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Abstract With the goal of identifying pixel-wise salient object regions from each input image, salient object

detection (SOD) has been receiving great attention in recent years. One kind of mainstream SOD method is

formed by a bottom-up feature encoding procedure and a top-down information decoding procedure. While

numerous approaches have explored the bottom-up feature extraction for this task, the design of top-down

flows remains under-studied. To this end, this paper revisits the role of top-down modeling in salient object

detection and designs a novel densely nested top-down flows (DNTDF)-based framework. In every stage

of DNTDF, features from higher levels are read in via the progressive compression shortcut paths (PC-

SPs). The notable characteristics of our proposed method are as follows. (1) The propagation of high-level

features which usually have relatively strong semantic information is enhanced in the decoding procedure.

(2) With the help of PCSP, the gradient vanishing issues caused by non-linear operations in top-down infor-

mation flows can be alleviated. (3) Thanks to the full exploration of high-level features, the decoding process

of our method is relatively memory-efficient compared to those of existing methods. Integrating DNTDF

with EfficientNet, we construct a highly light-weighted SOD model, with very low computational complex-

ity. To demonstrate the effectiveness of the proposed model, comprehensive experiments are conducted on

six widely-used benchmark datasets. The comparisons to the most state-of-the-art methods as well as the

carefully-designed baseline models verify our insights on the top-down flow modeling for SOD.
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1 Introduction

Salient object detection [1] aims at performing the pixel-level identification of the salient object region
from an input image. Owing to its wide-ranging applications in the vision and multimedia community,
such as scene understanding [2–6], onfocus detection [7], and image retrieval [8], numerous efforts have
been made in recent years to develop effective and efficient deep salient object detection frameworks.

As shown in Figure 1, the existing deep salient object detection models can be divided into three typical
frameworks. The first one is the bottom-up encoding flow-based salient object detection framework (see
Figure 1(a)). A bottom-up encoder is used for feature extraction, and then a simple classification head
is attached to the top of the encoder for predicting the pixel-wise saliency map. Such methods [9–13]
occurred in relatively early ages in this research field by designing one or multiple forward network paths
to predict the saliency maps. To take advantage of multi-stage feature representations, some recent
studies [14–18] started to incorporate additional network blocks to further explore the side information
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Figure 1 (Color online) A brief illustration of the three mainstream designs of the deep salient object detection frameworks.

The bottom-up feature indicates the intermediate feature from the bottom-up pathway which extracts high-level information from

low-level information. On the contrary, the top-down feature indicates the intermediate feature from the top-down pathway which

decodes the saliency map from multi-scale features generated by the encoder. While the sideway feature indicates the feature

produced by the sideway path which transits information from a bottom-up feature to the saliency prediction head. (a) Bottom-up

encoding flow-based framework; (b) side information fusion-based framework; (c) top-down decoding flow-based framework.

residing in the features extracted by multiple stages of the forward pathway. The involvement of the
learned side information plays a key role in predicting the desired salient object regions. These studies
form the second type of learning framework, i.e., the side information fusion-based salient object detection
framework (see Figure 1(b)). Although the side information fusion-based frameworks have achieved great
performance gains when compared with the bottom-up encoding flow-based frameworks, one important
cue for saliency detection, i.e., the top-down information, has not been adequately explored. To this
end, the third type of salient object detection framework appeared, which is named as the top-down
decoding flow-based framework (see Figure 1(c)). In this framework, the main network pathway is formed
by an encoder-decoder architecture, where the decoder explores saliency patterns from the multi-scale
semantic embeddings stage by stage and gradually enlarges the resolution of the coarse high-level feature
map [19–24]. Notice that this framework may also use the side information to assist the decoding process,
but the final saliency masks are obtained from the last decoder stage rather than the fusion stage of the
side features.

From the aforementioned top-down decoding flow-based approaches, we observe that their core mod-
eling components still focus on enhancing the side features and merging them into the decoding flow,
whereas the top-down information flow remains primitive—propagating from the former decoding stage to
the later one as is in the basic encoder-decoder architecture (see Figure 2(a)). Considering that high-level
features possess a great wealth of semantic information, we propose a novel decoding framework, named
densely nested top-down flows (see Figure 2(b)), to enhance the exploration of features extracted from
relatively higher levels. In our method, feature maps obtained by each encoding stage are progressively
compressed via shortcut paths and propagated to all subsequent decoding stages. The strengths of our
method include the other two strong points. (1) The non-linear operations in the decoding stage are
disadvantageous to the gradient back-propagation flow. Hence, the supervision signal propagated from
the final prediction to the feature maps of top encoding levels might vanish. For example, if a neuron
is not activated by the ReLU function, the gradient flow will be cut off, which means the supervision
signal will not be propagated backward. The progressive compression shortcut paths have no non-linear
operations, hence they can relieve the gradient vanishing problem. (2) The reuse of high-level features al-
lows a light-weighted decoding network design while achieving high salient object detection performance.
Features produced by the top layers of the encoder contain relatively strong semantic information which
is beneficial to discriminating regions of salient objects from the background. Our method enhances the
propagation of these features, resulting in a memory-efficient decoding framework.

The overall framework is shown in Figure 3. As can be seen, we use the U-Net-like architecture as
the main network stream, upon which we further design a novel densely nested top-down flow path to
introduce the rich top-down information to the decoding stages. To reduce the computational complexity
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Figure 2 (Color online) In the conventional design for the top-down decoding flow-based salient object detection framework (a),

every decoding stage only leverages the feature map of the corresponding encoding stage. In our design, all features extracted by

topper encoding stages are propagated into each decoding stage. Our method explores richer semantic information from relatively

top stages of the backbone during each decoding stage and complies with the light-weighted principle. (b) Our designs for the

top-down decoding flow-based framework.
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Figure 3 (Color online) A brief illustration of the proposed salient object detection framework, which is built on a basic U-Net-like

architecture with the proposed DNTDF to complement the rich top-down information into the decoding pathway. Inspired by [23],

the PPM is used to involve the global context features. The whole network is built by light-weighted network designs. More details

of the network architecture can be referred to in Section 3.

of the decoding stages, we add a 1 × 1 channel compression layer to each side information pathway. In
fact, all the feature pathways in the proposed decoding framework only need to pass through a number
of 1 × 1 convolutional layers together with very small amounts of 3 × 3 convolutional layers, making
the entire network highly lightweight. Meanwhile, the full exploration of top-down information in the
proposed densely nested top-down flows (DNTDF) contributes to even better performance than the
state-of-the-art salient object detection (SOD) methods.

