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Abstract Sparse representation-based classification (SRC) has been widely used because it just relies on

simple linear regression ideas to do classification, and it does not need learning. However, the performance

of SRC is limited by needing sufficient labeled samples per class and the sensitivity to class imbalance. For

tackling these problems, an improved SRC model is constructed in this paper. For alleviating the problem of

insufficient labeled samples, an unlabeled data-driven inverse projection sparse representation-based classifi-

cation model is constructed to achieve effective and stable representation and recognition results. The L1/2

and S1/2 regularizations are introduced to capture the sparsity of 1-D and 2-D, and to make the model have

good statistical properties. Moreover, the cost-sensitive strategy is integrated into the model’s classification

criteria to improve the imbalance of class distribution adaptively, especially for multiclass imbalanced data.

A solver utilizing the mixed Gauss-Seidel and Jacobian ADMM algorithm is developed to obtain the ap-

proximate solution. Experiments on common public test databases show that the proposed model achieves

competitive results compared with the latest published results and some deep-learning algorithms.

Keywords unlabeled-data driven, 1/2 regularization, cost-sensitive, inverse projection, sparse

representation-based classification
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1 Introduction

Class imbalance [1] and small labeled samples are challenging problems in the field of pattern recognition.
The techniques to deal with class imbalance mainly include data level [2–4] and algorithm level [5–7].
Among them, the cost-sensitive method of algorithm level is superior to other methods [8, 9], especially
the cost-sensitive deep learning method has achieved good results [10,11]. For insufficient labeled samples
problem, few-shot learning methods based on transfer learning or data augmentation are commonly used
technologies. In transfer learning, pre-training is carried out in the source domain, and then the weights
learned are fine-tuned in the target domain with small data [12, 13]. Data augmentation is another
technique to expand the size of the dataset by creating modified versions of the dataset [14,15]. However,
these methods still fundamentally rely on a large number of labeled samples or need to learn the effective
representation of data with the help of complex network structures. It is a meaningful and interesting
work how to design a cost-sensitive data representation method that does not require learning, and does
not rely on a large number of labeled samples.

Wright et al. [16] proposed sparse representation-based classification (SRC), which was a sparse coding
technique based on sufficient labeled samples per class without learning. SRC has made remarkable suc-
cess in pattern recognition fields, such as face recognition [17,18] and tumor recognition [19,20]. However,
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the classification performance of SRC is degraded when facing problems with class imbalance and few la-
beled samples per class. Our previous work proposed inverse projection representation-based classification
(IPRC) [21], inverse space sparse representation-based classification (ISSRC) [22], pseudo-full-space rep-
resentation based-classification (PFSRC) [23], and low-rank sparse pseudo-full-space representation-based
classification (LR-S-PFSRC) [24]. They all presented the inverse projection sparse representation-based
classification model which can effectively alleviate the insufficient labeled samples problem. Inverse pro-
jection sparse representation expands representation space via accessible unlabeled data and explores
available information among existing samples especially for unlabeled data, which frees labeled samples
from quantity needs. Moreover, the classification criterion designed to match inverse projection sparse
representation restricts attention to the coefficients before unlabeled samples rather than the coefficients
before labeled samples, which shows inverse projection sparse representation-based classification is less
sensitive to the number of labeled samples. In addition, inverse projection sparse representation considers
different regularizations according to the data prior, which is crucial to the insufficient labeled samples
problem.

However, these inverse projection sparse representation-based classification models still have the fol-
lowing limitations. First, the L1 regularization which characterizes 1-D sparsity of data does not yield
sufficiently sparse solution [25] and the nuclear norm [26] which characterizes 2-D sparsity (low rank) of
data [27] may yield a matrix with a much higher rank than the real one [28,29]. Second, the matched clas-
sification decision criterion directly assumes all misclassifications contribute equal losses, which ignores
the class imbalance problem.

With the deepgoing research on the L1 regularization, Xu et al. [25] proposed the L1/2 regularization
which had better sparsity than the L1 regularization. The L1/2 regularization also has many excellent
statistical properties, such as unbiasedness [30] and Oracle properties [31]. And, the L1/2 regularization
can completely replace the Lp (0 < p < 1) regularization [25] for the sparsity problem. In addition, Xu et
al. [32] proposed a fast solver for the L1/2 regularization. According to the L1/2 regularization theory, Rao
et al. [27] extended the L1/2 norm to a matrix and used the S1/2 norm and the L1/2 norm to describe the 2-
D sparsity and 1-D sparsity of matrix, respectively. The author designed an alternating threshold iterative
algorithm inspired by the alternating direction method of multipliers (ADMM) framework. ADMM has
attracted much attention because it mainly deals with convex constrained optimization problems, while
the algorithm cannot guarantee a convergent solution when facing optimization problems with more than
two variables. Lu et al. [33] proposed a mixed Gauss-Seidel and Jacobian ADMM (M-ADMM), which
can deal with multivariate optimization problems that ADMM may not solve. In addition, the cost-
sensitive method offers an effective solution for the class imbalance problem, where it employs different
penalties for different types of misclassification. Elkan [34] described the misclassification cost by cost
matrix. By introducing “unequal cost” information and constructing a cost matrix, the imbalance of
class distribution can be alleviated to a certain extent.

Inspired by these studies, this paper proposes a cost-sensitive inverse projection sparse representation-
based classification with 1/2 regularization (S1/2-L1/2-PFSRC-CS) to alleviate class imbalance and insuf-
ficient labeled samples. The proposed model is an extension of SRC, which aims to obtain the best possible
representation by using existing data and its inherent characteristics. Similar to SRC [16], for face recog-
nition, the studies in this paper are confined to human frontal face recognition, and assume faces have
been performed detection, cropping, and normalization. Also worth noting is that S1/2-L1/2-PFSRC-CS
focuses on limited labeled samples and representation without learning. Here, limited labeled samples
mean that there are few labeled samples and others are unlabeled. The main differences between the pro-
posed S1/2-L1/2-PFSRC-CS and the related studies [16, 21–24] are as follows. (1) S1/2-L1/2-PFSRC-CS
focuses on a completely opposite projection way to [16], uses unlabeled data to expand the representation
space to alleviate the impact of insufficient labeled data and can select different representation spaces
according to the inherent characteristics of a represented object. (2) Our previous work [21–24] proposed
an inverse projection, where Refs. [21, 22] were for tumor recognition and Refs. [23, 24] were for face
recognition. Compared with [21–24], S1/2-L1/2-PFSRC-CS further induces the sparsity and low rank of
data through the L1/2 regularization and the S1/2 regularization. (3) Refs. [16, 21–24] did not consider
the misclassification cost caused by class imbalance data. The contributions of this paper are as follows.

