for the t-th

iteration due to the observed signals are involved and the messages in the forward direction (cyan line)
are then updated. Note that the passing message in each factor node is approximated by the projection
operation [20], which is defined as follows:

Projx[p(x)] = arg min
q(x)∈Ω(x)

DKL[p(x)||q(x)] = Nc(x;m, v), (14)

where DKL is Kullback-Liebler (KL)-divergence. Ω(x) is a Gaussian family distribution and

m =

∫

xq(x)dx, v =

∫

|x−m|2q(x)dx. (15)

With the factor graph shown in Figure 3 and the message update rules found in [20], a joint active
device detection and channel estimation is presented in Algorithm 1, and we provide some intuition to
understand the algorithm. For the second layer in the back direction, the projection of p(yu,p

Φc
|z) is

calculated, and the mean vector and variance matrix are expressed as (A1) and (A2), where

ζt ,
p(yu,p

Φc
|z)Nc(z;m

t,+
1 ,vt,+

1 )
∫

p(yu,p
Φc

|z)Nc(z;m
t,+
1 ,vt,+

1 )dz
. (16)

Then the extrinsic information of z is calculated by (A3) and (A4). For the first and the second layers
in the back direction, the passing mean vector and variance matrix can be obtained by (A5)–(A11). On
the other hand, the projection of the prior probability of xp, i.e., p(xp), of the first layer in the forward
direction is evaluated, and the mean vector and variance matrix are expressed as (A12) and (A13), where

χt+1 ,
p(xp)Nc(x

p;mt+1,−
0 ,vt+1,−

0 )
∫

p(xp)Nc(xp;mt+1,−
0 ,vt+1,−

0 )dxp
. (17)

The extrinsic information of xp is calculated by (A14)–(A17). The first and the second layers in the
forward direction, the passing mean vector, and variance matrix are obtained by (A18) and (A19).

Note that the received signal is quantized by the ADCs, then the closed-form expressions of mt+1,−
z

and vt+1,−
z in (A1) and (A2) can be derived based on (16). In addition, the entries of the sparse signal

xp can be formulated as independent and identically distributed (i.i.d.) complex Bernoulli-Gaussian
distribution with the probability distribution function (PDF):

p(xp
n) = (1 − ǫ)δ(xp

n) + ǫNc (x
p
n; 0, λn) . (18)

Thus, the closed-form expressions of (A10) and (A11) are derived according to (17) and (18). In the
following two propositions, the detail expressions of mt+1,−

z , vt+1,−
z , mt+1,+

xp , and v
t+1,+
xp are presented.



Cai D H, et al. Sci China Inf Sci August 2022 Vol. 65 182301:8

Algorithm 1 GEC-SR

1. Initialization: t = 1, m1,+
1

= 0, v1,+
1

= 1, m1,+
0

= 0, v1,+
0

= 1.

2. While t 6 Tmax do

mt+1,−
z

= Eζt [ζ
t], (A1)

vt+1,−
z

= Varζt [ζ
t], (A2)

v
t+1,−
1

= 1⊘ (1 ⊘ vt+1,−
z

− 1⊘ v
t,+
1

), (A3)

m
t+1,−
1

= v
t+1,−
1

⊙ (mt+1,−
z

⊘ vt+1,−
z

− m
t,+
1

⊘ v
t,+
1

), (A4)

Q
t+1,−
x
p = (AH(1⊘ v

t+1,−
1

)A + (1⊘ v
t,+
0

))−1, (A5)

m
t+1,−
x
p = Q

t+1,−
x
p (AH(1⊘ v

t+1,−
1

)mt+1,−
1

+ m
t,+
0

⊘ v
t,+
0

), (A6)

v
t+1,−
x
p = diag(Qt+1,−

x
p ), (A7)

v
t+1,−
0

= 1⊘ (1 ⊘ v
t+1,−
x
p − 1⊘ v

t,+
0

), (A8)

m
t+1,−
0

= v
t+1,−
0

⊙ (mt+1,−
x
p ⊘ v

t+1,−
x
p − m

t,+
0

⊘ v
t,+
0

), (A9)

m
t+1,+
x
p = Eχt+1 [χ

t+1], (A10)

v
t+1,+
x
p = Varχt+1 [χ

t+1], (A11)

v
t+1,+
0

= 1 ⊘ (1 ⊘ v
t+1,+
x
p − 1 ⊘ v

t+1,−
0

), (A12)

m
t+1,+
0

= v
t+1,+
0

⊙ (mt+1,+
x
p ⊘ v

t+1,+
x
p − m

t+1,−
0

⊘ v
t+1,−
0

), (A13)