In summary, this study has the following three-fold main contributions. (1) We revisit an important
yet under-studied issue, i.e., the top-down flow modeling, of the recent SOD frameworks. (2) We design a
highly light-weighted learning framework, via introducing a novel densely nested top-down flow architec-
ture. (3) Comprehensive experiments are conducted, demonstrating the promising detection capacity and
the lower computational complexity of the proposed framework. Meanwhile, the insights on top-down
modeling are well verified: the proposed densely connected top-down flows are capable of enhancing the
usage of high-level encoding features in the decoding process; a lightweight design for the decoder can
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contribute to high SOD performance.

2 Related work

Traditional salient object detection methods are designed based on the hand-crafted features [25–30].
Recently, convolutional neural networks (CNNs) have been extensively applied in salient object detection.
Thanks to the powerful feature extraction capability of CNN, a great breakthrough has been made in
devising effective SOD algorithms. CNN-based SOD frameworks can be categorized into three kinds,
including bottom-up encoding flow-based, side information fusion-based, and top-down decoding flow-
based framework as shown in Figure 2.

In bottom-up encoding flow-based framework, one or multiple forward network paths are designed to
predict the saliency maps. For example, Liu et al. [9] proposed a multi-resolution convolutional neural
network, which has three bottom-up encoding pathways to deal with patches captured from three different
resolutions of the input image. A similar idea is also proposed by Li and Yu [10], where a three-pathway
framework is devised to extract multi-scale features for every super-pixel and two fully connected layers are
adopted to fuse the features and predict the saliency value. Zhao et al. [11] proposed a multi-context deep
learning framework, which fuses a global-context forward pathway and a local-context forward pathway
to obtain the final prediction. Li et al. [12] built a multi-task deep learning model for salient object
detection, where a shared bottom-up encoding pathway is used to extract useful deep features and two
parallel prediction heads are followed to accomplish the semantic segmentation and saliency estimation,
respectively. To learn to refine the saliency prediction results, Wang et al. [13] proposed a recurrent
fully convolutional network architecture. Specifically, they combine multiple encoding pathways, where
saliency prediction results from the former encoding pathway are used to form the input of the latter one.

The side information fusion-based salient object detection framework aims to further explore the side
information from the features extracted in each stage of the forward pathway. Specifically, based on the
network architecture of the holistically-nested edge detector [31], Hou et al. [14] introduced the skip-layer
structures to provide rich multi-scale feature enhancement for exploring the side information. Zhao and
Wu [15] proposed a simple but effective network architecture. They enhanced the low-level and high-level
side features in two separate network streams, where the former is passed through a spatial attention-
based stream while the latter is passed through a channel attention-based stream. Wu et al. [16] also built
a two-stream side information flow. However, different from [15], the two-stream side information flow
is designed to fuse the multi-stage features for salient region identification and salient edge detection,
respectively. Su et al. [17] used a boundary localization stream and an interior perception stream to
explore different side features for obtaining the high-selectivity features and high-invariance features,
respectively. Recently, Gao et al. [18] proposed gOctConv, a flexible convolutional module to efficiently
transform and fuse both the intra-stage and cross-stage features for predicting the saliency maps.

To take advantage of top-down information, the third type of salient object detection framework
emerges, i.e., the top-down decoding flow-based framework. In this framework, the main network pathway
is formed by an encoder-decoder architecture, where the decoder recognizes out saliency patterns after
fusing multi-scale features progressively. Notice that this framework may also use the side information to
assist the decoding process, but the final saliency masks are obtained from the last decoder stage instead of
the fusion stage of the side features. This type of framework has become the mainstream solution for SOD
under both fully-supervised [24,32] and few-shot [6,33] settings. One representative study is proposed by
Zhang et al. [24], where a U-Net [34]-like architecture is used as the basic network and a bi-directional
message passing model is introduced into the network to extract rich side features to help each decoding
stage. Following this study, Liu et al. [23] designed a pooling-based U-shape architecture, where they
introduced a global guidance module and a feature aggregation module to guide the top-down pathway.
Feng et al. [22] proposed an attentive feedback module (AFM) and used it to better explore the structure
of objects in the side information pathway. Liu et al. [21] proposed the local attended decoding and
global attended decoding schemes for exploring the pixel-wise context-aware attention for each decoding
stage. More recently, in order to better explore the multi-level and multi-scale features, Pang et al. [20]
designed aggregation interaction modules and self-interaction modules and inserted them into the side
pathway flow and decoding flow, respectively. Zhao et al. [19] proposed a gated decoding flow, where
multi-level gate units are introduced in the side pathway to transmit informative context patterns to each
decoding stage. Ref. [35] devised two branches, including a salient region prediction branch and a contour
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prediction branch, which are interleaved with each other through feature exchange. In [32], a cascaded
top-down decoding framework with feedback connections is proposed to refine multi-scale features. Both
Refs. [32, 35] employed multiple parallel or cascaded stages to construct the decoding architectures.
Though they can derive powerful representations for the decoding stage, heavier computation burdens
are caused as well. In this paper, we propose a brand-new top-down flow mechanism, namely densely
connected top-down flows. Each decoding stage aggregates all higher-level encoding features with the
help of progressive compression shortcut paths. This helps to alleviate the gradient vanishing problem
in the decoding stage. The full exploration of encoding features contributes to a light-weighted decoding
design that can achieve appealing performance in SOD.