(1) An inverse projection sparse representation with 1/2 regularization (S1/2-L1/2-PFSR) is constructed
to alleviate insufficient labeled samples problem. The model driven by unlabeled data exploits the L1/2

regularization and the S1/2 regularization to further enhance the sparsity.
(2) A sample and robust classification decision criterion, minimum misclassification cost, is designed



Yang X H, et al. Sci China Inf Sci August 2022 Vol. 65 182102:3

to match the proposed model and complete the classification.
(3) The S1/2-L1/2-PFSR combined with minimum misclassification cost is called S1/2-L1/2-PFSRC-

CS, whose optimization, convergence performance, role of unlabeled data, sparsity performance and
classification performance are fully verified on face databases and tumor databases.

The remainder of the paper is summarized as follows. Section 2 mainly includes the theoretical frame-
work of S1/2-L1/2-PFSR. The optimization of the proposed model is discussed in Section 3. Following
that, Section 4 presents S1/2-L1/2-PFSRC-CS. Section 5 conducts extensive experiments on face databases
and tumor databases. Finally, Section 6 comes to conclusions.

2 Construction of S1/2-L1/2-PFSR model

2.1 Sparse representation

Suppose X = [x1, x2, . . . , xsc ] ∈ R
d×sc is a labeled samples set, Y = [y1, y2, . . . , ym] ∈ R

d×m is an
unlabeled samples set. In SRC, each unlabeled sample yl ∈ R

d can be linearly represented by all labeled
samples:

yl = ϕl,1x1 + · · ·+ ϕl,ixi + · · ·+ ϕl,scxsc =

sc∑

i=1

ϕl,ixi = Xϕl, (1)

where ϕl ∈ R
sc is representation coefficients. Without causing confusion, the projection way and repre-

sentation space of SRC are called positive projection and positive projection representation space.
The inverse projection is opposite to positive projection. Suppose xi ∈ X is a labeled sample, κ(xi)

is its corresponding representation space. Then xi is linearly represented by κ(xi) as xi = κ(xi)bi,
where bi is inverse projection representation coefficients. κ(xi) can be different inverse projection rep-
resentation space according to the inherent characteristics of labeled data. Pseudo-full-space [23] and
inverse space [21] are both inverse projection representation space, where inverse space is a special case of
pseudo-full-space. Pseudo-full-space Vi = {X,Y }−{xi} (i = 1, . . . , sc) is composed of all labeled samples
and unlabeled samples except the labeled sample xi itself. Inverse space Y is composed of all unlabeled
samples. It is analyzed and verified in detail from [23] that inverse projection can extract the information
hidden in unlabeled samples and reduce dependence on the quantity of labeled samples per class, which
plays a crucial role in solving insufficient labeled samples problem.

2.2 S1/2-L1/2-PFSR model

In this subsection, to further enhance the sparsity, sparse regularization and low-rank regularization are
introduced into the inverse projection sparse representation.

For traditional sparsity problems, the L1 regularization is the optimal convex approximation of the
L0 regularization, while Xu et al. [25] have revealed that the L1/2 regularization produces better sparse
solutions than the L1 regularization. In addition, the L1/2 regularization is the sparsest and most robust
among the Lp (1/2 6 p < 1) regularization, and the Lp (0 < p < 1/2) regularization has similar properties
to the L1/2 regularization. For traditional low-rank problems, the rank function is often relaxed as the
nuclear norm. The nuclear norm is the L1 norm of the singular value vector. Motivated by the superior
properties of the L1/2 norm, the S1/2 norm is proposed to replace the rank function and reveal the
subspace structure [27].

Suppose X = [x1, x2, . . . , xsc ] = [X1, . . . , Xj , . . . , Xc] ∈ R
d×sc is a labeled samples set, Xj = [Xsj−1+1,

. . . , Xsj ] ∈ R
d×(sj−sj−1) are the j-th class samples, j = 1, . . . , c is the number of class, Y = [y1, y2, . . . , ym]

∈ R
d×m is an unlabeled samples set. For each labeled sample xi ∈ X , choose its largest inverse projection

representation space, pseudo-full-space Vi = {X,Y } − {xi}. Pseudo-full-space utilizes existing available
samples rather than constructs auxiliary labeled samples. The inverse projection representation of xi by
pseudo-full-space fully explores the complementary information embedded in existing available samples.
Futhermore, the inverse projection sparse representation with 1/2 regularization can also be expressed
as seeking pseudo-full-space representation based on the S1/2 regularization and the L1/2 regularization,
namely, S1/2-L1/2-pseudo-full-space representation (S1/2-L1/2-PFSR).

min
W

‖W‖
1/2
S1/2

+ λ1‖W‖
1/2
L1/2

,
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s.t. X = VW, Wi,i = 0, (2)

where λ1 is a regularization parameter, V = [V1, . . . , Vsc ] is the pseudo-full-space matrix, W is represen-
tation coefficient matrix, Wi,i represents the i-th element of vector Wi, and Wi,i = 0 means xi do not
exist in Vi. ‖W‖S1/2

denotes the S1/2 norm of W as a low-rank regular constraint to induce structure

information, where ‖W‖S1/2
= (
∑r

n=1 δ
1/2
n )2 and {δn}

r
n=1 represents singular values of the matrix W .

‖W‖L1/2
denotes the L1/2 norm of W as a sparse regular constraint to induce sparse information, where

‖W‖L1/2
= (
∑sc+m

i=1

∑sc
j=1 |Wi,j |

1/2)2.
When samples are mildly or grossly corrupted, the labeled data matrix can be rewritten as X =

X0 + E = VW + E, in which X0 is the clean labeled data matrix and E is the error matrix. Thus, a
more reasonable S1/2-L1/2-PFSR is rewritten as

min
W,E

‖W‖
1/2
S1/2

+ λ1‖W‖
1/2
L1/2

+ λ2‖E‖1,

s.t. X = VW + E, Wi,i = 0, (3)

where λ2 is a regularization parameter. S1/2-L1/2-PFSR is mainly for data that contains sparity, subspace
structure, and complementarity information between samples. If there is only sparsity and no subspace
structure in data, two regularizations of S1/2-L1/2-PFSR are degenerated into sparse regularization. If
there is also no complementary information in data, the representation space of S1/2-L1/2-PFSR is de-
generated into inverse space because labeled data from other classes may lead to interference information
rather than complementary information. Then, L1/2-inverse-space representation (L1/2-ISR), a special
case of S1/2-L1/2-PFSR, is constructed.

min
A

‖A‖
1/2
L1/2

, s.t. X = Y A, (4)

where A is representation coefficient matrix, and ‖A‖L1/2
= (
∑m

i=1

∑sc
j=1 |Ai,j |

1/2)2. For the L1/2 regu-
larization, similar to [25], it can be analyzed that the L1/2-ISR has many promising properties.

