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Music with a beautiful melody has been appreciated by hu-

mankind for thousands of years. Almost all music is gen-

erally tonal, e.g., Western music originated from ancient

Greece and developed for more than 300 years from Baroque

to classical, romantic, and modern music. Tonal music has

a tonal center with a melody named tonic, and it is based

on a specific pitch series called mode scale and harmonic

progressions. On the contrary, atonal music experimented

from around the 1900s, e.g., the twelve-tone system advo-

cated by Schoenberg [1], does not have a tonal center and

a melody accordingly. A melody of tonal music consists of

the permutation and combination of pitches in series, where

the pitch marks the acoustic frequency of the note and the

rhythm marks the duration of the note [2]. It is desirable

to know if there are some common characteristics, objective

and quantitative, embedded in a melody.

Many efforts were made to quantify music, and a gen-

eral pitch interval representation is proposed to represent

pitch structures of a wide variety of music styles (see more

details in Supplementary Materials (SM) I Section 1) [3, 4].

Nevertheless, few efforts were made to connect the essence

of the melody composition and the quantitative character-

istics of melodic intervals, namely melody variations. This

study focuses on modeling and analyzing the mathematical

characteristics of melody variations based on composition

theory.

The melody variations are represented by the number of

semitones (distance between adjacent keys on a piano) based

on the twelve-tone scale. The variation of a full octave has

12 semitones [2]. To facilitate analysis, the descending in-

terval is taken to be the same as the ascending interval,

and the rhythm is not considered. We extensively analyze

various styles of tonal music, mainly from Baroque to mod-

ern pops [1] (see the database in Supplementary Dataset S1

and the analysis in SM II Subsection 1.4), and find the three

mathematical characteristics of music melodies. These char-

acteristics are quantified based on the music composition

theories taught in all music schools worldwide. From these

three characteristics, a constrained entropy maximization

problem can be formulated. We can derive that the melody

variations of tonal music observe the power law consistent

with the observations difficult to explain in three decades.

This study helps reveal the common characteristics of mu-

sic melodies and promote the application of artificial intel-

ligence (AI) in composition.

Stationary distribution of melody variations. The first

characteristic is the stationary distribution of note se-

quences. That is, if the notes of a music piece are con-

sidered as a stochastic sequence, the probability distribu-

tion of a particular melodic interval is stationary; in other

words, the profile of melodic intervals approximates to con-

stant as the notes move on. The reason behind this is the

extensive use of composition techniques such as repetition,

sequence, retrograde, and inversion (see some examples of

score demonstrations of these repetitive techniques in SM II

Figure SMII 1) [5]. The phrases, sentences, and paragraphs

of the tonal music often recur. For example, small ternary,

minuet, and scherzo are structurally A-B-A′, where A′ de-

notes a modified part originated from A. Rondo (typically A-

B-A-C-A) and sonata have a similar repetitive structure [5].

Such progression tends to the steadiness of melodic interval

sequences.

Moreover, a music piece is required to be structurally co-

herent and perceived as a whole. Motive and theme should

be like a germ that keeps growing [5]. To achieve this goal,

composers would not use melodic intervals arbitrarily [5, 6].

This results in the probability of a particular melodic inter-

val in semitones to tend to be constant as the note sequence

moves on

lim
N→+∞

p(i, N) = p(i), (1)

where p(i,N) is the probability of the i semitone with N

notes. This implies that, no matter how the probability of

a particular melodic interval starts in the melody, it tends

to be constant when the melody develops. The evidence of
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Figure 1 (Color online) (a) Frequencies of melodic intervals (semitones) with the melody developing. (b) The smoothness of the

melody curves S tends to a small “smoothness attractor” as the melody develops. (c) The melody variation entropy Hv achieves

its maximum with the melody developing. (d) The CCDF of the melody variations (semitones) of the tonal music observes the

power law. This example is ‘Concerto for flute and harp in C Major’ by Mozart. More examples are shown in SM I Section 2 and

Supplementary Datasets S2–S5.

this characteristic is clear since the data of various works of

different styles supports this characteristic as shown in SM

I Subsection 2.1, Supplementary Dataset S2, and a typical

example in Figure 1(a).

Smoothness of melody curves. The second characteristic

describes the smoothness of melody curves. In composition

theory, melodic intervals are classified as wide intervals (i

larger than 5) and narrow intervals (i from 1 to 4). The

melody develops primarily with narrow intervals, especially

step progression (i from 1 to 2) [2]. Second is the building

unit of the melody and transitions of the larger melodic con-

nections necessary to pursue a clear melodic line, enhance

the structure, and promote the melody progress [6] (see the

natural sequence of melodic intervals by Hindemith’s theory

in SM I Section 1 and Subsection 2.2).

Moreover, nonchord tones, including changing, passing,

suspension, neighboring, anticipation, and free tone, play

a vital role in melody development. Most nonchord tones

form variations of seconds (i = 1, 2) versus the previous or

next tone. In addition, decorations are very common in a

composition to enrich the melody as a moving and colorful

unity and generally produce step intervals [2, 5].