A densely nested top-down flows-based decoding framework is proposed to encourage the reuse of
high-level features in every stage of the decoding process. Compared with existing top-down decoding
flow-based methods, the superiorities of our method are as follows. The gradient vanishing problem
caused by the nonlinear operations in the decoding procedure can be mitigated, and a memory efficient
decoding network is employed to facilitate the fusion of multi-stage features while maintaining high
detection performance. Our method is closely related to [36] in which each layer aggregates outputs
of all preceding layers in the same dense block. Their main differences are: (1) our proposed dense
connections aim at exploring multiple top-level encoding features in every decoding stage; (2) instead of
directly accumulating preceding features, shortcut paths are devised to compress high-level features in
our method, complying with the lightweight design principle.

3 Proposed method

The purpose of this paper is to settle the saliency object detection problem. Given an RGB image X with
the size of h× w, we propose a novel efficient deep convolutional architecture to predict a saliency map
P ∈ [0, 1]h×w. Every element in P indicates the saliency probability value of the corresponding pixel. A
novel densely nested top-down flow architecture is built up to make full use of high-level feature maps.
The semantic information of top layers is propagated to bottom layers through progressive compression
shortcut paths. Furthermore, interesting insights are provided to design light-weighted deep convolutional
neural networks for salient object detection. Technical details are illustrated in subsequent sections.

3.1 Overview of network architecture

The overall network is built upon an encoder-decoder architecture, as shown in Figure 3. After removing
the fully connected layers, the backbone of an existing classification model, such as ResNet [37] and
EfficientNet [38], is regarded as the encoder. Given an input image X, the encoder is composed of five
blocks of convolution layers, which yield 5 feature maps, {Ei}

5
i=1. Every block reduces the horizontal and

vertical resolutions into half. Let wi, hi and di denote the height, width and depth of Ei, respectively.
We have hi+1 = hi/2 and wi+1 = wi/2.

The target of the decoder is to infer the pixel-wise saliency map from these feature maps. First of all,
a compression unit is employed to reduce the depth of each scale of the feature map,

Fi = Cr(Ei,W
c
i ), (1)

where Cr(·, ·) indicates the calculation procedure of the depth compression unit, consisting of a ReLU
layer [39] followed by a 1×1 convolution layer with the kernel of W c

i . r represents the compression ratio,
which means the depth of Fi is di/r. Inspired from [23], the pyramid pooling module (PPM) [40, 41]
is used to extract a global context feature map G (with size of h5 × w5 × dg) from the last scale of
feature map F5 produced by the encoder. Afterwards, a number of convolution layers are set up to fuse
these compressed feature maps {Fi}

5
i=1 and the global feature map G, and output a soft saliency map,

based on the U-shape architecture. The distinguishing characteristics of our encoder are reflected in the
following aspects. (1) In every stage of the decoder, the features of the top stages of the encoder are
accumulated through progressive compression shortcut paths, forming into the feature representation for
SOD together with the additional information learned in the current stage. (2) Our decoder is comprised
of 1×1 convolutions and a few 3×3 convolutions, which only take up a small number of parameters
and consume a small amount of computational cost. The above decoder designs constitute our so-called
densely-nested top-down flows.
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3.2 Densely nested top-down flow

In deep convolution neural networks, features extracted by top layers have strong high-level semantic in-
formation. These features are advantageous at capturing the discriminative regions of salient objects. Es-
pecially, when the network is pretrained on large-scale image recognition datasets, such as ImageNet [42],
the top feature maps are intrinsically capable of identifying out salient foreground objects according
to [43]. However, their spatial resolutions are usually very coarse which means that it is difficult to
locate fine object boundaries from them. On the other hand, bottom layers produce responses to local
textural patterns which is beneficial to locate the boundaries of the salient object. Multi-resolution CNN
models [9, 10] use multi-scale copies of the input image to explore both low-level and high-level context
information. However, such kinds of methods are usually cumbersome and cost a heavy computation bur-
den. Inspired by the holistic-nested network architecture [31], fusing multi-scale feature maps produced
by different convolution blocks of the encoder is the other popular choice in SOD [14, 44]. U-Net [34],
which currently prevails in deep SOD methods [19, 20, 23, 24], accumulates multi-scale feature maps in a
more elegant manner. As shown in Figure 1(c), the decoder usually shares the same number of stages
with the encoder, and every stage in the decoder merges the feature map of the corresponding stage of
the encoder forming a U-shape architecture. However, in a standard U-Net, the features produced by the
encoder are fused into the decoder via a simple linear layer. There exists room for improvement in more
fully utilizing these features, especially these relatively high-level features. The difficulty for propagating
gradients back into the topper layers of the encoder increases as the gradient back propagation process
needs to pass through more decoding stages.

For purpose of settling the above issues, we propose a novel top-down flow-based framework, named
densely nested top-down flows. First of all, the ultimate output of the encoder F5 is fed into the first
stage of the decoder via a transition operation,

D1 = Up×2(F(F5,W
d
1 )), (2)

where F(F5,W
d
1 ) consists of a ReLU layer and a 3 × 3 convolution layer with kernel of W d

1 . Up×2(·)
denotes the 2 times upsampling operation. It transmits F5 into a h4 × w4 × d4/r tensor defined as D1.

Then, shortcuts are incorporated to feed feature maps of all higher encoding stages into every decoding
stage. The uniqueness of these shortcuts is that high-level feature maps are progressively compressed
and enlarged stage by stage. As shown in Figure 3, Fi is propagated to the j-th (7− i 6 j 6 5) decoding
stage in a recursive manner, generating F

j
i ,

F
j
i = Up×2(Crj (F

j−1
i ,W j

i )). (3)

F
6−i
i = Fi, which is the exact origination of the information propagation pathway. Crj (F

j−1
i ,W j

i )

reduces the depth of the input tensor F j−1
i to that of the feature map in the j-th decoding stage. It is

implemented with a 1× 1 convolution layer with the parameter W j
i and the compression ratio rj =

d7−j

d6−j
.

The shortcut path without using any nonlinear function benefits the gradient back-propagation, thus
helping to relieve the gradient vanishing issue caused by the multi-stage decoding process. On the other
hand, compared with reducing the depth into the target values at once, our compression mechanism is
more efficient and consumes less parameters.