Theorem 1. The L1/2-ISR possesses sparsity, unbiasedness, and Oracle properties.
Proof. Fan et al. [30] has already proved the sparsity and unbiasedness of the L1/2 regularizer. Knight
et al. [31] studied the asymptotic normal property of the L1 and the L1 type regularizers essentially
proved that the Lp (0 < p < 1) regularizer has the Oracle property. Therefore, Theorem 1 can be directly
derived from [30, 31].

3 Optimization of S1/2-L1/2-PFSR model

In this section, inspired by the M-ADMM [33], we propose an alternating threshold iterative algorithm
to solve the proposed model.

Considering that the objective function and constraint conditions in (3) are inseparable with respect
to low rank and sparse constraints, auxiliary variables Z and J need to be introduced for optimization.
Eq. (3) can be converted into an equivalent optimization problem as

min
W,Z,J,E

‖Z‖
1/2
S1/2

+ λ1‖J‖
1/2
L1/2

+ λ2‖E‖1,

s.t. X = VW + E, W = Z, W = J, Wi,i = 0, Zi,i = 0, Ji,i = 0. (5)

However, Eq. (5) is a multivariable nonconvex minimization problem. Although M-ADMM algorithm
is commonly used to solve multivariable convex optimization problems, its idea can be extended to
solve nonconvex optimization problems, just like the optimization idea of ADMM can be extended to
the solution of nonconvex optimization problems [27]. Based on this, this paper designs an alternating
threshold iterative algorithm to solve (5).

3.1 Existence of orthogonal matrices

It is necessary to divide the four variables W , Z, J , E into two super blocks to ensure the effective
alternating iteration of the optimization algorithm. According to the variable division method of M-
ADMM [33], we first verify (5) contains orthogonal matrices. For the three constraints in (5), X =
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VW + E, W = J , and W = Z, they can be converted into a joint constraint:




V

I

I


W +




0

−I

0


Z +




0

0

−I


 J +




I

0

0


E =




X

0

0


 . (6)

Then, Eq. (5) can be converted into an equivalent optimization problem,

min
W,Z,J,E

‖Z‖
1/2
S1/2

+ λ1‖J‖
1/2
L1/2

+ λ2‖E‖1,

s.t.




V

I

I


W +




0

−I

0


Z +




0

0

−I


J +




I

0

0


E =




X

0

0


 , Wi,i = 0, Zi,i = 0, Ji,i = 0. (7)

In (7), the coefficient matrices of variables Z, J , and E are orthogonal to each other. Hence, it is
verified that Eq. (7) contains orthogonal matrices. Therefore, the variables in (5) can be divided into
two super blocks {Z, J,E} and {W}. During the optimization algorithm, two super blocks {Z, J,E} and
{W} are alternately iterated.

3.2 Construction of projection operators

Next, three projection operators need to be constructed to ensure the constraint conditions Wi,i = 0,
Zi,i = 0, and Ji,i = 0 in the coefficient matrices.

For the restriction Wi,i = 0, W ∈ R
(sc+m)×sc , let Ω = R

(sc+m)×sc is a closed convex set. Doing a
projection operator projects W into Ω,

PΩ(W ) ∈ {W ∈ R
(sc+m)×sc | Wi,i = 0, i = 1, . . . , sc}, (PΩ(W ))q,i =

{
Wq,i, if q 6= i,

0, if q = i,
Wq,i ∈ W, (8)

where (PΩ(W ))q,i is a component of PΩ(W ). Then the restriction Wi,i = 0 is converted to W = PΩ(W ).
Similar to Wi,i = 0, for the restriction Zi,i = 0, Z ∈ R

(sc+m)×sc and Ji,i = 0, J ∈ R
(sc+m)×sc , two

other projection operators will be done to project Z and J into Ω, respectively.

PΩ(Z) ∈ {Z ∈ R
(sc+m)×sc | Zi,i = 0, i = 1, . . . , sc}, (PΩ(Z))q,i =

{
Zq,i, if q 6= i,

0, if q = i,
Zq,i ∈ Z, (9)

where (PΩ(Z))q,i is a component of PΩ(Z). Then the restriction Zi,i = 0 is converted to Z = PΩ(Z).

PΩ(J) ∈ {J ∈ R
(sc+m)×sc | Ji,i = 0, i = 1, . . . , sc}, (PΩ(J))q,i =

{
Jq,i, if q 6= i,

0, if q = i,
Jq,i ∈ J, (10)

where (PΩ(J))q,i is a component of PΩ(J). Then the restriction Ji,i = 0 is converted to J = PΩ(J).

3.3 Optimization

Based on the existence of orthogonal matrices and the constructions of three projection operators for
Wi,i = 0, Zi,i = 0, and Ji,i = 0, Eq. (5) can be solved. In order to facilitate the optimization, we can
transform (5) to

min
W,Z,J,E

1

2
‖Z‖

1/2
S1/2

+
λ1

2
‖J‖

1/2
L1/2

+ λ2‖E‖1,

s.t. X = VW + E, W = Z, W = J, Wi,i = 0, Zi,i = 0, Ji,i = 0. (11)

The augmented Lagrange function of (11) is

L(W,Z, J,E, Y1, Y2, Y3, µ) =
1

2
‖Z‖

1/2
S1/2

+
λ1

2
‖J‖

1/2
L1/2

+ λ2‖E‖1 + 〈Y1, X − VW − E〉+ 〈Y2,W − Z〉



Yang X H, et al. Sci China Inf Sci August 2022 Vol. 65 182102:6

+ 〈Y3,W − J〉+
µ

2
(‖X − VW − E‖2 + ‖W − Z‖2 + ‖W − J‖2),

where Y1, Y2, and Y3 are Lagrangian multipliers, and µ > 0 is a penalty parameter. The alternating
threshold iterative algorithm takes the following form:





Zk+1 = argmin
Z

1

2
‖Z‖

1/2
S1/2

+ 〈Y k
2 ,W k − Z〉+

µ

2
‖W k − Z‖2,

Jk+1 = argmin
J

λ1

2
‖J‖

1/2
L1/2

+ 〈Y k
3 ,W k − J〉+

µ

2
‖W k − J‖2,

Ek+1 = argmin
E

λ2‖E‖1 + 〈Y k
1 , X − VW k − E〉+

µ

2
‖X − VW k − E‖2,

W k+1 = argmin
W

〈Y k
1 , X − VW − Ek+1〉+ 〈Y k

2 ,W − Zk+1〉+ 〈Y k
3 ,W − Jk+1〉

+
µ

2
(‖X − VW − Ek+1‖2 + ‖W − Zk+1‖2 + ‖W − Jk+1‖2),

Y k+1
1 = Y k

1 + µ(X − VW k+1 − Ek+1),

Y k+1
2 = Y k

2 + µ(W k+1 − Zk+1),

Y k+1
3 = Y k

3 + µ(W k+1 − Jk+1).