Q
t+1,+
x
p = (AH(1 ⊘ v

t+1,−
1

)A+ (1 ⊘ v
t+1,+
0

))−1, (A14)

m̂
t+1,+
x
p = Q

t+1,+
x
p (AH(1 ⊘ v

t+1,−
1

)mt+1,−
1

+ m
t+1,+
0

⊘ v
t+1,+
0

), (A15)

mt+1,+
z

= Am̂
t+1,+
x
p , (A16)

vt+1,+
z

= diag(AQ
t+1,+
x
p AH), (A17)

v
t+1,+
1

= 1 ⊘ (1 ⊘ vt+1,+
z

− 1 ⊘ v
t+1,−
1

), (A18)

m
t+1,+
1

= v
t+1,+
1

⊙ (mt+1,+
z

⊘ vt+1,+
z

− m
t+1,−
1

⊘ v
t+1,−
1

), (A19)

3. End while

4. Output: m
Tmax
x
p ,v

Tmax,+
x
p .

Proposition 1. Let yu,pΦc
, mt+1,−

z , vt+1,−
z , mt,+

1 , and vt,+1 be the real part or image part of any one

element in y
u,p
Φc

, mt+1,−
z , vt+1,−

z , mt,+
1 , and v

t,+
1 , the expressions of mt+1,−

z and vt+1,−
z in closed-form are

given by

mt+1,−
z = mt,+

1 − vt,+1
√

2(σ2
p + vt,+1 )

Θ(η1(y
u,p
Φc

))−Θ(η2(y
u,p
Φc

))

Ψ(η1(y
u,p
Φc

))−Ψ(η2(y
u,p
Φc

))
, (19)

vt+1,−
z =

vt,+1

2
− (vt,+1 )2

2(σ2
p + vt,+1 )

[

η1(y
u,p
Φc

)Θ(η1(y
u,p
Φc

)) − η2(y
u,p
Φc

)Θ(η2(y
u,p
Φc

))

Ψ(η1(y
u,p
Φc

)) −Ψ(η2(y
u,p
Φc

))

+

(

Θ(η1(y
u,p
Φc

))−Θ(η2(y
u,p
Φc

))

Ψ(η1(y
u,p
Φc

))−Ψ(η2(y
u,p
Φc

))

)2
]

, (20)

where Ψ(x) =
∫ x

−∞ N (t; 0, 1)dt, Θ(x) = N (x; 0, 1), the expectation and variance are taken over

p(yu,pΦc
|z)Nc(z;m

t,+
1 , vt,+1 /2)

∫

p(yu,pΦc
|z)Nc(z;m

t,+
1 , vt,+1 /2)dz

,

and

η1(y
u,p) ,

yup −mt,+
1

√

(σ2
p + vt,+1 )/2

, η2(y
u,p) ,

ylow −mt,+
1

√

(σ2
p + vt,+1 )/2

, (21)

where yup, ylow are defined in [33].

Proof. See Appendix A.

Remark 1. When the bit of ADCs is infinite, we have p(yu,p
Φc

|z) = Nc(z;y
u,p
Φc

, σ2
pI) and vt+1,−

z =

1⊘ (1⊘ v
t,+
1 + σ−2

0 I), mt+1,−
z = vt+1,−

z ⊙ (σ−2
p y

u,p
Φc

+m
t,+
1 ⊘ v

t,+
1 ).

Proposition 2. The closed-form expressions of elements of mt+1,+
xp , vt+1,+

xp in (A10) and (A11) are
given by (22) and (23) at the top of next page.

m
t+1,+
xp,n =

ǫNc(0;m
t+1,−
0,n , vt+1,−

0,n + λn)m
t+1,−
0,n λn

[(1− ǫ)Nc(0;m
t+1,−
0,n , vt+1,−

0,n ) + ǫNc(0;m
t+1,−
0,n , vt+1,−

0,n + λn)](λn + vt+1,−
0,n )

, (22)
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v
t+1,+
xp,n =

ǫNc(0;m
t+1,−
0,n , vt+1,−

0,n + λn)