For the j-th (2 6 j 6 5) decoding stage, the calculation process is composed of two fusion steps.

First, we derive an additional feature map from the (6 − j)-th encoding stage, F̂6−j = C1(F6−j ,W
a
6−j).

Here, W a
6−j denotes the parameter involved in the calculation process, and F̂6−j maintains the same

depth with F6−j . Together with F̂6−j , the feature maps from higher-level encoding stages {F j
i }

5
i=7−j are

concatenated and fused into a new context feature map Cj :

Cj = Cj({F̂6−j ,F
j
i |i = 7− j, . . . , 5},W f

j ). (4)

Note that the above fusion operation compresses the concatenated feature maps with the ratio of j, which
indicates the depth of Cj is d6−j/r. W

f
j denotes the parameter of the compression operation.

Then, the global feature G is complemented to the j-th stage of the decoder as well,

Gj = Up×2j−1 (Crg
j
(G,W g

j )), (5)
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where W
g
j denotes the related convolutional parameter, and rgj =

dg

d6−j
. Dj−1, F6−j , Cj, and Gj are

fused with a pre-placed ReLU and a 3 × 3 convolution layer, yielding the feature representation of the
j-th stage of the decoder,

Dj = Up×2(F({Dj−1,F6−j ,Cj ,Gj},W
d
j )), (6)

whereW d
j denotes the parameter of the 3×3 convolution, and the depth ofDj is transformed into d5−j/r.

Reusing F6−j when calculating Dj allows Cj to merely learn information which is complementary to
F6−j . This helps to decrease the difficulty of learning a comprehensive representation from the multi-
scale features of the encoder.

The final output is produced by a score prediction module consisting of a pre-placed ReLU layer, a
1× 1 convolution layer, and a Sigmoid function S(·),

P = S(Up×2(Cd1/r(ReLU(D5),W
o))), (7)

where W o represents the kernel of the convolution layer, and P (h×w×1) is the final predicted saliency
map.

The advantage of our densely nested decoder is that every stage is accessible to all higher-level feature
maps of the encoder. This framework greatly improves the utilization of high-level features in the top-
down information propagation flow.

3.3 Light-weighted network design

In this paper, we are not stacking piles of convolution layers to build an SOD network with high perfor-
mance. Our devised model has a light-weighted architecture while preserving high performance.

Without backbones initialized with parameters pre-trained on ImageNet, it is difficult to achieve high
performance via training a light-weighted backbone from scratch such as CSNet [18]. However, these
initialized parameters are learned for solving the image recognition task. This means that the features
extracted by the pre-trained backbone are responsible for jointly locating the discriminative regions and
predicting semantic categories. In the SOD task, it is no longer necessary to recognize the category of the
salient object. Considering the above point, we can assume that there exists a large amount of redundant
information in the features extracted by the backbone. Hence, in our method, a large value is adopted
for the compression ratio r in (1). We empirically find out that using r ∈ {2, 4, 8, 16} has little effects on
the SOD performance in our method. This will be illustrated in the experimental section. With the help
of a large compression ratio, the computation burden in the decoder can be greatly reduced.

Previous high-performance SOD models are usually equipped with decoders having a moderate amount
of calculation complexity. For example, Ref. [40] used multiple 3× 3 convolutions to construct a pyramid
fusion module in every stage of the decoder. Ref. [20] adopted a number of 3×3 convolutions to aggregate
inter-level and inter-layer feature maps in the decoder. Cascaded decoders are employed to implement
top-down information in [32, 35], which leads to a decoding procedure with a large computation burden.
In our proposed model, all convolutions adopted in the progressive compression shortcut paths have the
kernel size of 1 × 1. This makes these complicated shortcuts only cost a few weights and computation
resources in fact. Furthermore, benefitted from rich top-down information, employing a single 3 × 3
convolution in every encoder stage is sufficient to construct a high-performance decoder. The above
network designs help us build up an effective and cost-efficient salient object detection model.

3.4 Network training

To make our model pay more attention to the edge of salient object, we adopt the edge weighted binary
cross entropy loss [32] during the training stage,

Lwbce =
H
∑

i=1

W
∑

j=1

(1 + γαi,j)BCE (Pi,j , Yi,j) , (8)

αi,j =

∣

∣

∣

∣

∣

∑δ
m=−δ

∑δ
n=−δ Yi+m,j+n

(2δ + 1)2
− Yij

∣

∣

∣

∣

∣

, (9)

where BCE(·, ·) is the binary cross entropy loss function, and γ is a constant. Pi,j and Yi,j are the value
at position (i, j) of P and the ground-truth saliency map Y , respectively. αi,j measures the weight



Fang C W, et al. Sci China Inf Sci August 2022 Vol. 65 182103:8

assigned to the loss at position (i, j), which receives a relatively large value when (i, j) locates around the
boundaries of salient objects. δ represents the radius of window size for calculating αi,j , and mirrored
padding is adopted to fill positions outside the border of the image. Adam [45] is used to optimize network
parameters.

4 Experiments

4.1 Datasets & evaluation metrics

The DUTS [46] is the largest dataset for salient object detection, containing 10553 training images (DUTS-
TR) and 5019 testing images (DUTS-TE). Our proposed model is trained with images of DUTS-TR and
evaluated on six commonly used salient object detection datasets, including DUTS-TE, HKU-IS [10],
ECSSD [47], PASCAL-S [48], DUT-OMRON [25], and SOD [49].

Three metrics are adopted to evaluate the performance of SOD methods, including the maximum of
F -measure (Fmax) [50], mean absolute error (MAE), and S-measure (S) [51].