(12)

The optimization of S1/2-L1/2-PFSR model is outlined in Algorithm 1, whose major computation is
dominated by Steps 1, 2, and 4. For Step 1, the SVD of matrices is required to compute in which
its total complexity is O((sc + m)(sc)

2). For half-thresholding operator in Step 2, the complexity is
O(sc(sc +m)). The computational complexity of the inverse operation is O((sc +m)3) in Step 4. The
overall computational complexity in all iterations is O(k(sc + m)3), where k is the total number of
iterations.

Algorithm 1 Optimization of S1/2-L1/2-PFSR model

Input: Labeled sample set X = [x1, x2, . . . , xsc ] and unlabeled sample set Y = [y1, y2, . . . , ym].

1: Initialize: Z0 = J0 = W 0 = Y 0
2 = Y 0

3 = 0, E0 = Y 0
1 = 0, ρ > 1, µ0 > 0, µmax > 0, k = 0.

2: While not converged do

3: Step 1. Update Z : Zk+1 = UkH 1
µk

(Dk)(V k)T, Wk +
Y k
2

µk ≈ UkDk(V k)T,

and (PΩ(Zk+1))q,i =

{

Z
k+1
q,i , if q 6= i,

0, if q = i,
Zk+1

q,i ∈ Zk+1.

4: Step 2. Update J : Jk+1 = H λ1
µk

(Wk +
Y k
3

µk ) and (PΩ(Jk+1))q,i =

{

J
k+1
q,i , if q 6= i,

0, if q = i,
Jk+1
q,i ∈ Jk+1.

5: Step 3. Update E : Ek+1 = S λ2
µk

(X − V Wk +
Y k
1

µk ).

6: Step 4. Update W : Wk+1 = (V TV + 2I)−1(V T(X − Ek+1 +
Y k
1

µk ) −
Y k
2

µk −
Y k
3

µk + Jk+1 + Zk+1)

and (PΩ(Wk+1))q,i =

{

Wk+1
q,i , if q 6= i,

0, if q = i,
Wk+1

q,i ∈ Wk+1.

7: Step 5. Update Y1, Y2, Y3 :















Y k+1
1 = Y k

1 + µk(X − VWk+1 − Ek+1),

Y k+1
2 = Y k

2 + µk(Wk+1 − Zk+1),

Y
k+1
3 = Y

k
3 + µ

k
(W

k+1
− J

k+1
).

8: Step 6. Update µ : µk+1 = min(ρµk, µmax).

9: Step 7. Update k : k = k + 1.

10: End while

Output: An optimal solution can be obtained.

Since Eq. (4) is a special case of (3), its optimal solution can be obtained in the same way. Eq. (4)
can be optimized by introducing an auxiliary variable so there is no need to verify the existence of the
orthogonal matrix. Meanwhile, the L1/2-ISR projects labeled samples onto inverse space composed of
unlabeled samples so there is no need to construct projection operators in optimization.

Eq. (5) is a multivariable nonconvex minimization problem, if there exists a convex approximation, and
then the convergence speed of the convex approximation can be characterized by the following convergence
bound theorem [33]. Similar to [33], in order to give the theorem, suppose that the convex approximation
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of (5) is as follows:

min
xB1 ,xB2

f(x), s.t. ΦB1xB1 +ΦB2xB2 = d, (13)

where f(x) is convex, xB1 = {Z, J,E|Zi,i = 0, Ji,i = 0} and xB2 = {W |Wi,i = 0}.

Theorem 2 (convergence bound theorem). In optimization algorithm of (13), assume that f̂k ∈
S{Li,Pi}n

i=1
(f, xk) [33] with Pi � Li � 0, 1

2‖ΦB1xB1‖
2 is {L′

i}i∈B1-smooth [33], 1
2‖ΦB2xB2‖

2 is {L′
i}i∈B2

-smooth [33], Gi � L′
i − ΦT

i Φi, i ∈ B1 in 1
2‖Φixi +

∑
j∈B1,j 6=i Φjx

k
j + ΦB2x

k
B2

− d + Tk

µ(k) ‖
2 + 1

2‖xi −

xk
i ‖

2
Gi

+ eki , i ∈ B1 with ek′

i s satisfying
∑

i∈B1
eki = −‖Φxk − d + Tk

µ(k) ‖
2, and Gi ≻ L′

i − ΦT
i Φi, i ∈ B2

in 1
2‖Φixi +

∑
j∈B2,j 6=i Φjx

k
j + ΦB1x

k+1
B1

− d + Tk

µ(k) ‖
2 + 1

2‖xi − xk
i ‖

2
Gi

+ eki , i ∈ B2 with e
k′

i s satisfying
∑

i∈B2
eki = 0. For any K > 0, let xk =

∑K
k=0 γ

(k)xk+1 with γ(k) = (µ(k))−1/
∑K

k=0(µ
(k))−1. Then

f(xk)−f(x∗)+〈ΦTT ∗, xK−x∗〉+
µ(0)α

2
‖Φxk−d‖2 6




2∑

j=1

‖x∗
Bj

−x0
Bj

‖2H0
j
+‖T ∗−T 0‖2H0

3



/

2

K∑

k=0

(µ(k))−1,

where T is Lagrange multiplier, xk is a weighted sum of xk′s, and α, H0
1 , H

0
2 , H

0
3 are as follows: α =

min{ 1
2 ,

δ2min(Diag{ΦT
i Φi+Gi, i∈B2}−ΦT

B2
ΦB2 )

2‖ΦB2‖
2
2

}, H0
1 = Diag{ 1

µ(0)Li + ΦT
i Φi + Gi, i ∈ B1} − ΦT

B1
ΦB1 , H

0
2 =

Diag{ 1
µ(0)Li +ΦT

i Φi +Gi, i ∈ B2}, H
0
3 = ( 1

µ(0) )
2I.

4 Cost-sensitive inverse projection sparse representation-based classification
with 1/2 regularization

In this section, minimum misclassification cost is presented to match S1/2-L1/2-PFSR and improve clas-
sification performance in class imbalance problem.

An unlabeled sample yk is classified into the optimal class φ(yk) with the minimum misclassification
cost, namely,

φ(yk) = argmin
v∈{1,2,...,c}

loss(yk, v) = argmin
v∈{1,2,...,c}

(
c∑

u=1

Pu,vCIIk,u

)
, (14)

where P ∈ R
c×c is a cost matrix, Pu,v ∈ P (Pu,v > 0) denotes the penalty that the real class is class u

and the predicted class is class v. CIIk,u is category importance index (CII), which can be calculated by

CIIk,u =
1

nu

∑

i

δu({|bi,k|}i=1,...,sc)

‖{bi,k}k=1,...,m‖1
, (15)

where u = 1, . . . , c, k = 1, . . . ,m, bi,k is representation coefficients before yk, δu is a vector whose entries
are 0 except those associated with the u-th class, and nu denotes the number of u-th class labeled samples.
CIIk,u can be regarded as the probability that unlabeled sample yk belongs to class u. The larger the
CIIk,u is, the higher the probability is.