(1 − ǫ)Nc(0;m
t+1,−
0,n , vt+1,−

0,n ) + ǫNc(0;m
t+1,−
0,n , vt+1,−

0,n + λn)





λnv
t+1,−
0,n

λn + vt+1,−
0,n

+

∣

∣

∣

∣

∣

mt+1,−
0,n λn

λn + vt+1,−
0,n

∣

∣

∣

∣

∣

2




− |mt+1,+
xp,n |2. (23)

Proof. See Appendix B.
Therefore, the estimated signal in (13) is x̂p = m

Tmax,+
xp with the variance matrix v

Tmax,+
xp . Then the

log-likelihood ratio (LLR) test for active pattern estimation is given by

LLR (x̂p
n) = log

(

px̂p
n|̟n

(x̂p
n|̟n = 1)

px̂p
n|̟n

(x̂p
n|̟n = 0)

)

. (24)

With the estimated x̂p, the conditional probability of x̂p
n on ̟n is given by

px̂p
n|̟n

(x̂p
n|̟n) =















1

π(λn + vn)
exp

(

− |x̂p
n|2

λn + vn

)

, if ̟n = 1,

1

πvn
exp

(

−|x̂p
n|2
vn

)

, if ̟n = 0,

(25)

where vn is the n-th component of vTmax,+
xp . Then the LLR(x̂p

n) in (24) can be calculated as

LLR(x̂p
n) = log

(

vn
λn + vn

exp

(

|x̂p
n|2
(

1

vn
− 1

λn + vn

)))

. (26)

Then, we have

log

(

vn
λn + vn

exp

(

|x̂p
n|2
(

1

vn
− 1

λn + vn

)))

≷ 0 ⇔ |x̂p
n|2 ≷Πn, (27)

where the threshold is

Πn =
log(1 + λn

vn
)

1
vn

− 1
λn+vn

. (28)

Therefore, the device activity indicator function of device n is obtained as

ˆ̟ n =

{

1, if |x̂p
n|2 > Πn,

0, if |x̂p
n|2 < Πn,

(29)

and the estimated CSI of device n is x̂p
n if ˆ̟ n = 1.

The computational cost of each iteration of GEC-SR based algorithm can be divided into two parts:
linear operations and nonlinear operation (the rest of equations). The nonlinear operations refer to (A1),
(A2), (A10), and (A11) which do not change with dimensions. The complexity of them is O(N2). The
linear operations refer to the rest equations i.e., (A3)–(A9) and (A12)–(A19). The complexity of them is
dominated by matrix inverse referring to (A5) which is the cost of O(N3). Hence, the complexity of the
GEC-SR based method is O(N3T ).

3.2 Signal detection for uplink data transmission

Define N̂ = {n| ˆ̟ n = 1, n = 1, 2, . . . , N}, ĥn = x̂p
n, ∀n̂ ∈ N̂ , the received signal of uplink transmission

data in (3) based on detected active devices can be written as

yu = Φc

(

ŜDiag(ĥu
N̂
)xu +wu

)

, (30)

where ĥu
N̂

= (ĥu
1 , . . . , ĥ

u
|N̂|)

T, Ŝ = [s1, . . . , s|N̂ |] ∈ CLu×N̂ , and xu = (xu
1 , . . . , x

u
N̂
)T.

If the linear MMSE (LMMSE)4) is employed at the BS, the detected data symbols are [8]

x̂u = ΦA
(

(σ2
0I + L̃H

N̂
L̃N̂ )−1L̃H

N̂
yu
)

, (31)

4) We consider a linear model y = Hx+w, where E[w] = 0, E[wwH] = σ2
wIm, E[x] = 0, E[xxH] = σ2

xIn. By the orthogonality

condition (E[(x− x̂)yH] = 0, x̂ = By), we have the LMMSE estimator x̂ = ΣxyΣ
−1
yy y, where Σxy = E[xyH] = E[x(Hx+ w)H] =

σ2
xH

H,Σyy = E[yyH] = σ2
xHHH + σ2

w.
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where L̃N̂ = ŜDiag(ĥu
N̂
), ΦA is the quantization operator on the constellation A. An LMMSE detector-

based GEC-SR is proposed to detect the data packet, which is summarized in Algorithm 2. Note that
the error propagation caused by the active device detection is considered in this symbol detector.