4.2 Implementation details

In our experiments, our proposed top-down flow mechanism is integrated with two kinds of backbone
models, including ResNet50 [37] and EfficientNet [38]. For ResNet50, we adopt the knowledge distillation
strategy in [52] to initialize network parameters. The other models, EfficientNet-B0 and EfficientNet-
B3, are pretrained on ImageNet [53]. The trainable parameters of the decoder are initialized as in [54].
Random horizontal flipping and multi-scale training strategy (0.8, 0.9, 1.0, 1.1, and 1.2 times geometric
scaling) are applied for data augmentation. All models are trained with 210 epochs and the batch size
is set as 1. The learning rate is initially set to 1.0× 10−5 and 4.5× 10−4 respectively for ResNet50 and
EfficientNet, and divided by 10 at the 168-th epoch. Hyper-parameters in (8) are set as γ = 3 and δ = 10.
A variety of values {2, 4, 8, 16, 32} are tested for the compression ratio r. Without specification, r is set
as 2. Our proposed model is implemented with PyTorch, and one 11 GB NVIDIA GTX 1080Ti GPU is
used to train all models.

4.3 Comparison with state-of-the-arts

As presented in Table 1 [55–58], we compare our method against various existing SOD methods. Three
versions of our method, which use a backbone of ResNet50 (Ours+R50), EfficientNet-B0 (Ours+E0),
and EfficientNet-B3 (Ours+E3), respectively, are reported. For a fair comparison, we reimplemented
very recently proposed SOD algorithms, including ITSD [35], MINet [20], CSF [18], and F3Net [32], via
replacing their original backbones with EfficientNet-B3. This forms 4 new SOD methods: MINet+E3,
ITSD+E3, CSF+E3, and F3Net+E3. When using EfficientNet-B3 as the backbone, our method achieves
the best performance in most scenarios. For example, in contrast to F3Net+E3, 0.01 higher S-measure is
achieved by our method on the DUTS-TE dataset. On the basis of ResNet50, our method also achieves
overall better performance than F3Net, e.g., the Fmax of our method is 0.004 higher than that of F3Net
on the DUTS-TE dataset. FLOPs (evaluated with a 288× 288 input image) and numbers of parameters
are presented in Figure 4. Our method achieves high performance with a relatively small number of
memory costs and parameters.

In addition, we follow [58] to compare the precision-recall curves of our approach against the state-of-
the-art methods on six datasets (see Figure 5). A gallery of SOD examples is also visualized in Figure 6
for qualitative comparisons. Our method performs clearly better than other methods, across small and
large salient objects.

4.4 Ablation study

Efficacy of main components. In this experiment, we first verify the efficacy of main components
in our proposed model, including the progressive compression shortcut path (PCSP) and the PPM for
global feature extraction. ResNet50 is used to construct the backbone of our proposed model and SOD
performance is evaluated on the DUTS-TE dataset. The experimental results are presented in Table 2.
As more top-down feature maps are used to complement high-level semantic information in bottom con-
volution layers via multiple PCSPs, the performance of our method increases consistently. The adoption
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Table 1 Quantitative comparison of our method against other SOD methods on DUST-TE and HKU-IS datasets. All these

models are trained on DUTS-TR. The performances ranked first, second, and third are marked by bold, underline, and italic,

respectively.

Model
DUTS-TE HKU-IS ECSSD PASCAL-S DUT-O SOD

Fmax MAE S Fmax MAE S Fmax MAE S Fmax MAE S Fmax MAE S Fmax MAE S

CSNet [14] 0.819 0.074 0.822 0.899 0.059 0.880 0.914 0.069 0.888 0.835 0.104 0.813 0.792 0.080 0.803 0.827 0.139 0.747

MLMSNet [55] 0.854 0.048 0.861 0.922 0.039 0.907 0.926 0.048 0.905 0.858 0.074 0.844 0.793 0.064 0.809 0.862 0.108 0.786

BASNet [56] 0.860 0.047 0.866 0.929 0.032 0.909 0.939 0.040 0.910 0.858 0.076 0.838 0.811 0.056 0.836 0.851 0.114 0.769

CPD [57] 0.865 0.043 0.869 0.925 0.034 0.906 0.936 0.040 0.913 0.861 0.071 0.848 0.797 0.056 0.825 0.860 0.112 0.767

SCRN [16] 0.888 0.039 0.885 0.934 0.034 0.916 0.944 0.041 0.920 0.879 0.063 0.869 0.811 0.056 0.837 0.870 0.100 0.797

GateNet [19] 0.889 0.040 0.885 0.935 0.034 0.915 0.942 0.043 0.914 0.877 0.068 0.858 0.831 0.055 0.837 – – –

EGNet [58] 0.893 0.039 0.885 0.938 0.031 0.918 0.943 0.041 0.918 0.869 0.074 0.852 0.842 0.053 0.838 0.889 0.099 0.802

PoolNet [23] 0.894 0.036 0.886 0.938 0.030 0.918 0.945 0.038 0.919 0.884 0.065 0.865 0.830 0.054 0.830 0.879 0.106 0.787

ITSD [35] 0.883 0.041 0.885 0.934 0.031 0.917 0.944 0.037 0.919 0.871 0.066 0.859 0.824 0.061 0.840 0.880 0.095 0.806

ITSD+E3 0.894 0.041 0.894 0.939 0.034 0.924 0.939 0.034 0.924 0.877 0.065 0.872 0.834 0.058 0.854 0.882 0.096 0.815

MINet [20] 0.888 0.037 0.884 0.936 0.029 0.919 0.945 0.036 0.920 0.874 0.064 0.856 0.826 0.056 0.833 – – –

MINet+E3 0.879 0.044 0.875 0.929 0.036 0.909 0.936 0.043 0.912 0.873 0.070 0.855 0.813 0.067 0.821 0.858 0.101 0.795

CSF [14] 0.893 0.037 0.890 0.936 0.030 0.921 0.947 0.036 0.924 0.876 0.069 0.862 0.833 0.055 0.837 0.870 0.100 0.797

CSF+E3 0.892 0.032 0.894 0.936 0.027 0.921 0.944 0.034 0.921 0.872 0.061 0.860 0.826 0.052 0.844 0.881 0.089 0.808

F3Net [32] 0.897 0.035 0.888 0.939 0.028 0.917 0.944 0.036 0.919 0.878 0.061 0.861 0.839 0.053 0.838 – – –

F3Net+E3 0.906 0.033 0.898 0.944 0.025 0.926 0.947 0.032 0.925 0.888 0.058 0.871 0.844 0.056 0.844 0.890 0.083 0.821