A cost-sensitive method is called S1/2-L1/2-PFSRC-CS which integrates S1/2-L1/2-PFSR and mini-
mum misclassification cost, whose algorithm and framework are illustrated in Algorithm 2 and Figure 1,
respectively. Similarly, another algorithm is called S1/2-L1/2-PFSRC which integrates S1/2-L1/2-PFSR
and maximum category importance index. In addition, two other classification algorithms, L1/2-ISRC-CS
which integrates L1/2-ISR and minimum misclassification cost and L1/2-ISRC which integrates L1/2-ISR
and maximum category importance index, are also considered in experiments.

The proposed cost-sensitive method depends on the cost matrix P . Here, the property of the cost
matrix is further discussed. When the cost matrix P is selected as the diagonal elements are 0 and the
remaining elements are 1, we can prove that the predicted class obtained by the minimum misclassification
cost is the same as the class obtained by the maximum category importance index. That is, S1/2-L1/2-
PFSRC is a special case of S1/2-L1/2-PFSRC-CS. Namely, according to (14) and (15), the simple analysis
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Figure 1 (Color online) Cost-sensitive inverse projection sparse representation-based classification with 1/2 regularization.

Algorithm 2 Cost-sensitive inverse projection sparse representation-based classification with 1/2 regularization

Input: Labeled sample set X = [x1, x2, . . . , xsc ] and unlabeled sample set Y = [y1, y2, . . . , ym].

1: The inverse projection sparse representation with 1/2 regularization is realized by Eq. (12).

2: The CIIs of each unlabeled sample yk to all classes are calculated by Eq. (15).

3: The misclassification costs of each unlabeled sample yk to all classes are calculated by Eq. (14).

Output: Get the class of yk according to the minimum misclassification cost.

process is as follows:

φ(yk) = argmin
v∈{1,2,...,c}

c∑

u=1

Pu,vCIIk,u = argmin
v∈{1,2,...,c}

∑

u6=v

CIIk,u

= argmin
v∈{1,2,...,c}

(Constant− CIIk,v) = argmax
v∈{1,2,...,c}

(CIIk,v).

5 Experiments and discussions

In this section, in order to verify the effectiveness of the proposed model, experiments are carried out on
face databases including Extended Yale B database [35], CMU PIE database [36], and AR database [37],
as well as tumor databases including DLBCL database [38], Leukemia database [39], and 9 Tumors
database [40]. According to the inherent characteristics of data, S1/2-L1/2-PFSRC-CS is applied to face
databases, and L1/2-ISRC-CS is applied to tumor databases. For face databases, we independently run all
the methods five times and take the means as the final results. For tumor databases, we run the ten-fold
cross validation thirty times and take the means as the final results. Since a certain class of 9 Tumors
database only contains 2 samples, we run the five-fold cross validation thirty times and take the means as
the final results. Before the tumor recognition, 200 genes will be pre-selected by the between-groups to
the within-groups sum of squares (BW) [41]. All experiments are carried out using MATLAB R2016a on
a 3.30 GHz machine with 4.00 GB RAM. This section mainly verifies the convergence, role of unlabeled
data, sparsity, effectiveness for class imbalance problem as well as comparison with the latest published
results and some deep-learning algorithms. Since the inverse projection sparse representation-based
classification methods [21–24] have been proven to be superior to some classic classifiers, here S1/2-L1/2-
PFSRC-CS is only compared with S1/2-L1/2-PFSRC, LR-S-PFSRC [24], PFSRC [23], and LRSRC [18].
And L1/2-ISRC-CS is only compared with L1/2-ISRC, ISSRC [22], IPRC [21], and SRC [16].
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Figure 2 (Color online) (a), (b) Convergence analysis of the S1/2-L1/2-PFSR; (c), (d) convergence analysis of the L1/2-ISR.

5.1 Databases

Face databases: the Extended Yale B database contains 38 subjects and each individual has about 64
images with various laboratory-controlled lighting conditions. All images are manually cropped and
resized to be 32× 32 pixels in experiments. The CMU PIE database contains 68 subjects with different
poses, different illuminations, and different expressions. All experiments are conducted on a near frontal
pose subset, namely C07, which contains 68 subjects and each individual has about 24 images. All images
are manually cropped and resized to be 64 × 64 pixels in experiments. The AR database contains 126
subjects and each individual has about 26 images which are composed of 2 sections. There are 3 images
with sunglasses, 3 images with scarves, 3 images with expressions, 3 images with illuminations, and 1
natural image for each section. A subset containing 50 male subjects and 50 female subjects is chosen
for experiments.

Tumor databases: the DLBCL database contains diffuse large B cell lymphoma and follicular lym-
phoma, including 77 samples. Each sample has 5469 genes. The Leukemia database contains acute
myelogenous leukemia, acute lymphoblastic leukemia, and mixed-lineage leukemia, including 72 samples.
Each sample has 11225 genes. The 9 Tumors database contains 9 tumor types, such as NSCLC, colon,
and breast, including 60 samples. Each sample has 5726 genes.

5.2 Convergence analysis

In Subsection 3.3, S1/2-L1/2-PFSR model is optimized. Here, the corresponding convergence is verified
by experiments. Figures 2(a) and (b) show the iterative error of S1/2-L1/2-PFSR on Extend Yale B
database. As shown in Figure 2(a), the iterative error curve shows a downward trend and tends to 0.
In Figure 2(b), the iterative error trend goes from red to blue expresses the error goes from high to low,
and the overall error trend eventually tends to 0. All these verify the convergence and effectiveness of
optimization.

Figures 2(c) and (d) show the iterative error of L1/2-ISR on the DLBCL database. Figure 2(c) is the
iterative error curve, and Figure 2(d) is the iterative error trend graph. It can be seen from Figures 2(c)
and (d) that the iterative error decreases and tends to 0 with the increase of iterations. The solution
gradually becomes stable and converges to the numerical solution, which verifies that the optimization is
convergent.
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Figure 3 (Color online) Comparison of accuracy and rose figure of RSI with increasing number of unlabeled samples. (a) and

(b) are 6 labeled samples for each class; (c) and (d) are 8 labeled samples for each class.

5.3 Role of unlabeled data

In order to illustrate the role of unlabeled data, for S1/2-L1/2-PFSRC, we fix labeled samples of each
class with increasing unlabeled samples of each class on Extend Yale B database, as well as we select
unobstructed images as labeled samples and occluded images as unlabeled samples on AR database. For
L1/2-ISRC, on DLBCL and Leukemia databases, about 25% of each class are selected as labeled data,
and the remaining about 75% are selected as unlabeled data. We select the classification accuracy and
relative stability indicator (RSI) [24] as evaluation indicators.

