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Dear editor,

The development of robust controllers for systems subject

to uncertainties is always one of the hottest issues in modern

control field [1, 2]. When only the output signals are mea-

surable, the design of robust output-feedback controllers is

required, which is more difficult [3]. Recently, the devel-

opment of finite-time exact observer has provided us an al-

ternative way to solve this problem [4, 5]. The interest is

to use the finite-time exact observer to estimate the system

states and uncertainties, simultaneously. Then, by replacing

the unmeasurable states with the estimated states as well as

an exact uncertainty compensation, robust output feedback

controllers can be finally implemented.

Note that most of the existing controllers can only achieve

asymptotic or finite-time control whose convergence time de-

pends on the system initial values and will grow as the ini-

tial values grow. To overcome this drawback, the notation

of fixed-time stability is developed [6]. As an extension of

finite-time stability, the settling time of fixed-time stability

is uniformly bounded by a constant independent of the sys-

tem initial conditions. For this remarkable property, many

results about fixed-time control have been developed.

Inspired by the aforementioned studies, we designed a

robust fixed-time output-feedback controller for uncertain

linear systems. Firstly, a composite observer is proposed to

identify the system states and uncertainties, simultaneously.

Then, based on the proposed composite observer, a robust

fixed-time output-feedback controller with exact uncertainty

compensation is proposed. Compared with the existing ro-

bust controllers, the proposed controller is completely con-

tinuous and thus is free of chattering, and can guarantee the

fixed-time convergence of system states to zero independent

of the system initial values.

Problem statement and preliminaries. In this study, we

consider the following linear system:

{

ẋ(t) = Ax(t) + Bu(t) + ψ(t, x),

y(t) = Cx(t),
(1)

where x(t) = [x1(t), . . . , xn(t)]T ∈ R
n and u(t) ∈ R are the

system state vector and input, respectively; y(t) ∈ R is the

output; the function ψ(t, x) : R+ × R
n → R

n is the sys-

tem uncertainty; A ∈ R
n×n, B ∈ R

n×1 and C ∈ R
1×n are

known matrices.

Assumption 1. The pair (A,B) is controllable and the

function ψ(t, x) fulfills the matched condition with ψ(t, x) =

Bϕ(t, x), |ϕ̇(t, x)| 6 ϕmax, where ϕmax is a known constant.

Assumption 2. System (1) is strongly observable.

Remark 1. Assumption 1 is a very classical assumption

for the control of linear systems. Assumption 2 is equivalent

to the statement that the pair (A,C,B) has no invariant ze-

ros or the relative degree of the system output y with respect

to the matched uncertainty ϕ(t, x) is n.

The goal of the study is to develop an observer-based

output-feedback controller for system (1) under Assump-

tions 1 and 2 with exact uncertainty compensation such that

the origin of system (1) is globally fixed-time stable.

Design of composite observer. A composite observer

composed of a Luenberger observer (LO) and a high-order

sliding mode observer (HOSMO) will be constructed to iden-

tify the system states and uncertainties in a fixed time.

(1) Design of LO. The following LO is designed to ap-

proximately estimate the system states:

˙̃x(t) = Ax̃(t) + Bu(t) + L(y(t) − Cx̃(t)), (2)

where x̃(t) = [x̃1(t), . . . , x̃n(t)]T is the state vector of the

LO. Define the observation error e(t) = x(t) − x̃(t). Then,

the error system can be obtained from (1) and (2) as

ė(t) = Ãe(t) + Bϕ(t, x), ey(t) = Ce(t), (3)
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where Ã = A − LC is Hurwitz and ey(t) = y(t) − Cx̂(t) =

Ce(t). Note that Assumption 2 implies that we can always

find some matrix L such that Ã is Hurwitz.

(2) Design of HOSMO. For error system (3), there exists

a coordinate transformation ē(t) = [ē1, ē2, . . . , ēn]T = Φe(t)

with Φ defined as

Φ =
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, (4)

such that the following canonical form can be obtained:

˙̄e(t) = Āē(t) + B̄ϕ(t, x), ēy(t) = C̄ē(t), (5)

where Ā = ΦÃΦ−1 = [−[α1,...,αn−1]
T

−αn

In−1
01×(n−1)

], B̄ =

ΦB = [0, . . . , 0, C̄Ãn−1B]T, C̄ = CΦ−1 = [1, 0, . . . , 0], and

α1, α2, . . . , αn are coefficients of the characteristic polyno-

mial det(sI − Ã) = sn + α1s
n−1 + · · · + αn−1s + αn. For

system (5), we can construct the following HOSMO:

ż1 = v0 − k1(1− θ(t))⌊z̃1⌉
n+1+α

n+1 − α1ēy(t), (6)

żi = vi−1 − ki(1 − θ(t))⌊z̃1⌉
n+1+αi

n+1 −αiēy(t), i = 2, . . . , n,

żn+1 = −κn+1Γθ(t)sign(zn+1 − vn−1)

− kn+1(1 − θ(t))⌊z̃1⌉
1+α,

where v0 = −κ1Γ
1

n+1 θ(t)⌊z̃1⌉
n

n+1 + z2, vi−1 =

−κiΓ
1

n+2−i θ(t) ⌊zi − vi−2⌉
n−i+1
n−i+2 + zi+1, i = 2, . . . , n,

z(t) = [z1, z2, . . . , zn+1]T is the state vector of system (6),

z̃1 is defined as z̃1 = z1 − ē1, θ(t) is a switching function

defined as θ(t) =
sign(t−Tu)+1

2
with Tu > 0 being an arbi-

trarily chosen constant, and the parameters Γ, α > 0 and

{κi, ki}
n+1
i=1 are design constants to be determined later.

(3) State and uncertainty identification. The system

state and uncertainty can be identified as

x̂ =x̃(t) + Φ−1[z1, z2, . . . , zn]
T,

ϕ̂ =
(

(C̄Ãn−1B)T(C̄Ãn−1B)
)

−1
(C̄Ãn−1B)Tzn+1. (7)

Design of output-feedback controller. Because (A,B) is

controllable and the uncertainty ψ(t, x) satisfies the matched

condition, by the coordinate transformation

S = Ψx = [s1, . . . , sn]
T, Ψ = [An−1B, . . . , AB,B]−1,

system (1) can be transformed as a Brunovsky form:

ṡ1 = s2, . . . , ṡn−1 = sn, ṡn = u+ ϕ(t, x) +
n
∑

i=1

aisi. (8)

Note that the vector S = Ψx is unmeasurable. We define

the estimation of S as

Ŝ = Ψx̂ = [ŝ1, . . . , ŝn]
T, Ψ = [An−1B, . . . , AB,B]−1. (9)

Then, with the definition of (9), the output-feedback con-

troller can be finally designed for system (8) as

u=−
n
∑

i=1

̺i|ŝi|
ρisign(ŝi)−

n
∑

i=1

¯̺i|ŝi|
ρ̄isign(ŝi)−ϕ̂−

n
∑

i=1

aiŝi,

(10)

where {̺i, ¯̺i, ρi, ρ̄i}ni=1 are design constants.

Theorem 1. Suppose that Assumptions 1 and 2 hold.

The origin of the system (1) under the LO (2), HOSMO

(6) and the controller (9) is globally fixed-time stable when

their parameters are selected as follows: (i) For the LO

(2), the matrix L is selected such that A − LC is Hur-

witz; (ii) For the HOSMO (6), the parameter Γ is selected

to satisfy Γ > ‖C̄Ãn−1B‖ϕmax, the parameters {κi}
n+1
i=1

are selected according to the original HOSMO [7], and the

parameters {ki}
n+1
i=1 are selected such that the polynomial

sn+1 + k1s
n + · · · + kns + kn+1 is Hurwitz and α > 0 is

chosen small enough; (iii) For the controller (9), the pa-

rameters {̺i, ¯̺i}
n
i=1 are selected such that the polynomials

sn+̺nsn−1+ · · ·+̺2s+̺1 and sn+ ¯̺nsn−1+ · · ·+ ¯̺2s+ ¯̺1
are Hurwitz, and the parameters {ρi, ρ̄i}ni=1 are selected to

satisfy ρi−1 =
ρiρi+1

2ρi+1−ρi
, ρ̄i−1 =

ρ̄iρ̄i+1

2ρ̄i+1−ρ̄i
, for i = 2, . . . , n,

where ρn+1 = ρ̄n+1 = 1, ρn = ρ0 ∈ (1 − ε,1) and

ρ̄n = ρ̄0 ∈ (1, 1 + ε) with ε > 0 being sufficiently small.

Proof. According to [8], the system state x(t) and uncer-

tainty ϕ(t, x) can be identified by x̂, ϕ̂ defined in (7) in

a fixed-time T 1
max independent of the system initial val-

ues, which implies that ŝi = si, i = 1, . . . , n holds for

∀t > T 1
max. Therefore, when t > T 1

max, system (7) under

the controller (9) is globally fixed-time stable [9]. Note that

si = 0, i = 1, . . . , n implies x(t) ≡ 0, which completes the

proof.
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