Ours+R50 0.901 0.031 0.895 0.941 0.027 0.921 0.945 0.035 0.918 0.882 0.061 0.861 0.832 0.051 0.833 0.875 0.101 0.784

Ours+E0 0.891 0.035 0.890 0.936 0.030 0.920 0.942 0.038 0.918 0.872 0.063 0.858 0.827 0.052 0.841 0.873 0.099 0.795

Ours+E3 0.907 0.030 0.905 0.944 0.027 0.928 0.950 0.033 0.927 0.888 0.058 0.872 0.844 0.047 0.857 0.893 0.091 0.811
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Figure 4 (Color online) Comparisons between our proposed method and other methods: CSNet [14], CSF+E3, F3Net+E3,

SCRN [16], ITSD+E3, CPD [57], PoolNet [23], BASNet [56] and MLMSNet [55] on the DUTS-TE dataset. Fmax and FOLPs reflect

the detection accuracy and computational complexity, respectively. The diameter of circles indicates the number of parameters.

of 4 PCSPs, induces performance gains of 0.005 (when PPM is not used) and 0.011 (when PPM is used)
on the Fmax metric. Besides, we can observe that the global information provided by the PPM and
high-level semantic information provided by the PCSP can complement each other. Without using any
of the two modules, performance degradation is caused.

Different variants of our method. We further provide inner comparisons between variants of our
proposed model in Table 3. To validate whether more complicated convolution blocks are effective in the
decoder of our method, we replace the 3×3 convolution layer with the FAM block used in [23] to build
the fusion module of each decoding stage. However, no obvious performance gain is obtained. To validate
the effectiveness of reusing F6−j in (6), we attempt to remove F6−j from the input when calculating Dj.
The resulted Fmax metric is 0.894, which is 0.004 lower than that of our final model.
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Figure 5 (Color online) Precision-recall curves on six salient object datasets. The EfficientNet-B3 is adopted as the backbone in

our method and existing methods marked by ∗. (a) DUTS; (b) HKU-IS; (c) ECSSD; (d) PASCAL-S; (e) DUT-OMRON; (f) SOD.

Image GT Ours CSF+Res CSNet ITSD EGNet F3Net CPD GateNet MINet MLMSNet PoolNet SCRN

Figure 6 (Color online) Qualitative comparison of our method against other SOD methods.

4.5 Efficiency discussions

Analysis of compression ratio. The influence of using different ratios to compress the features of
the encoder as in (1) is illustrated in Table 4. As discussed in Subsection 3.3, there are large amounts
of redundant information in the features extracted by the backbone since it is pre-trained for image
recognition. Hence, using a moderately large ratio (up to 16) to compress features of the network
backbone has no significant effect on the SOD performance, according to the results reported in Table 4.
The benefit of using a large compression ratio is achieving the goal of light-weighted network design in
our method while not causing an unbearable performance decrease.

Complexity of decoder. As shown in Figure 7, the decoder of our proposed model costs significantly
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Table 2 Ablation study on DUTS-TE dataset, using backbone ResNet50. ✓/✗ indicates whether the module is used or not. The

number of PCSP denotes the number of most top feature maps of the encoder which is propagated to bottom convolutional blocks

of the decoder.

PCSP PPM w/ F6−j in (6) Fmax MAE S

✗ ✗ ✓ 0.887 0.039 0.883

✗ ✓ ✓ 0.891 0.037 0.886

1 ✓ ✓ 0.891 0.034 0.890

2 ✓ ✓ 0.894 0.034 0.892

3 ✓ ✓ 0.896 0.034 0.891

4 ✗ ✓ 0.891 0.037 0.886

4 ✓ ✗ 0.894 0.033 0.892

4 ✓ ✓ 0.898 0.033 0.891

Table 3 Inner comparisons of different variants of our method based on EfficientNet-B3. DCB indicates the convolutional block

adopted in every stage of the decoder. FAM means the module containing a single 3×3 convolution operation is replaced with the

FAM [23] in every stage of the decoder.

DCB Fmax MAE S FLOPs (G) Param (M)

3×3 0.907 0.0305 0.905 0.108 0.825

FAM 0.904 0.0312 0.902 0.123 1.906

Table 4 Comparisons of performance, parameters, and FLOPs which are based on ResNet50 using different compression scales.

Param and FLOPs denote the parameters and FLOPs of the decoder.

Scale Fmax MAE S Param FLOPs

32 0.884 0.036 0.880 379.50 K 63.77 M

16 0.890 0.035 0.888 840.92 K 154.83 M

8 0.893 0.034 0.887 2.01 M 420.96 M

4 0.898 0.033 0.891 5.33 M 1.29 G

2 0.901 0.031 0.895 15.90 M 4.37 G

6
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3

2

1

0
F3Net ITSD CSF MINet Ours

FLOPs (G)

Param (M)

Figure 7 (Color online) Comparisons of the parameters and FLOPs between different decoders based on EfficientNet-B3.

fewer FLOPs than the decoders of recent SOD models, including F3Net, ITSD, CSF, and MINet. The
parameters and FLOPs are counted using the backbone of EfficientNet-B3. As can be observed from
Table 1, our method outperforms these methods on most datasets and metrics. This indicates that our
method achieves better performance even if less memory is consumed.

4.6 Failure cases

In Figure 8, we present a gallery of examples on which our method cannot produce high-quality pre-
dictions. They can be categorized into three typical kinds: parts of the foreground objects are missed
(namely incomplete objects); some objects, especially small objects, are overlooked; the background
around the target object is mistaken as salient content.
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Figure 8 (Color online) Examples on which our method fails to generate sufficiently accurate results.