Algorithm 2 GEC-SR-based detection for uplink data transmission

1: Input: The pilot sequences {sn}, the quantized signal ỹ, the activity probability ǫ, the channel variances {λn}, the constellation

A.

2: Step 1: Solve the problem: Φc(Axp + wp), by using the GEC-SR, the estimated signal x̂p = m
Tmax,+
x
p with the variance

matrix v
Tmax,+
x
p , where (A10) and (A11) are derived based on the PDF in (17);

3: Step 2: Calculate the threshold
∏

n in (28), the active devices and the CSIs are estimated as N̂ = {n||x̂p
n|2 >

∏
n} and

ĥn = x̂p
n, ∀n ∈ N̂;

4: Step 3: The received uplink transmission data is formulated as (30) and solved by the LMMSE detector defined in (31).

5: Output: Decoded symbols x̂u.

4 Design and performance analysis for downlink transmission

In this section, we focus on the design and analysis of the downlink hybrid NOMA scheme. Specially,
the downlink channel information is first estimated by the devices with low-resolution ADCs. Then, we
drive the BLER of short-packet transmission for one pair of devices performed NOMA. In order to obtain
insight, we further approximate the analytical BLERs. Moreover, we reveal the impact of message bits
with a fixed block-length, which can be used to guide the devices pairing/grouping. Finally, the analytical
results of two-device case can be extended to the general case that consists of more than two devices in
one group.

4.1 Downlink channel estimation

With the aid of additive quantization noise model (AQNM) [35–37], the quantized vector yd,p
i,Φc

is decom-
posed as

y
d,p
i,Φc

= Φc(y
d,p
i ) ≈ α(φφφih

d
i +w

d,p
i ) +wd,p

q , (32)

where wd,p
q denotes the additive Gaussian quantization noise vector which is uncorrelated with y

d,p
i ,

wd,p
q ∼ Nc(0Lq , σ2

q1ILq ), σ2
q1 = αςE{|yd,p

i |2} = ας(λi + σ2
p), and α = 1− ς with [35]

ς =
E{‖yd,p

i,Φc
− y

d,p
i ‖2}

E{‖yd,p
i ‖2}

(33)

denoting the distortion factor of the low-resolution ADC [37]. When the ADC resolution B is large

(B > 5), the distortion factor ς can be approximated as [38] ς ≈ π

√
3

2 2−2B.

Lemma 1. The LS estimator of hd
i is

ĥd
i =

1

α
φφφH
i y

d,p
i,Φc

(34)

and its distribution is

ĥd
i ∼ Nc

(

0, λi + σ2
p +

ς

α

(

λi + σ2
p

)

)

. (35)

In addition, the estimation error is ei = hd
i − ĥd

i , which is independent with ĥd
i , and the correlation

coefficient is σ2
ei = E{eieHi } = σ2

p +
ς
α (λi + σ2

p), and the relationship between ĥd
i and hd

i is

ĥd
i = hd

i + ei. (36)

Proof. See Appendix C.

The transmit SNR in the downlink channel training phase is defined as ̺ , |φφφi|2
Lqσ2

p
= 1

Lqσ2
p
. As shown

in Figure 4 with λi = 0.5, the distribution of estimated CSI matches well with the simulation.
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Remark 2. Lemma 1 reveals the impact of the parameters on downlink channel estimation. From (75)
in the proof of Lemma 1, one can see that the variance of estimation error is decided by the quantify
precision of ADC and the noise power with a given length of the pilot sequence. Therefore, the channel
estimation accuracy can be controlled by adjusting the parameters according to the relationship shown
in Lemma 1.

4.2 Average BLER analysis

From (32) and (36), the output signal of ADC in (9) is approximated as

ydi,Φc
≈ α(hd

i (
√
pux

d
u +

√
pvx

d
v) + wd

i ) + wd
q = αĥd

i (
√
pux

d
u +

√
pvx

d
v) + ∆ei,w , (37)

where wd
q follows Gaussian distribution with zero mean and variance σ2

q2 = αςE{|ydi |2} = ας [(pu+pv)λi+

σ2
0 ], and ∆ei,w , −αei(

√
pux

d
u +

√
pvx

d
v) + αwd

i + wd
q . Note that ∆ei,w is also a Gaussian distribution

with zero mean and variance σ2
∆ei,w

= α2σ2
ei(pu + pv) + α2σ2

0 + σ2
q2 . Then the SINRs and SNR are

γi→u =
pu|ĥi|2

pv|ĥi|2 + σ̃2
ei + σ2

0

, γv→v =
pv|ĥv|2
σ̃2
ev + σ2

0

, (38)