For S1/2-L1/2-PFSRC, on the Extended Yale B database, the labeled samples are fixed to 6 and 8
for each class, and the number of unlabeled samples for each class is 4, 8, 12, and 16, respectively.
The feature dimension is set to 200 dimensions. Figure 3 shows the classification accuracy and rose
figure of RSI as the number of unlabeled samples gradually increases. As can be seen from Figures
3(a) and (c), with the increase of unlabeled samples, classification accuracy curves of all methods show
a downward trend. Compared to the positive projection method LRSRC, the classification accuracy of
inverse projection methods (LR-S-PFSRC and S1/2-L1/2-PFSRC) are higher, which means unlabeled data
play the role of auxiliary representation to help classification. S1/2-L1/2-PFSRC outperforms PFSRC due
to low rank and sparse constraints. In addition, S1/2-L1/2-PFSRC is better than LR-S-PFSRC because
the S1/2 regularization and the L1/2 regularization can further induce data sparsity. For RSI, the more
concentrated the rose figure is, the more stable the classification stability of the method is. According to
Figures 3(b) and (d), the classification stability of S1/2-L1/2-PFSRC is the best among all four methods.

In order to further verify that S1/2-L1/2-PFSRC can make full use of information between unlabeled
samples, on the AR database, 3 images are randomly selected from 14 unobstructed images of each class
as labeled samples, and the remaining 12 occluded images of each class are taken as unlabeled samples.
The feature dimension is set to 200. The classification accuracy of LRSRC is 35.13%, PFSRC is 74.17%,
LR-S-PFSRC is 76.20%, and S1/2-L1/2-PFSRC is 77.97%. It can be seen that S1/2-L1/2-PFSRC achieves
competitive results with the highest classification accuracy among all four methods. Then, 2 natural
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Table 1 Comparison of classification accuracy on AR database (%)

LRSRC PFSRC LR-S-PFSRC S1/2-L1/2-PFSRC

Sunglasses 32.83 73.00 83.33 86.83

Scarves 31.67 67.17 74.33 76.83

Table 2 Comparison of classification accuracy on tumor databases (%)

SRC IPRC ISSRC L1/2-ISRC

DLBCL 81.08 84.28 85.45 91.80

Leukemia 75.80 80.22 77.49 89.11
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Figure 4 (Color online) Comparison of CCI values among LR-S-PFSR (green curve) and S1/2-L1/2-PFSR (red curve).

(a) Extended Yale B database; (b) CMU PIE database.

images of each class are regarded as labeled samples, as well as 6 sunglasses images of each class and
6 scarf images of each class are regarded as unlabeled samples, respectively. The feature dimension is
set to 150. As can be seen from Table 1, among these two different types of unlabeled samples, S1/2-
L1/2-PFSRC have achieved better recognition results. For occluded images that are difficult to recognize,
the proposed method can still achieve ideal classification performance, and its recognition results achieve
significant improvement compared with the traditional positive projection method LRSRC.

For L1/2-ISRC, on the DLBCL database, 14 samples of one class are randomly selected as labeled
samples and the remaining 44 are unlabeled samples. 5 samples of another class are randomly selected
as labeled samples and the remaining 14 are unlabeled samples. On the Leukemia database, each class of
data is randomly divided into four parts, where one of them is selected as labeled samples and the other
three parts are unlabeled samples. One can see that no matter which database, the number of unlabeled
samples is about three times that of labeled samples. For each experiment, we independently run all the
methods 300 times and take the means as the final results. Experimental results are shown in Table 2.
It can be seen from Table 2 that the inverse projection methods (IPRC, ISSRC, and L1/2-ISRC) driven
by unlabeled data are better than SRC even though there are few effective labeled samples. Moreover,
L1/2-ISRC which applies the L1/2 regularization outperforms both IPRC and ISSRC.

5.4 Sparsity analysis

For the sparsity of S1/2-L1/2-PFSR, the sparsity analysis is carried out by “sparseness” and category
concentration index (CCI) [23]. For sparse representation model, the sparseness is defined as the number
of non-zero elements in sparse representation coefficients of the same scale. The value range of CCI is
(0, 1]. The larger the CCI is, the better the sparse representation is. The closer the CCI is to 1, the more
concentrated the coefficients are in a certain class.

For face databases, since S1/2-L1/2-PFSR has sparse and low-rank constraints in representation coeffi-
cients, the sparsity can only be measured by CCI. Figure 4 shows the CCI values corresponding to LR-S-
PFSR (green curve) and S1/2-L1/2-PFSR (red curve), respectively. From Figure 4, CCIS1/2-L1/2-PFSR >
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Table 3 Comparison of sparseness on tumor databases

DLBCL Leukemia 9 Tumors

ISSR 533.35 466.21 574.23

L1/2-ISR 289.80 261.88 232.47
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Figure 5 (Color online) Comparison of CCI values among IPR (blue curve), ISSR (green curve), and L1/2-ISR (red curve).

(a) DLBCL database; (b) Leukemia database; (c) 9 Tumor database.

CCILR-S-PFSR is satisfied for most of samples. Experimental results show that S1/2-L1/2-PFSR has bet-
ter sparse representation performance than LR-S-PFSR, because the representation coefficients induced
by the S1/2 norm are more low rank than the nuclear norm and the L1/2 norm can further induce the
sparsity of matrix.

For tumor databases, the sparsity of L1/2-ISR is verified by comparing the sparseness and CCI. Table 3
shows the sparseness of ISSR and L1/2-ISR. It can be seen from Table 3 that L1/2-ISR has a higher
sparseness than IPR and ISSR. Experimental results show that L1/2-ISR selects the unlabeled samples
that have high correlation with the represented object to represent, and improves the representation
ability of the model. Figure 5 shows L1/2-ISR has the largest CII values for most samples, which shows
that L1/2-ISR has better sparse representation performance than others. All these demonstrate the L1/2

regularization has promising properties, such as sparsity, unbiasedness, and Oracle properties.

5.5 Effectiveness analysis of alleviating class imbalance problem

In order to verify the effectiveness of S1/2-L1/2-PFSRC-CS for the class imbalance problem, we first
determine the optimal misclassification cost by experiments, and then we compare the classification
performance of the proposed method with other methods when facing class imbalance problem.