5 Conclusion

In this paper, we first revisit existing CNN-based top-down flow architectures, including bottom-up en-
coding flow-based, side information fusion-based, and top-down decoding flow-based frameworks. Then,
to make full usage of multi-scale high-level feature maps and to avoid the gradient vanishing issues caused
by non-linear operations in the decoding phase, progressive compression shortcut paths are devised to
propagate higher-level features of the encoder to bottom convolutional blocks of the decoder, forming the
novel densely nested top-down flow-based framework. Extensive experiments indicate that the proposed
SOD model can achieve state-of-the-art performance on six widely-used benchmark datasets, including
DUTS-TE, HKU-IS, ECSSD, PASCAL-S, DUT-OMRON, and SOD. Notably, thanks to the efficacy of
the densely nested top-down flows in exploring high-level features, applying a lightweight design for the
decoding architecture does not cause much performance degradation. Ablation study on the progressive
compression shortcut paths demonstrates its effectiveness in exploring high-level features for every decod-
ing stage. However, the computing resources in our method are mainly consumed by the encoding stage,
instead of the decoding stage. It deserves further research to devise an effective and lightweight encoder
for SOD. The other directions for improving SOD models are to improve the semantic understanding
capacity and enhance the robustness for detecting tiny salient objects.

Acknowledgements This work was supported in part by Key-Area Research and Development Program of Guangdong Province

(Grant No. 2021B0101200001), National Natural Science Foundation of China (Grant Nos. 62003256, 61876140, 62027813,

U1801265, U21B2048), and Open Research Projects of Zhejiang Lab (Grant No. 2019kD0AD01/010).

References

1 Han J W, Zhang D W, Cheng G, et al. Advanced deep-learning techniques for salient and category-specific object detection:

a survey. IEEE Signal Process Mag, 2018, 35: 84–100

2 Lin T Y, Dollár P, Girshick R, et al. Feature pyramid networks for object detection. In: Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition, 2017. 2117–2125

3 Zhang D W, Han J W, Yang L, et al. SPFTN: a joint learning framework for localizing and segmenting objects in weakly

labeled videos. IEEE Trans Pattern Anal Mach Intell, 2020, 42: 475–489

4 Zhang D W, Han J W, Zhao L, et al. Leveraging prior-knowledge for weakly supervised object detection under a collaborative

self-paced curriculum learning framework. Int J Comput Vis, 2019, 127: 363–380

5 Cheng G, Li R M, Lang C B, et al. Task-wise attention guided part complementary learning for few-shot image classification.

Sci China Inf Sci, 2021, 64: 120104

6 Zhang D, Tian H, Han J. Few-cost salient object detection with adversarial-paced learning. In: Proceedings of Advances in

Neural Information Processing Systems, 2020. 12236–12247

7 Zhang D, Wang B, Wang G, et al. Onfocus detection: identifying individual-camera eye contact from unconstrained images.

Sci China Inf Sci, 2022, 65: 160101

8 Wang Z H, Liu X, Lin J W, et al. Multi-attention based cross-domain beauty product image retrieval. Sci China Inf Sci,

2020, 63: 120112

9 Liu N, Han J, Zhang D, et al. Predicting eye fixations using convolutional neural networks. In: Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition, 2015. 362–370

10 Li G, Yu Y. Visual saliency based on multiscale deep features. In: Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition, 2015. 5455–5463

11 Zhao R, Ouyang W, Li H, et al. Saliency detection by multi-context deep learning. In: Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition, 2015. 1265–1274

https://doi.org/10.1109/MSP.2017.2749125
https://doi.org/10.1109/TPAMI.2018.2881114
https://doi.org/10.1007/s11263-018-1112-4
https://doi.org/10.1007/s11432-020-3156-7
https://doi.org/10.1007/s11432-019-2721-0


Fang C W, et al. Sci China Inf Sci August 2022 Vol. 65 182103:13

12 Li X, Zhao L M, Wei L N, et al. Deepsaliency: multi-task deep neural network model for salient object detection. IEEE Trans

Image Process, 2016, 25: 3919–3930

13 Wang L Z, Wang L J, Lu H C, et al. Saliency detection with recurrent fully convolutional networks. In: Proceedings of

European Conference on Computer Vision. Springer, 2016. 825–841

14 Hou Q B, Cheng M M, Hu X W, et al. Deeply supervised salient object detection with short connections. In: Proceedings of

IEEE Conference on Computer Vision and Pattern Recognition, 2017. 3203–3212

15 Zhao T, Wu X Q. Pyramid feature attention network for saliency detection. In: Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition, 2019. 3085–3094

16 Wu Z, Su L, Huang Q M. Stacked cross refinement network for edge-aware salient object detection. In: Proceedings of IEEE

International Conference on Computer Vision, 2019. 7264–7273

17 Su J M, Li J, Zhang Y, et al. Selectivity or invariance: boundary-aware salient object detection. In: Proceedings of IEEE

International Conference on Computer Vision, 2019. 3799–3808

18 Gao S H, Tan Y Q, Cheng M M, et al. Highly efficient salient object detection with 100k parameters.

In: Proceedings of European Conference on Computer Vision, 2020

19 Zhao X Q, Pang Y W, Zhang L H, et al. Suppress and balance: a simple gated network for salient object detection. In:

Proceedings of European Conference on Computer Vision, 2020

20 Pang Y W, Zhao X Q, Zhang L H, et al. Multi-scale interactive network for salient object detection. In: Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition, 2020. 9413–9422

21 Liu N, Han J W, Yang M H. PiCANet: learning pixel-wise contextual attention for saliency detection. In: Proceedings of

IEEE Conference on Computer Vision and Pattern Recognition, 2018. 3089–3098

22 Feng M Y, Lu H C, Ding E R. Attentive feedback network for boundary-aware salient object detection. In: Proceedings of

IEEE Conference on Computer Vision and Pattern Recognition, 2019

23 Liu J J, Hou Q B, Cheng M M, et al. A simple pooling-based design for real-time salient object detection. In: Proceedings

of IEEE Conference on Computer Vision and Pattern Recognition, 2019. 3917–3926

24 Zhang L, Dai J, Lu H C, et al. A bi-directional message passing model for salient object detection. In: Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition, 2018. 1741–1750

25 Yang C, Zhang L H, Lu H C, et al. Saliency detection via graph-based manifold ranking. In: Proceedings of IEEE Conference

on Computer Vision and Pattern Recognition, 2013. 3166–3173

26 Zhang J M, Sclaroff S, Lin Z, et al. Minimum barrier salient object detection at 80 fps. In: Proceedings of IEEE International

Conference on Computer Vision, 2015. 1404–1412

27 Cheng M M, Mitra N J, Huang X L, et al. Global contrast based salient region detection. IEEE Trans Pattern Anal Mach

Intell, 2015, 37: 569–582

28 Zhu W J, Liang S, Wei Y C, et al. Saliency optimization from robust background detection. In: Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition, 2014. 2814–2821

29 Jiang H Z, Wang J D, Yuan Z J, et al. Salient object detection: a discriminative regional feature integration approach.