where σ̃2
ei = σ2

ei(pu + pv) + σ2
q2/α

2. The average BLER of device j at device i is

Ēi→j ≈
∫ ∞

0

Q

(

C(γi→j)− Bj

Ld

√

V (γi→j)/Ld

)

fγi→j(x)dx, (39)

where fγi→u(x) is the PDF of γi→u. Then we derive the average BLER of NOMA with imperfect CSI
and finite ADC bits in Theorem 1.

Theorem 1. The average BLERs of device u and device v in NOMA with imperfect CSI are expressed
as (40) and (41), respectively, shown at the top of the next page,

Ēu ≈ 1−
αu,Ld

√
Ldαu(σ̃

2
eu + 1/ρ)exp(

σ̃2
eu+1/ρ

αv λ̃u
)

α2
vλ̃u

·
[

E1

(

− αu(σ̃
2
eu + 1/ρ)

(αu − αvµu,Ld)αvλ̃u

)

− E1

(

− αu(σ̃
2
eu + 1/ρ)

(αu − αvνu,Ld)αvλ̃u

)]

+
αu,Ld

√
Ldexp(

σ̃2
eu+1/ρ

αvλ̃u
)

αv
· (αu − αvνu,Ld)

·
[

exp

(

− αu(σ̃
2
eu + 1/ρ)

(αu − αvνu,Ld)αvλ̃u

)

− exp

(

− αu(σ̃
2
eu + 1/ρ)

(αu − αvµu,Ld)αvλ̃u

)]

, (40)

and

Ēv ≈ 2−
αv,Ld

√
Ldαv(σ̃

2
ev + 1/ρ)exp(

σ̃2
ev+1/ρ

αvλ̃v
)

α2
vλ̃v

·
[

E1

(

αu(σ̃
2
ev + 1/ρ)

(αu − αvµu,Ld)αvλ̃v

)

− E1

(

αu(σ̃
2
ev + 1/ρ)

(αu − αvνu,Ld)αvλ̃v

)]

+
αu,Ld

√
Ldexp(

σ̃2
ε+1/ρ

αv λ̃v
)

αv
· (αu − αvνu,Lu)

·
[

exp

(

− αu(σ̃
2
ev + 1/ρ)

(αu − αvνu,Ld)αvλ̃v

)

− exp

(

− αu(σ̃
2
ev + 1/ρ)

(αu − αvµu,Ld)αvλ̃v

)]

− αv,Lv

√
Lvαvλ̃v

σ̃2
ev + 1/ρ

[

exp

(

−µv,Ld(σ̃2
ev + 1/ρ)

αvλ̃v

)

− exp

(

−νv,Ld(σ̃2
ev + 1/ρ)

αvλ̃v

)]

, (41)
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where αu,Ld = 1√
2π(22Bu/Ld−1)

, βu,Ld = 2
Bu
Ld − 1, µu,Ld = βu,Ld − 1

2α
u,Ld

√
Ld

, νu,Ld = βu,Ld + 1

2α
u,Ld

√
Ld

,

λ̃i = λi + σ2
ei, αu = pu/(pu + pv), pv = 1 − pu, ρ = (pu + pv)/σ

2
0 , and the exponential integral E1 is

defined as E1(µ) =
∫∞
µ

exp(−x)
x dx, µ > 0.

Proof. See Appendix D.
Similarly, the individual average BLER of two-device OMA with FBC is approximated as

Êi ≈ 1− α̂i,Ld

√
0.5Ld(λ̃i + σ2

ei)

σ̃2
ei + 1/ρ

(

exp

(

− µ̂i,Ld(σ̃2
ei + 1/ρ)

λ̃i + σ̃2
ei

)

− exp

(

− ν̂i,Ld(σ̃2
ei + 1/ρ)

λ̃i + σ̃2
ei

))

, (42)

where α̂i,Ld = 1√
2π(24Bi/L

d−1)
, µ̂i,Ld = 2

2Bi
Ld − 1− 1

2α̂
i,Ld

√
0.5Ld

, ν̂i,Ld = 2
2Bi
Ld − 1 + 1

2α̂
i,Ld

√
0.5Ld

.