Yang X H, et al. Sci China Inf Sci August 2022 Vol. 65 182102:13

1.8 2 2.2 2.4 2.6 2.8 3

a
1

a
1

a
1

94.0

94.5

95.0

95.5

96.0

96.5

F
-m

ea
su

re
 (

%
)

a
1
=2.6

1.8 2 2.2 2.4 2.6 2.8 3
94.5

95.0

95.5

96.0

96.5

97.0

G
-m

ea
n
 (

%
)

a
1
=2.6

1.8 2 2.2 2.4 2.6 2.8 3
96.5

97.0

97.5

98.0

98.5

A
cc

u
ra

cy
 (

%
)

a
1
=2.6

(a) (b) (c)

Figure 6 (Color online) (a) F-measure, (b) G-mean, and (c) accuracy of a1 ∈ [1.8, 3] on DLBCL database.

5.5.1 Optimal misclassification cost analysis

For face databases, since the number of samples for each class on Extended Yale B database and CMU
Multi-PIE database is balanced, there is no class imbalance problem. Therefore, we consider the special
cost matrix, that is, the diagonal elements are 0 and the remaining elements are 1. Furthermore, S1/2-
L1/2-PFSRC-CS is equivalent to S1/2-L1/2-PFSRC. Therefore, S1/2-L1/2-PFSRC is used instead of S1/2-
L1/2-PFSRC-CS in subsequent experiments.

For tumor databases, the DLBCL database contains 2 tumor types, where the size of the majority
class and minority class is 58 and 19, respectively. Since the cost matrix of binary class multiplied by a
number has the optimal decision invariance, one cost can be set to 1 and the other cost is greater than
1. The Leukemia database contains three tumor types, where the size of each class is 28, 24, and 20,
respectively. Due to the class imbalance, we consider different misclassification costs. Assume the cost
matrix PDLBCL and PLeukemia are as follows. Here, the a1, b1, b2, and b3 are determined by experiments.

PDLBCL = {Pu,v}DLBCL =

[
0 a1

1 0

]
, PLeukemia = {Pu,v}Leukemia =



0 b1 b2

1 0 b3

1 1 0


 .

Figure 6 shows the F-measure, G-mean, and classification accuracy of a1 ∈ [1.8, 3] on DLBCL database,
respectively. It can be seen from Figure 6 that when a1 takes a value in a small neighborhood centered on
2.6, L1/2-ISRC-CS achieves competitive classification results. So, for simplicity, let a1 = 2.6 in subsequent
experiments. Figure 7 shows the classification accuracy of b2, b3 ∈ [1, 2.1] as b1 = 1.2, 1.5, 1.8 on Leukemia
database. One can see that no matter whether b1 takes any value of 1.2, 1.5 or 1.8, the classification
accuracy of L1/2-ISRC-CS is competitive when b2 = 1.8, b3 = 1.2. So, for simplicity, let b1 = 1.5,
b2 = 1.8, b3 = 1.2 in subsequent experiments. Since the 9 Tumors database contains 9 tumor types, the
cost matrix P9 Tumor is determined heuristically by referring to classification accuracy and experiment
experience.

5.5.2 Classification performance analysis

In order to verify the classification performance of S1/2-L1/2-PFSRC on multiclass balance face databases,
we compare S1/2-L1/2-PFSRC with LRSRC, PFSRC, and LR-S-PFSRC, as well as selecting the classi-
fication accuracy and RSI as evaluation indicators. In order to verify the classification performance of
L1/2-ISRC-CS on multiclass imbalance tumor databases, we compare L1/2-ISRC-CS with IPRC, ISSRC,
and L1/2-ISRC, as well as selecting F-measure, G-mean, classification accuracy, error rate, and error
reduction rate as evaluation indicators.

(a) Multiclass balance face databases. On multiclass balance face databases, for the Extended
Yale B database, 50 face images of each class are randomly selected as samples. For the CMU PIE
database, 20 face images of each class are randomly selected as samples. For each face database, 20% of
the samples are regarded as labeled samples, and the remaining 80% are regarded as unlabeled samples.

Figure 8 shows the classification accuracy and rose figure of RSI on Extended Yale B database and
CMU PIE database. Figures 8(a) and (c) are classification accuracy curves. Figures 8(b) and (d) are
the rose figures of RSI. In Figures 8(a) and (c), the higher the classification accuracy curve is, the better
the method is. In Figures 8(b) and (d), the more concentrated the rose figure of RSI is, the stronger
the classification stability of the method is. As can be seen from Figure 8, with the increase of feature
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Figure 7 (Color online) Accuracy of b2, b3 ∈ [1, 2.1] on Leukemia database as (a) b1 = 1.2, (b) b1 = 1.5, and (c) b1 = 1.8.

dimension, the classification accuracy of all methods is improved. S1/2-L1/2-PFSRC outperforms all
other methods in a different dimension. Meanwhile, for dimension changes, the rose figure of RSI of S1/2-
L1/2-PFSRC is more concentrated than the other three methods, which indicates that S1/2-L1/2-PFSRC
is less sensitive to selection of feature dimension. One can see that S1/2-L1/2-PFSRC with about 200
dimensions tends to be stable in Extended Yale B and CMU Multi-PIE databases. So, we use the feature
of dimensionality 200 to evaluate the running time of S1/2-L1/2-PFSRC, LR-S-PFSRC, and LRSRC.
Table 4 provides the average running time of each tested method. As a result, S1/2-L1/2-PFSRC achieves
better classification results by spending less running time.

(b) Binary class imbalance tumor database. For binary class imbalance tumor database, Fig-
ures 9(a) and (b) show F-measure, G-mean, classification accuracy, and box plots for an error rate of
different methods on DLBCL database. It can be seen from Figure 9(a) that the F-measure and G-mean
of IPRC, ISSRC, and L1/2-ISRC have no significant changes, which indicates that these three methods
have similar classification performance for the class imbalance problem. The F-measure of L1/2-ISRC is
slightly higher than that of IPRC and ISSRC because the L1/2 regularization can induce more sparse
representation coefficients to make the representation more discriminative. Experimental results show
that only using the L1/2 regularization cannot alleviate the class imbalance problem. The F-measure of
L1/2-ISRC-CS is obviously superior to others, which indicates that L1/2-ISRC-CS significantly improves
the classification accuracy of the minority class. The reason is that L1/2-ISRC-CS imposes different costs
on different misclassifications, which can alleviate the class imbalance problem. Moreover, L1/2-ISRC-CS
achieves the largest G-mean among all four methods, which further shows that L1/2-ISRC-CS is effective
for the class imbalance problem. Finally, the classification accuracy of L1/2-ISRC-CS also outperforms
the other methods from Figure 9(a). Figure 9(b) shows the box plots for the error rate of different
methods on the DLBCL database. It can be seen from Figure 9(b) that the median line of L1/2-ISRC-CS
is the lowest median among all four methods. And the distance between the upper quartile and the lower
quartile of box plots shows that the error rate distribution of L1/2-ISRC-CS is relatively concentrated.
As shown in Figures 9(a) and (b), all the four evaluation indicators indicate that L1/2-ISRC-CS is better
than others.

