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Dear editor,

The radar cross section-based (RCS-based) method is an

important research direction in the field of automatic target

recognition (ATR) of passive radars [1–5]. Due to the un-

known transmitting parameters in the passive radar, it is im-

possible to extract the true target RCS from the echo power.

As a result of this, researchers use a biased RCS which has an

unknown parameter to realize the RCS-based ATR in pas-

sive radar [1, 2]. However, the average correct recognition

rates (ACRRs) of their methods are not good. Apart from

those using the measured biased RCS, the other studies only

employ simulated RCS to verify their ATR methods [3–5].

Although good ACRRs are obtained in their work, there is

no evidence to prove the effectiveness of their methods in

the actual scene.

In this article, we propose an ATR method combining

angular diversity and time diversity to improve the perfor-

mance of ATR in passive radar and to facilitate its appli-

cation in actual scenes. The proposed method takes advan-

tage of the amplitude of the measured quasi-RCS in angular

subspace to recognize targets. In each angular subspace,

we build a sub-recognizer. All the sub-recognizers together

form the proposed recognizer. In each angular subspace, the

sub-recognizer can be well trained with less amount of train-

ing data compared with the situation without angular space

division. In addition, we propose a successive voting (SV)

strategy to automatically output the recognition result with

corresponding correct prediction probability (CPP).

Method design. Figure 1(a) shows the block diagram of

the proposed ATR method. It consists of fuzzy recogniz-

ers built in all angular subspaces that are obtained by di-

viding the angular space of the target coordinate system.

We call each fuzzy recognizer in an angular subspace a sub-

recognizer. At each time point, each receiving station calls a

sub-recognizer to do the preliminary recognition on the un-

known target and outputs a preliminary decision separately.

Then these preliminary decisions are sent to the station fu-

sion module to make station fusion. The station fusion mod-

ule employs the voting strategy to fuse the preliminary deci-

sions and outputs a secondary decision about the unknown

target. The secondary decision is then sent to the decision

container to wait for time fusion. When M (the expected

value) secondary decisions are input, the time fusion module

fuses them and outputs a final decision. The final decision

is then sent to the decision module to determine the class of

the unknown target.

In the decision module, an SV strategy is proposed to

estimate the CPP of the recognition result. The SV strat-

egy estimates the CPP according to the total probability

theorem as follows:

P(B) =
∑γ

i=1
P (Ai)P (B|Ai), (1)

where γ is the current number of fused final decisions,

Ai, i = 1, 2, . . . , γ denotes the event that the recognizer cor-

rectly recognizes the target i times in γ final decisions, and

B denotes the event that the recognizer correctly recognizes

the unknown target with fusing γ final decisions. P (B) is

the probability of event B happening, i.e., the CPP, P (Ai)

is the probability of event Ai happening, and P (B|Ai) is the

conditional probability of event B happening conditioned on

event Ai. The probability P (Ai) is expressed as

P(Ai ) =
∑Ci

γ

s=1
ξs, (2)

where Ci
γ = γ!

i!(γ−i)!
is the number of possible situations

of event Ai happening, ξs =
∏i

d=1 pd
∏γ−i

g=1(1 − pg) is the

probability of the sth situation happening among Ci
γ situa-

tions corresponding to the event Ai, where pd is the correct

probability of each final decision among i correct final deci-

sions, (1−pg) is the wrong probability of each final decision

among (γ− i) wrong final decisions. pd and pg are the prior
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Figure 1 (Color online) (a) Block diagram of the proposed ATR method; (b) ACRR of the proposed method obtained with

different receiving stations; (c) ACRR of the proposed method as a function of the number of fused time points; (d) the real-life

target track used in the recognition experiment; (e) CPP of the recognition results corresponding to the track segment in (d).

probabilities. P (B|Ai) is calculated as

P (B|Ai) =



















0, i < γ
Q
,

∑

C
Q−2

γ−i+Q−2

j=1

p′j

C
Q−2

γ−i+Q−2

, γ/Q 6 i 6 γ/2,

1, i > γ
2
,

(3)

where Q denotes the number of target classes in the stan-

dard target database, p′j denotes the probability that the

jth voting result among CQ−2
γ−i+Q−2 possible voting results

is the correct recognition.

The sketch map of the angular subspace can be found in

Appendix A. The time fusion module and decision module

can be found in Appendix B. The detailed derivation of CPP

can be found in Appendix C.

Experimental results and analyses. The proposed ATR

method is evaluated with the real-life data. The experi-

mental scene configuration and the measured raw data can

be found in Appendix D. Figure 1(b) shows the ACRRs of

the proposed ATR method obtained with different receiving

stations. The x-tick labels denote the indices of the receiv-

ing stations used in the recognition experiments. We can

see from the figure that the ACRR obtained with fusing

multiple receiving stations is better than the ACRRs ob-

tained without station fusion. Moreover, it also shows that

the ACRR obtained with fusing three receiving stations is

higher than the ACRRs obtained with fusing two receiving

stations. These results indicate that the more the receiving

stations used for fusion are, the better the performance of

the method is.

Figure 1(c) shows the results of ACRR as a function of

the number of fused time points. It shows that the ACRR of

the recognizer increases as the number of fused time points

increases. As can be seen from the figure that the ACRR of

recognizer can be improved from about 85% to more than

91% with only fusing secondary decisions from three time

points, which demonstrates that the ACRR could be effec-

tively improved with less sacrifice of the real-time perfor-

mance of the recognizer by combing station fusion and time

fusion in the ATR method.

A recognition experiment is also conducted with the real

radar track to validate the SV strategy. Figure 1(d) shows

the measured target track. Figure 1(e) shows the CPP of

recognition result obtained with the recognized track in Fig-

ure 1(d). It shows that the CPP of recognition result in-

creases when more final decisions are fused. As can be seen

from Figure 1(e), the CPP of recognition result increases

from about 68% to around 90% with fusing 7 final deci-

sions. These results indicate that the recognition result be-

comes more credible after the recognizer employing more

final decisions to recognize the target, which is consistent

with the actual situation and validates the effectiveness of

the proposed SV strategy.

More analyses of the proposed method can be found in

Appendixes E and F.

Conclusion. To tackle the target recognition problem in

multistatic passive radar, we propose an ATR method com-

bining station fusion and time fusion. The proposed method

first fuses preliminary decisions from all receiving stations

and then further fuses the secondary decisions to obtain

more credible results. An SV strategy is finally employed to

decide whether the final decision satisfies the requirement.

Recognition results validate the effectiveness of the proposed

method and show a promising application prospect of the

method in real situations.
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