The developed approximated closed-form expressions of average BLER in Theorem 1 can be easily
used to evaluate the performance of NOMA with FBC.

4.3 Discussion on device grouping

From (10), we have the maximal achievable rate
Bj

Ld ≈ C(γj)−Q−1(E)
√

V (γj)
Ld . Note that Q−1(0.5) = 0,

which means that if E = 0.5 the maximal achievable rate
Bj

Ld is equal to the capacity C(γj). In order to

reveal the impact of devices grouping, we define the outage probability as P out
j = Pr(C(γj) < R̂j), where

R̂j =
Bj

Ld is target rate. We assume that there are J devices in one group performed NOMA with power

allocation coefficients α1 > · · · > αJ ,
∑J

j=1 αj = 1. Then the outage probability of device j (1 6 j < J)
is expressed as

P out
j = 1− Pr

(

α1|ĥd
j |2

∑J
i=2 αi|ĥd

j |2 + σ̃2
ej + 1/ρ

> r1, . . . ,
αj |ĥd

j |2
∑

i,i>j αi|ĥd
j |2 + σ̃2

ej + 1/ρ
> rj

)

= 1− Pr

(

|ĥd
j |2 >

(σ̃2
ej + 1/ρ)r1

α1 − r1
∑J

i=2 αi

, . . . , |ĥd
j |2 >

(σ̃2
ej + 1/ρ)rj

αj − rj
∑

i,i>j αi

)

, (43)

where rj = 2R̂j − 1. Note that the outage probability in (43) is always one when αj − rj
∑

i,i>j αi 6 0.
Therefore, the power allocation coefficients and the target rate of device j should satisfy the following
condition:

αj
∑

i,i>j αi
> rj ⇔

αj
∑

i,i>j αi
> 2R̂j − 1. (44)

By defining ϕ = max{ r1
α1−r1

∑
J
i=2

αi
, . . . ,

rj
αj−rj

∑
i,i>j αi

}, the outage probability in (43) can be calcu-

lated by

P out
j = 1− exp

(

−
(σ̃2

ej + 1/ρ)ϕ

λ̃j

)

. (45)

Similarly, the outage probability of device j in OMA is expressed as

P out
j = Pr

(

1

J
log2

(

1 +
|ĥd

j |2
σ̃2
ej + 1/ρ

)

< R̂j

)

= 1− exp

(

−
(2JR̂j − 1)(σ̃2

ej + 1/ρ)

λ̃j

)

. (46)

Based on (45) and (46), the condition on the superiority of NOMA to OMA for 1 6 j 6 J − 1 is

ϕ < 2JR̂j−1⇔ max

{

2R̂1 − 1

α1 − (2R̂1 − 1)
∑J

i=2 αi

, . . . ,
2R̂j − 1

αj − (2R̂j − 1)
∑

i,i>j αi

}

<2JR̂j−1. (47)

Similarly, the condition on the superiority of NOMA to OMA for device J can be expressed as

max

{

2R̂1 − 1

α1 − (2R̂1 − 1)
∑J

i=2 αi

, . . . ,
2R̂j − 1

αj − (2R̂j − 1)
∑

i,i>j αi

, . . . ,
2R̂J − 1

αJ

}

< 2JR̂J − 1. (48)
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Figure 4 (Color online) The complementary CDF (CCDF)

of the estimated channel in Lemma 1.

Figure 5 (Color online) Outage probability of three-device

NOMA with ADCs.

From the analytical results in (44), (47) and (48), we can make the following conclusion:
(1) With the increase of the number of devices, to guarantee the reliability of NOMA, the target rate

of each device in the group should be smaller.
(2) The power allocation and the target rates should satisfy the conditions in (47) and (48).
(3) The power allocation and the target rate selection are very complicated for the case that more than

two devices in one group.
For example, we consider the case that J = 3, then the power allocation coefficients and the target

rates should satisfy the following conditions.
(1) For device 1, the following conditions should be satisfied:

α1

α2 + α3
> 2R̂1 − 1,

2R̂1 − 1

α1 − (2R̂1 − 1)(α2 + α3)
< 23R̂1 − 1. (49)

(2) For device 2, the following conditions should be satisfied:

α2

α3
> 2R̂2 − 1, max

{

2R̂1 − 1

α1 − (2R̂1 − 1)(α2 + α3)
,

2R̂2 − 1

α2 − (2R̂2 − 1)α3

}

< 23R̂2 − 1. (50)