In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2013. 2083–2090

30 Klein D A, Frintrop S. Center-surround divergence of feature statistics for salient object detection. In: Proceedings of IEEE

International Conference on Computer Vision, 2011. 2214–2219

31 Xie S N, Tu Z W. Holistically-nested edge detection. In: Proceedings of IEEE International Conference on Computer Vision,

2015. 1395–1403

32 Wei J, Wang S H, Huang Q M. F3Net: fusion, feedback and focus for salient object detection. In: Proceedings of AAAI

Conference on Artificial Intelligence, 2020. 12321–12328

33 Zhang D W, Han J W, Zhang Y, et al. Synthesizing supervision for learning deep saliency network without human annotation.

IEEE Trans Pattern Anal Mach Intell, 2020, 42: 1755–1769

34 Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: Proceedings of

International Conference on Medical Image Computing and Computer-Assisted Intervention, 2015. 234–241

35 Zhou H J, Xie X H, Lai J H, et al. Interactive two-stream decoder for accurate and fast saliency detection. In: Proceedings

of IEEE Conference on Computer Vision and Pattern Recognition, 2020. 9141–9150

36 Huang G, Liu Z, van der Maaten L, et al. Densely connected convolutional networks. In: Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition, 2017. 4700–4708

37 He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition. In: Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition, 2016. 770–778

38 Tan M X, Le Q V. EfficientNet: rethinking model scaling for convolutional neural networks. In: Proceedings of International

Conference on Machine Learning, 2019. 6105–6114

39 Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks. In: Proceedings of International Conference on Artificial

Intelligence and Statistics, 2011. 315–323

40 He K M, Zhang X Y, Ren S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE

Trans Pattern Anal Mach Intell, 2015, 37: 1904–1916

https://doi.org/10.1109/TIP.2016.2579306
https://doi.org/10.1109/TPAMI.2014.2345401
https://doi.org/10.1109/TPAMI.2019.2900649
https://doi.org/10.1109/TPAMI.2015.2389824


Fang C W, et al. Sci China Inf Sci August 2022 Vol. 65 182103:14

41 Zhao H S, Shi J P, Qi X J, et al. Pyramid scene parsing network. In: Proceedings of IEEE Conference on Computer Vision

and Pattern Recognition, 2017. 2881–2890

42 Russakovsky O, Deng J, Su H, et al. ImageNet large scale visual recognition challenge. Int J Comput Vis, 2015, 115: 211–252

43 Zhou B L, Khosla A, Lapedriza A, et al. Learning deep features for discriminative localization. In: Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition, 2016. 2921–2929

44 Li G, Yu Y. Deep contrast learning for salient object detection. In: Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition, 2016. 478–487

45 Kingma D P, Ba J. Adam: a method for stochastic optimization. 2014. ArXiv:1412.6980

46 Wang L J, Lu H C, Wang Y F, et al. Learning to detect salient objects with image-level supervision. In: Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition, 2017. 136–145

47 Yan Q, Xu L, Shi J P, et al. Hierarchical saliency detection. In: Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition, 2013. 1155–1162

48 Li Y, Hou X D, Koch C, et al. The secrets of salient object segmentation. In: Proceedings of IEEE Conference on Computer

Vision and Pattern Recognition, 2014. 280–287

49 Movahedi V, Elder J H. Design and perceptual validation of performance measures for salient object segmentation.

In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2010. 49–56

50 Achanta R, Hemami S, Estrada F, et al. Frequency-tuned salient region detection. In: Proceedings of IEEE Conference on

Computer Vision and Pattern Recognition, 2009. 1597–1604

51 Fan D P, Cheng M M, Liu Y, et al. Structure-measure: a new way to evaluate foreground maps. In: Proceedings of IEEE

International Conference on Computer Vision, 2017

52 Shen Z, Savvides M. Meal V2: boosting vanilla ResNet-50 to 80%+ top-1 accuracy on ImageNet without tricks. 2020.

ArXiv:2009.08453

53 Deng J, Dong W, Socher R, et al. ImageNet: a large-scale hierarchical image database. In: Proceedings of IEEE Conference

on Computer Vision and Pattern Recognition, 2009. 248–255

54 He K M, Zhang X Y, Ren S Q, et al. Delving deep into rectifiers: surpassing human-level performance on ImageNet classifi-

cation. In: Proceedings of IEEE International Conference on Computer Vision, 2015. 1026–1034

55 Wu R M, Feng M Y, Guan W L, et al. A mutual learning method for salient object detection with intertwined multi-supervision.

In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2019. 8150–8159

56 Qin X B, Zhang Z C, Huang C Y, et al. BasNet: boundary-aware salient object detection. In: Proceedings of IEEE Conference

on Computer Vision and Pattern Recognition, 2019. 7479–7489

57 Wu Z, Su L, Huang Q M. Cascaded partial decoder for fast and accurate salient object detection. In: Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition, 2019. 3907–3916

58 Zhao J X, Liu J J, Fan D P, et al. EGNet: edge guidance network for salient object detection. In: Proceedings of IEEE

International Conference on Computer Vision, 2019. 8779–8788

https://doi.org/10.1007/s11263-015-0816-y
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2009.08453

	Introduction
	Related work
	Proposed method
	Overview of network architecture
	Densely nested top-down flow
	Light-weighted network design
	Network training

	Experiments
	Datasets & evaluation metrics
	Implementation details
	Comparison with state-of-the-arts
	Ablation study
	Efficiency discussions
	Failure cases

	Conclusion