In order to compare IPRC, ISSRC, L1/2-ISRC, and L1/2-ISRC-CS more intuitively, error rate and error
reduction rate are chosen to compare classification performance. According to the error reduction rate
(ERR), ERR = (ER1 −ER2)/ER1 × 100%, ER1 is the error rate of other recognition results on the same
method, ER2 is the error rate of highest recognition result on the same method, and ERR is represented
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Figure 8 (Color online) Accuracy and rose figure of RSI versus feature dimension of all the methods. (a) and (b) are Extended

Yale B database; (c) and (d) are CMU PIE database.

Table 4 The average running time of different methods on face databases (s)

LRSRC LR-S-PFSRC S1/2-L1/2-PFSRC

Extended Yale B 70.32 15.40 9.28

CMU PIE 34.70 7.44 4.53

by ↓. Table 5 shows the error rate and ERR of all methods on DLBCL database. It can be seen from
Table 5 that L1/2-ISRC-CS has the lowest error rate among the all four methods, and the ERR obviously
reflects the relative advantages of L1/2-ISRC-CS.

(c) Multiclass imbalance tumor databases. For the multiclass imbalance tumor databases,
Leukemia and 9 Tumors databases, the classification performance of IPRC, ISSRC, L1/2-ISRC, and L1/2-
ISRC-CS is compared. Table 6 shows the classification accuracy, error rate, and ERR of all methods. And
Figures 9(c) and (d) show box plots for the error rate of the four methods. It can be seen from Table 6
that the classification accuracy of L1/2-ISRC-CS is significantly higher than others on multiclass imbal-
ance tumor databases. L1/2-ISRC-CS still has the lowest error rate among all four methods on multiclass
imbalance tumor databases. Also, the ERR reflects the obvious advantages of L1/2-ISRC-CS. It can be
seen from Figures 9(c) and (d) that box plots for the error rate of L1/2-ISRC-CS has the lowest median
line and the shortest distance between the upper quartile and the lower quartile of box plots among
all four methods. From Table 6 and Figures 9(c) and (d), it can be concluded that the classification
performance of L1/2-ISRC-CS is still better than others on multiclass imbalance tumor databases.

5.6 Comparison with state-of-the-art methods

The proposed method is further compared with the latest published results and some deep-learning
algorithms. For S1/2-L1/2-PFSRC, on the AR database, we select nautral image of each subject as
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Figure 9 (Color online) (a) Comparison of F-measure, G-mean, accuracy and (b) box plots for error rate on DLBCL database;

(c) box plots for error rate on Leukemia database and (d) 9 Tumors database.

Table 5 Comparison of different classification methods on DLBCL database (%)

IPRC ISSRC L1/2-ISRC L1/2-ISRC-CS

Error rate 8.06 6.93 6.08 1.56

ERR ↓80.67 ↓77.51 ↓74.38 –

Table 6 Comparison of different classification methods on tumor databases (%)

IPRC ISSRC L1/2-ISRC L1/2-ISRC-CS

Leukemia

Accuracy 93.96 93.95 97.42 99.01

Error rate 6.04 6.05 2.58 0.99

ERR ↓83.6 ↓83.64 ↓61.59 –

9 Tumors

Accuracy 76.04 76.19 79.46 85.20

Error rate 23.96 23.81 20.54 14.80

ERR ↓38.24 ↓37.85 ↓27.94 –

labeled data, and images with expression changes and illumination changes are chosen as unlabeled
data respectively. Table 7 gives the classification results of different methods, including LBP [42], P-
LBP [43], and PCANet [44], where our algorithm achieves competitive results when facing different
testing conditions. As we know, PCANet is served as a simple but highly competitive deep learning
baseline for object recognition. Because of deep learning, PCANet has higher accuracies than both LBP
and P-LBP. However, compared to PCANet, S1/2-L1/2-PFSRC is on par in classification performance
but with no learning. In addition, we also compare the proposed method with FDDL [45], JEDL [46],
and ADDL [47]. 20 images per class are randomly chosen as labeled samples and the rest are unlabeled
samples. The classification results are averaged more than 10 times runs. Table 8 shows experimental
results, where one can observe that S1/2-L1/2-PFSRC is superior to other comparison methods.

For L1/2-ISRC-CS, its performance is compared with the latest published results on DLBCL, Leukemia,
and 9 Tumors databases. The compared methods are selected from [19–22,48–50], where MSRC-SVD [19],
MSRC-NMF [19], and MSRC-SNMF [19] are all based on MSRC and their difference is the way that
they extract the metasamples of gene expression data using SVD, NMF, and SNMF, respectively. The
classification results are exhibited in Table 9 [19–22,48–51]. As can be seen from Table 9, L1/2-ISRC-CS
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Table 7 Classification accuracy of different methods on AR database (%)

LBP [42] P-LBP [43] PCANet-1 [44] PCANet-2 [44] S1/2-L1/2-PFSRC

Expression 81.33 80.33 85.67 85.00 87.33

Illumination 93.83 97.50 98.00 99.50 99.67

Table 8 Classification accuracy of different methods on AR database (%)

FDDL [45] JEDL [46] ADDL [47] S1/2-L1/2-PFSRC

Accuracy 95.60 96.20 97.00 97.50

Table 9 Classification accuracy with the latest published results on tumor databases (%)

DLBCL Leukemia 9 Tumors

Method Accuracy Method Accuracy Method Accuracy

MLP-D [48] 96.24 MSRC-NMF [19] 95.83 MRSRC-SVD [20] 60.00

MSRC-SNMF [19] 97.40 IPRC [21] 96.90 MSRC-SVD [19] 63.33

SRC-LatLRR [49] 97.40 MRSRC-SVD [20] 97.22 SRC-LatLRR [49] 66.67

Integrated ISSRC [22] 97.50 SRC-LatLRR [49] 98.61 IPRC [21] 66.67

IPGSRC [50] 98.00 Integrated ISSRC [22] 98.61 LLR+SR [51] 66.75

L1/2-ISRC-CS 98.44 L1/2-ISRC-CS 99.01 L1/2-ISRC-CS 85.20

leads to competitive results in identifying different types of tumors.

6 Conclusion

In this paper, the cost-sensitive inverse projection sparse representation-based classification with 1/2
regularization is proposed based on the inherent characteristics of data. The proposed method obtains
the sparsity of 1-D and 2-D data by introducing the L1/2 regularization and the S1/2 regularization. The
cost matrix is incorporated into the decision criterion to improve classification performance. Moreover,
the proposed method is effective and stable even if there are few labeled samples or class imbalance.
There remain some interesting questions. How to further optimize the model, such as integrating feature
coding and discriminative classification into one model similar to [52], combining between the interclass
and intraclass properties of dictionary atoms and coding coefficients similar to [53], or combining with
deep learning methods when encountering big data or wild datasets because of limitations of SRC type
methods.
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