(3) For device 3, the following conditions should be satisfied:

α3 > 2R̂3 − 1, max

{

2R̂1 − 1

α1 − (2R̂1 − 1)(α2 + α3)
,

2R̂2 − 1

α2 − (2R̂2 − 1)α3

,
2R̂3 − 1

α3

}

< 23R̂3 − 1. (51)

As shown in Figure 5 with ̺ = 15 dB, Lq = 50, B = 5 bits, the individual outage probability of
NOMA outperforms that of OMA when α1 = 0.5, α2 = 0.4, α3 = 0.1, ζ = 3, d1 = 2, d2 = 1, d3 = 0.5,
R̂1 = R̂2 = 0.1 bps/Hz, R̂3 = 1.6 bps/Hz. From (49)–(51), we can see that the power allocation and the
target rate selection are complicated. Even if the power coefficient is given, the target rate selection is
still complicated.

5 Simulations and numerical results

In this section, we provide numerical examples to verify the proposed algorithms and the analytical results
for both uplink and downlink NOMA schemes with short-packet transmissions.

5.1 Uplink short-packet transmission

The GAMP [20,39] is shown as the benchmark for the performance comparison for the uplink simulations
due to the quantized system with ADC. The performance comparisons between the GAMP and GEC-SR
are shown in Figures 6(a) and (b) for channel and active device estimation, where the normalized mean
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Figure 6 (Color online) (a) Iteration count vs. NMSE where (N,Lp, ǫ) = (1000, 200, 0.05) and SNR = 25 dB; (b) SNR vs. active

device detection error probability, where (N,Lp, ǫ) = (1000, 250, 0.1) and B = 3 bits.
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Figure 8 (Color online) BER of uplink data transmission

with error propagation.

squared error (NMSE) is defined as the MSE between the estimated x̂p and actual xp. In Figure 6(a), we
can observe that the NMSE converges for both GEC-SR and GAMP with different ADC bits at 25 dB.
Moreover, compared to the GAMP algorithm, the convergency value NMSE is much smaller for the
GEC-SR based algorithm. It is also observed that the performance of GAMP and GEC-SR with 5
ADC bits is close to the case that with infinite ADC bits. In Figure 6(b), the active device detection
error probabilities for GAMP and GEC-SR are shown as the functions of SNR, respectively. One can
observe that the active device detection error probability of GEC-SR is smaller than that of GAMP from
Figure 6(b).

Figure 7 shows the NMSE performance of GEC-SR as a function of the length of the pilot sequence
by using GAMP as a benchmark algorithm.

It can be seen that GEC-SR has a better performance than GAMP. The NMSE decreases as the length
of the pilot sequence increases and it will be flat when the length of the pilot sequence is large enough.

It can be also seen that the shorter length of the pilot sequence can satisfy the same NMSE requirements
of different device active probabilities.

The impact of error propagation caused by active detection estimation errors on the BER performance
of uplink data is shown in Figure 8, where the BER is defined as

BER =
Lnum + dnum log2 M

N log2 M
, (52)

where Lnum denotes the number of data detection error bit and dnum is the active device detection error.
And dnum = 0 for the case that the active device detection is perfect. As shown in Figure 8, the BER
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gap between imperfect active device detection and perfect device detection is increased when the active
probability is large due to the error propagation of active device detection.

5.2 Downlink short-packet transmission

The NMSE of downlink channel estimation is shown in Figure 9, where includes LS and LMMS estimations
at 20 dB. It shows that the NMSE performance of LS is better than that of LMMSE. One can observe
that the gap between LS and LMMSE becomes larger when the parameter λi is smaller. It is worthy
to note that the NMSE approximates 10−4 when the length of the pilot sequence is 60. Thus, we can
control the variance, σ2

ei, of estimation error by adjusting the parameters including the length of the pilot
sequence, SNR and ADC bits according to the results in Lemma 1.

In Figure 10, we set ̺ = 15 dB, λi = 1, Lq = 50, B = 5 bits for channel estimations and αu = 0.7,
αv = 0.3, Ld = 168 for data transmission. The ADCs at the training and data phases have the same
parameters.