The usage of the above techniques causes the curve of

melody variation as the degree of pitch variation over note

sequences to be smooth [5, 6]. The definition of the curve

smoothness S is based on the Hölder exponent hx of the

fractal function f(x) which represents the degree of irreg-

ularity around x in the graphs of fractal functions and is

defined as [7]

hx = lim
ǫ→0

inf
{

log |f(x)−f(y)|
log |x−y|

: y ∈ B(x; ǫ)
}

, (2)

where B(x; ǫ) denotes the ǫ neighborhood of x. A melody

curve with a large number of notes is wiggly and zigzag with

melody variations and has the same nature as the graphs of

fractal functions. Therefore, based on the analysis in SM II

Subsection 1.2, the curve smoothness S is usually quantified

as the expectation of log i [7]:

S = E(log i) =
∑

i

p(i) log i → m. (3)

Moreover, the curve smoothness should approach a small

constant m. The smoothness of the melody curves based on

this definition is supported by the curves of various studies

in SM I Subsection 2.2, Supplementary Dataset S3, and a

typical example in Figure 1(b).

Entropy maximization of melody variations. The third

characteristic is the entropy maximization of melody vari-

ations. Similar to thermodynamics and information en-

tropy, which describe the randomness of a system or the

uncertainty of information sources, we define the entropy of

melody variations as follows to measure their diversity:

Hv = −
∑

i

p(i) log p(i). (4)

Tonal music has the nature of “developing variation”.

The basic motive is modified or developed by wrapping, fill-

ing, transformation, expanding, reducing, etc. [2, 5]. Com-

posers generally try to have diversified variations, and there-

fore, the entropy Hv must be maximized subject to the first

two characteristics, which is supported by the data of vari-

ous studies in SM I Subsection 2.3, Supplementary Dataset

S4, and a typical example in Figure 1(c).

Mathematical model. Based on the above three character-

istics, the following constrained entropy maximization prob-

lem can be formulated:

maxHv = −
∑

i

p(i) ln p(i), (5)
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subject to

{

∑

i p(i) = 1,
∑

i p(i) ln i = m,
(6)

where p(i) is the probability density function of the melodic

interval for semitone i. In actual music pieces, the range of

melodic interval i is mainly from 1 to 19 and no more than

24 in general.

The constrained entropy maximization problem is sim-

ilar to the optimal control problems intensively studied in

the 1970s to 1980s, and the solution to p(i) is thus obtained

by the calculus of variations.

By using the Lagrange multiplier method, we obtain

L =−
∑

i

[p(i) ln p(i) + λ0p(i) + λ1p(i) ln i]

+ λ0 + λ1m, λ0, λ1 > 0.

(7)

Let

J =
∑

i

[p(i) ln p(i) + λ0p(i) + λ1p(i) ln i] =
∑

i

Li. (8)

Based on the calculus of variations, we have

δJ =
∑

i

[

∂Li

∂p(i)
δp(i)

]

= 0, (9)

where δp(i) is the first-order variation of p(i).

If i is continuous with i ∈ (0,∞], the complementary

cumulative distribution function (CCDF) is

T (i) =

∫ ∞

i

p(s)ds = ci−D, (10)

where c = C0

λ1−1
> 0 and D = λ1 − 1 > 0. This is exactly

the power law function. However, the melody variations in

semitone i are positive integers, using the approximate in-

tegration method (see details in SM II Subsection 1.3) to

compute the CCDF of melody variations i as follows:

T (i) = P (I > i) =

Ib
∑

s=i

p(s) =

Ib
∑

s=i

C0s
−λ1

= ci−D + qIb + e(s, i),

(11)

where qIb = − C0

λ1−1
I
−λ1+1
b

< 0, e(s, i) 6

−C0λ1

2
(Ib−i)−λ1+1

Ib−i+1
, i ∈ {Ia, Ia +1, . . . , IT }, Ib is the upper

bound of i, IT 6 Ib generally equals 12, and integer Ia is

the lower bound of i in the whole piece. The numerical

results show that the error term e(s, i) and the constant

term qIb can be ignored with the actual parameters in (11)

(see details in SM II Subsection 1.3). Thus, we derive that

the CCDF T (i) of melodic intervals follows the power law

as many studies have found [8, 9]:

T (i) = P (I > i) = 1− F (i) = ci−D, (12)

where F (i) is the probability distribution function and c

and D are constants. Clearly, log T (i) versus log i is an

affine function or a straight line geographically. Therefore,

we state that melody variations or melodic intervals of tonal

music observe the power law (a typical example is in Fig-

ure 1(d), and more examples are in SM I Section 3 and

Supplementary Dataset S5). The reason why some contem-

porary atonal music, such as the twelve-tone system, does

not observe the power law is given in SM I.

In conclusion, the three mathematical characteristics of

a melody, which are the stationary distribution of note se-

quences, the smoothness of the melody curves, and the

entropy maximization of melody variations, are embedded

in the composition theory and techniques taught in music

schools worldwide. Based on these characteristics, it turns

out that composers of tonal music in the past 200–300 years

all pursued the constrained entropy maximization of melody

variations. The power law of music melody variations can

thus be derived based on these three characteristics, consis-

tent with the observations in the past three decades [8, 9].

The results in this study fill the research gap of quantita-

tive analysis on music melodies. A new model is developed

to explain why melody variations of tonal music observe the

power law, which is quite universal for many natural and ar-

tificial systems (see details in SM I Section 5). The finding

can help us comprehend music with scientific quantification,

can serve as a basis for investigating if there is any physi-

ological reason why the public without music training likes

tonal music, and provides a necessity for music composi-

tion aided by AI since a mechanism built in the AI aided

composition methods should exclude the note series that do

not observe the power law. This study provides a bridge

between information science and music art.
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