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Dear editor,

Locating all the roots of a nonlinear equation system (NES)

is not only of great significance for solving real-world prob-

lems but also one of the core problems of mathematics [1].

A NES can be defined by
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f1(x) = 0,
...

fm(x) = 0,

(1)

where m is the number of equations, x = (x1, . . . , xd) is a

vector with d dimensions. The variable of the ith dimension

xi is in the interval (xU
i , xL

i ), where xU
i and xL

i are respec-

tively the upper and lower bounds.

Evolutionary algorithms (EAs) have been successfully

used for solving NES problems by transforming a NES prob-

lem into an optimization problem [2]. Especially, EAs with

multiple strategies have shown a good performance [3, 4].

However, most EAs treat NES problems as black-box, and

the information in explicit function expression is not fully

used. Consequently, EAs have to use many fitness evalua-

tions (FEs) to find the exact roots of NES.

The sequence quadratic program (SQP) technique for

constrained optimization problems can fast locate the exact

roots of NES when it is started from approximate roots. Be-

cause the information in function expression of NES is used

by SQP to guide the search efficiently. Moreover, Ref. [5]

has proven the effectiveness of hybridizing SQP with EAs.

There exist studies hybridizing SQP with EAs for global op-

timization problems. But, there are only a few methods that

hybridized SQP with multimodal optimization EAs, which

have been used for tackling NES problems.

Above all, the multi-strategy multimodal optimization al-

gorithm with sequence quadratic program (SQP-MOA) was

proposed for NES problems based on our previous work,

i.e., multi-strategy optimization algorithm (MOA) [4]. In

SQP-MOA, MOA is used to fast locate multiple approxi-

mate roots and then SQP is implemented to find the exact

roots starting from these approximate solutions. To test the

ability of the proposed methods in complex problems, we ad-

ditionally proposed ten complex NES benchmark problems,

where many local traps existed.

SQP-MOA is compared with other well-established meth-

ods for NES problems based on systematic experiments

on fifty-two NES problems and four real-world engineering

problems. The results demonstrate that SQP-MOA is very

competitive in success rate, peak ratio and success perfor-

mance. Moreover, we investigate the contributions of differ-

ent components to improving SQP-MOA search capability

and the influence of different parameter settings on the per-

formance of SQP-MOA.

Transform method. To locate multiple approximate roots

of NES by using MMOA, a NES problem can be transformed

into a multimodal optimization problem (MOP) as

m
∑

i=1

(fi(x))
2 . (2)

To find the exact roots by using SQP, a NES problem

can be transformed into a constrained optimization prob-

lem (COP) as

min

m−1
∑

i=1

(fi(x))
2 s.t. fm(x) = 0. (3)

Multi-strategy optimization algorithm with sequence

quadratic program. MOA searches the solution space by it-

erative exploration and exploitation, which are respectively

performed by global searchers and local searchers [4].
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The qth global searcher is expressed by

Aq,0 = [aq,01 , . . . , a
q,0
d ], q ∈ [1, . . . , Ng], (4)

where a
q,0
i = xL

i +rand(0, 1)×(xU
i −xL

i ) is the ith dimension

of Aq,0, d is the number of variables, the function rand(0,

1) generates uniformly distributed random number in the

interval (0, 1), Ng is the number of global searchers.

The jth local searcher Aq,j , near Aq,0, is expressed by

Aq,j = [aq,j1 , . . . , a
q,j
d ], j ∈ [1, . . . , Nl], (5)

where a
q,j
i = a

q,0
i + r× (2× rand(0, 1)− 1)× (xU

i − xL
i ), i =

1, 2, . . . , d, j = 1, 2, . . . , Nl. If a
q,j
i > xU

i or a
q,j
i < xL

i , it

is set as xU
i or xL

i respectively. Nl is the number of local

searchers in each subgroup. r is a parameter, which deter-

mines the scope of the local search area.

To make MOA less sensitive to parameter r, the Bimodal-

gauss distributed random number is used to generate a

smaller r and a larger r randomly. The smaller r is helpful

in refining the intermediate solution and the larger r is help-

ful in escaping from the local trap. The probability density

distribution of r is described by

p(r) =
0.5

δ1
√
2π

e−(r−µ1)
2/2δ2

1 +
0.5

δ2
√
2π

e−(r−µ2)
2/2δ2

2 , (6)

where the mean values and standard deviations of the two

modes of Bimodal-gauss are (µ1, δ1) and (µ2, δ2). δ1 =

0.5µ1, µ2 = α × µ1, δ2 = 0.5(α − 2)µ1, (α > 3) [6]. The

distribution of ri is determined by µ1 and α.