In Figure 10(a), the analytical results of average BLERs in (40) and (41) are presented for downlink
NOMA with FBC, where NOMA with imperfect CSI and perfect CSI is considered. The two curves
show that the analytical results match well with the computer simulation results for the whole range of
the SNR, which confirms the accuracy of the derived expressions. Furthermore, it can be observed from
Figure 10(a) that the average BLER of NOMA with imperfect CSI can result in an error floor at the
high SNR region.

In Figures 10(b) and (c), the average BLERs of devices in one group are presented as a function
of message bits. As shown in Figure 10(b), the average BLER of device u in one group increases as
the message bits increase with a fixed block-length. It is important to note that the average BLER
performance of device u in NOMA is superior to that in OMA before the threshold. While the average
BLER of device u in NOMA becomes worse when the message bits are greater than the threshold. More
importantly, the average BLER of device u in NOMA is always one if the message bits are sufficiently
large. On the other hand, the impact of message bits on the average BLER of devices v with a fixed
block-length is shown in Figure 10(c). It can be observed that the average BLER performance of device
v is better than that in OMA if the message bits are greater than the threshold for the case in which
device v selects proper message bits. Otherwise, the OMA transmission scheme should be selected due
to its excellent performance. Moreover, the performance of device v in NOMA is always inferior to that
in OMA if device u selects its message bits irrelevantly. This is because the error propagation becomes
more severe. Finally, Figure 10(d) verifies the proposed message bit selection strategy analysis results
and simulations of NOMA and OMA with low-resolution ADCs and imperfect CSI.



Cai D H, et al. Sci China Inf Sci August 2022 Vol. 65 182301:16

0 10 15 20 25 30 35 40

SNR (dB)

10−2

10−3

10−4

10−1

100

10−2

10−3

10−1

100

10−2

10−3

10−1

100

10−2

10−3

10−1

100

A
v
er

ag
e 

B
L

E
R

0 50 100 150 200 250 300 350 400

Message bits

A
v
er

ag
e 

B
L

E
R

0 50 100 150 200 250 300 350 400

Message bits of device v

A
v
er

ag
e 

B
L

E
R

0 10 15 20 25 30 35 40

SNR (dB)

A
v
er

ag
e 

B
L

E
R

5

5

Simulation, perfect, device u

Simulation, NOMA, device u

Analysis, NOMA, device u

Simulation, NOMA, device v
Analysis, NOMA, device v

Simulation, OMA, device u
Analysis, OMA, device u

Simulation, OMA, device v

Analysis, OMA, device v

Analysis, perfect, device u

Simulation, perfect, device v
Analysis, perfect, device v

Simulation, imperfect, device v
Analysis, imperfect, device v

Simulation, imperfect, device u
Analysis, imperfect, device u

Imperfect CSI, 5 ADC bits

Perfect CSI, infinite ADC bits

NOMA, device u

OMA, device u

NOMA, device v with B
u
=50

NOMA, device v with B
u
=100

NOMA, device v with B
u
=150

NOMA, device v with B
u
=200

NOMA, device v with B
u
=250

OMA, device v B
u
=60 bits

B
u
=60 bits, B

v
=300 bits

B
u
=60 bits, B

v
=100 bits

(a) (b)

(c) (d)

Figure 10 (Color online) (a) Average BLER for downlink NOMA; (b) message bits vs. average BLER for device u; (c) the impact

of message bits for device v; (d) BLER performance comparison of NOMA and OMA with different message bits.

6 Conclusion

In this paper, we have proposed two NOMA schemes for uplink and downlink transmissions in cellular
Internet of Things with short-packet transmission. Particularly, a low-complexity algorithm based on
GEC-SR has been proposed to detect active devices and estimate their CSI for uplink grant-free NOMA.
Furthermore, we have obtained the BER of uplink data transmission with imperfect estimated CSI and
discussed the impact of error propagation caused by the device detection. On the other hand, a hybrid
NOMA scheme is proposed for downlink transmission. The CSI is estimated and the BLERs of each pair
of active devices with finite block-length coding are derived in closed-form. With the analytical results,
a message bit selection strategy in each pair of devices has been proposed to ensure better NOMA
performance than OMA, and an extended strategy for devices grouping has been proposed. Finally, we
presented simulation results to demonstrate the accuracy of the proposed algorithms and the obtained
analytical results. More importantly, the obtained results show that the performance of NOMA is superior
to OMA when the message bits are selected according to the proposed strategy, which can be used to
guide devices grouping in NOMA.
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