
SCIENCE CHINA
Information Sciences

July 2022, Vol. 65 179301:1–179301:2

https://doi.org/10.1007/s11432-021-3304-6

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 info.scichina.com link.springer.com

. LETTER .

Explicit construction of minimum bandwidth
rack-aware regenerating codes

Liyang ZHOU1,2 & Zhifang ZHANG1,2*

1Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Systems Science,

Chinese Academy of Sciences, Beijing 100190, China;
2School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Received 18 April 2021/Revised 13 June 2021/Accepted 20 July 2021/Published online 31 March 2022

Citation Zhou L Y, Zhang Z F. Explicit construction of minimum bandwidth rack-aware regenerating codes. Sci

China Inf Sci, 2022, 65(7): 179301, https://doi.org/10.1007/s11432-021-3304-6

Dear editor,

Erasure codes are increasingly adopted in modern storage

systems (such as Windows Azure Storage [1] and Facebook

storage [2]) to ensure fault-tolerant storage with low redun-

dancy. Meanwhile, efficient repair of node failures becomes

a central issue in coding for distributed storage. The repair

efficiency is usually measured by the repair bandwidth which

is the amount of data transmitted from the helper nodes dur-

ing the repair process. The celebrated work [3] initiated the

study of regenerating codes that can minimize the repair

bandwidth for given storage redundancy. By now fruitful

results have been achieved in regenerating codes which are

partly included in the survey [4].

The initial model for regenerating codes treats the band-

width cost equally between all storage nodes. For simplicity,

we call this model as the homogeneous model throughout.

However, large data centers usually possess heterogeneous

structure where the storage nodes are organized in racks, so

it permits to differentiate between the intra-rack communi-

cation and cross-rack communication. Specifically, suppose

there are n̄ racks each containing u out of the n nodes. To

store a file of B symbols, each node stores α symbols such

that any k nodes can together recover the file. When a node

failure happens, its storage contents can be regenerated in

a replacement node by downloading data from all the sur-

viving nodes in the same rack and also from d̄ helper racks.

Because the cross-rack communication cost is much more ex-

pensive than the intra-rack communication cost, the latter is

usually neglected in calculating the repair bandwidth. Thus

the repair bandwidth γ = d̄β where β is the number of sym-

bols transmitted from each helper rack to the replacement

node.

Particularly when u=1, it degenerates into the homoge-

nous model where regenerating codes have been well studied.

In this study we focus on the case u>1. Similarly to [3], Hou

et al. [5] derived the cut-set bound for the rack-aware stor-

age model which along with some boundary conditions char-

acterizes an α-β tradeoff curve. The two extreme points on

the tradeoff curve indicate the rack-aware regenerating codes

with the minimum bandwidth (i.e., MBRR codes) and those

with the minimum storage (i.e., MSRR codes), respectively.

Explicit constructions of MSRR codes were developed in [6]

while no explicit constructions of MBRR codes have been

found so far.

According to [5], the MBRR code has parameters

α = d̄β = Bd̄
/

(

kd̄−
k̄(k̄ − 1)

2

)

, (1)

where k̄ = ⌊ k
u
⌋. The authors of [5] provided an existential

construction of MBRR codes over a field of size larger than

B
∑min{k,n̄}

i=1

(

n−n̄

k−i

)(

n̄

i

)

. In their construction, a product-

matrix structure of the MBR codes in [7] was used to ensure

the optimal repair bandwidth, while the data reconstruc-

tion from any k nodes was guaranteed by the invertibility of

some related matrices. Unfortunately, they failed to give ex-

plicit constructions of the corresponding matrices. We con-

quered this problem through a nice merge of the multiplica-

tive subgroup design into the product-matrix MBR codes.

The multiplicative subgroup design was first adopted in [8]

for ensuring repair locality in linear codes with the opti-

mal distance, and then in [6] for constructing MSRR codes

from the parity-check matrix. By applying the design in

the product-matrix framework, we obtain the first explicit

construction of MBRR codes for all admissible parameters

considered in [5].

First introduce some notations. For integers n > m > 0,

let [m,n]={m,m+1, . . . , n} and [n]={1, . . . , n}. We label

each of the n nodes by a pair (e, g) where e ∈ [0, n̄−1] in-

dicates which rack the node lies in and g ∈ [0, u−1] is the

node index within the rack. Our MBRR codes are built

over a finite field F satisfying u|(|F | − 1) and |F | > n. The

codes apply to the scalar case β = 1. Accordingly, the file is

composed of B = (k−k̄)d̄+ k̄(k̄+1)
2

+ k̄(d̄−k̄) symbols from

F and each node stores d̄ symbols. Next we describe the

construction in three steps.