One iteration in SQP-MOA included seven steps. (1) Lo-

cal searchers are generated to exploit local areas, which

are centered on selected global searchers. (2) New local

searchers are evaluated. If a local searcher is better than

its corresponding global searcher, it will replace the global

searcher. (3) New global searchers are generated to explore

new promising areas. (4) The new global searchers are evalu-

ated. After competing with global searchers in the last itera-

tion, the better ones are saved as centers of local exploitation

areas in the next iteration. (5) If a global searcher remain-

ing the same in β continuous iterations, it will be treated

as an approximate solution. Then, SQP will be used to re-

fine it. (6) The global searcher would be replaced by the

solution obtained by the SQP if it is refined. If the global

searcher cannot be refined by SQP in 3 iterations, it would

be archived as a stagnant searcher. (7) If a global searcher

did not change in ten continuous iterations or its fitness

value meets the accuracy requirement, it would be archived

as a stagnant searcher. The above iteration is repeated until

the termination criterion is met. Experiments were carried

out based on frequently used and new benchmark problems,

and details can be found in Appendixes A and B.

Results on comparative experiments. Experiments on

frequently-used NES (F01-F42) benchmark problems [7], ten

complex NES benchmark problems (F43-F52) and four real-

world engineering problems are carried out.

Results on F01-F42 show that SQP-MOA obtains the

highest average SR value (100%) and the highest average

PR value (100%); i.e., it succeeds in locating all the roots.

It can be concluded that SQP-MOA is an effective method

to locate multiple roots of NES problems, especially when

the number of variables is high or the number of roots is

high or close roots exist. A comparison between SQP-MOA

and GA-SQP shows that it is reasonable to use MOA for

fast finding multiple approximate solutions of NES.

Results on complex NES problems show that SQP-MOA

significantly outperforms the other compared methods. It

can be concluded that these new testing problems with many

local traps are complex enough to challenge new methods,

and SQP-MOA has a stronger ability to escape from local

traps and converging to the roots of NES. But, SQP-MOA

has a risk that multiple global searchers search near the

same or located roots. Indeed, it is difficult to distinguish

between close roots and the same root. This motivates us

to develop more efficient global searcher selection methods

in future work.

Results of real-world engineering design problems indi-

cate that SQP-MOA is able to obtain more roots. The roots

obtained by SQP-MOA are able to show the regularity of the

distribution of roots clearly.

Results on contributions of different components. Re-

sults show that SQP-MOA outperforms SQP and MOA, It

can be concluded that combining MOA and SQP can not

only bring their advantages into full play but also offset their

disadvantages. MOA contributes to improving the effective-

ness of SQP-MOA by helping SQP-MOA jump out of local

traps and focus its search on a more fruitful area. SQP

contributes to improving the effectiveness of SQP-MOA by

refining the solution effectively.

Results on the influence of different parameter settings.

SQP-MOA contains five user-defined parameters, i.e., µ1,

Ng, Nl, α and β. The effectiveness and efficiency of SQP-

MOA are insensitive to µ1, and the value of µ1 can be chosen

from a vast range, for example, from 0.1 to 0.25.

The effectiveness of SQP-MOA is insensitive to Ng, and

the optimal setting of Ng value is related to the number of

roots.

The effectiveness of SQP-MOA is insensitive to Nl, and

the value of Nl can be chosen from a large range, for ex-

ample, from d to 2d. Given the efficiency, the optimal Ng

depends on the problem. This motivates us to develop adap-

tive parameter methods in future work.

The effectiveness of SQP-MOA is insensitive to β, and

the value of β can be chosen from a large range, for exam-

ple, from d to 3d. Given the efficiency, β is suggested to set

at d or 2d.

Conclusion. This study aimed to propose a method that

has a strong ability in both exploration and local exploita-

tion when used for solving NES problems. The goal was

achieved by combining MOA with SQP. The results showed

that the proposed methods achieved a much higher suc-

cess rate and peak ratio with fewer fitness evaluations. The

Bimodal-Gauss distributed random radius also made MOA

less sensitive to its main parameter. SQP-MOA is more ef-

fective and efficient than the compared methods when the

number of variables and roots is large or close roots exist.

But it has a risk that multiple global searchers search near

the same or located roots.
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