Step 1. Define two sets J1 = {tu+ u− 1 : t ∈ [0, d̄− 1]}
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Figure 1 Construction of the matrix M .

and J2 = [0, k − 1] − J1. It can be seen that |J1| = d̄ and

|J2| = k − k̄. Moreover, let J = J1 ∪ J2 which can be

rewritten as

J = [0, k − 1] ∪ {tu+ u− 1 : t ∈ [k̄, d̄− 1]} . (2)

Then the B symbols of the file are arranged in a d̄×(k−k̄+d̄)

matrix M = (mi,j )i∈[0,d̄−1],j∈J . Note the columns of M are

indexed by the set J . When restricted to the columns in-

dexed by J1 (respectively, J2), the resulting sub-matrix of

M is denoted as M1 (respectively, M2). Moreover, M1 has

the following form:

M1 =

(

S T

T τ 0

)

, (3)

where S is a symmetric matrix of order k̄ whose upper-

triangular half contains exactly k̄(k̄+1)
2

symbols of the file,

T is a k̄ × (d̄ − k̄) matrix composed of k̄(d̄ − k̄) symbols of

the file, and T τ denotes the transpose of T . As a result,

M1 is a d̄× d̄ symmetric matrix containing k̄(k̄+1)
2

+ k̄(d̄−k̄)

symbols altogether. The matrix M2 is a d̄× (k − k̄) matrix

containing the remaining (k − k̄)d̄ symbols of the file. The

construction of the matrix M is displayed in Figure 1.

Step 2. For i ∈ [0, d̄− 1] define polynomials:

fi(x)=
∑

j∈J

mi,jx
j =

k−1
∑

j=0

mi,jx
j+

d̄−1
∑

t=k̄

mi,tu+u−1x
tu+u−1, (4)

where the second equality comes from the form of J in (2).

In short, each row of the matrix M defines a polynomial.

Step 3. Choose a primitive element of F , denoted by

ξ. Let η = ξ
|F |−1

u . Obviously, ηu = 1. Note ξ and η

are fixed and publicly known. Then let λ(e,g) = ξeηg for

e ∈ [0, n̄−1], g ∈ [0, u−1]. For (e, g) 6= (e′, g′), it is easy to

see λ(e,g) 6= λ(e′,g′). That is, we select n distinct elements

λ(e,g)’s in F , where (e, g) ∈ [0, n̄ − 1] × [0, u − 1]. Finally

we construct a code C by letting the node (e, g) store the d̄

symbols f0(λ(e,g)), f1(λ(e,g)), . . . , fd̄−1(λ(e,g)).

In short, our code C is built as

C = MΛ, (5)

where M is the matrix constructed from the data file as in

Step 1, Λ = (λj

(e,g)
) has k− k̄+ d̄ rows indexed by j ∈ J and

n columns indexed by (e, g) ∈ [0, n̄− 1]× [0, u− 1]. Then C

is a d̄×n code matrix each column of which contains exactly

the d̄ symbols stored in a node. We prove C is an MBRR

code by showing it satisfies the data reconstruction prop-

erty (Theorem 1) and optimal repair property (Theorem 2).

Proofs of the two theorems are written in Appendixes A and

B, respectively.

Theorem 1. The matrix M (i.e., the data file) can be

recovered from any k columns of C.

Remark 1. The key observation is that the bottom d̄− k̄

polynomials (see Figure 1) have degree less than k. Thus any

k nodes are sufficient to recover these polynomials. Then

due to the symmetry of M1, the above k̄ polynomials also

degenerate to polynomials of degree less than k based on

recovery of the bottom polynomials.

Theorem 2. Any single node failure (i.e., any column of

C) can be recovered by downloading β = 1 symbol from

each of d̄ helper racks in addition to the transmission within

the rack containing the failed node.

Remark 2. The key idea is that due to the multiplicative

subgroup structure in Λ (i.e., η has multiplicative order u),

the punctured code Ce for each rack e ∈ [0, n̄ − 1] matches

evaluations of d̄ polynomials of degree less than u. More-

over, the leading coefficients of these polynomials form a

product-matrix MBR code in [7].

Additionally, we present in Appendix C a transformation

to convert the code C in (5) into a systematic MBRR code

where the B file symbols are stored in an uncoded form in

k systematic nodes. This makes our code more desirable in

practice because the file symbols can be accessed directly

from the systematic nodes. In summary, our construction

is explicit, systematic, built over small field and with small

sub-packetization (i.e., α = d̄), so our study provides a prac-

tical solution to the MBRR codes.
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