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Supplementary Materials I (SM I) 

1 Introduction 

Music with a beautiful melody has been appreciated by humankind for thousands of years. In 

ancient China, it was debated whether music was purely spiritual or was related to the physiology 

of human beings more than 2000 years ago [1]. A fundamental question has been why the public 

would appreciate the music with beautiful melodies and what in common music composers have 

been pursuing. To answer this question, it is important to understand how melodies and harmonies 

are composed and what “a beautiful melody” really means in science [2, 3]. It is desirable to know 

if there are some common characteristics, objective and quantitative, embedded in a melody [4].  

Almost all music is generally tonal, e.g., Western music originated from ancient Greece and 

developed for more than 300 years from Baroque to Classical, Romantic, and Modern music. Tonal 

music has a tonal center with a melody named tonic, and it is based on a specific pitch series called 

mode scale and harmonic progressions. On the contrary, atonal music experimented from around 

the 1900s, e.g., the twelve-tone system advocated by Schoenberg [5, 6] does not have a tonal center, 

and a melody accordingly. A melody of tonal music consists of the permutation and combination 

of pitches in series, where the pitch marks the acoustic frequency of the note and the rhythm marks 

the duration of the note [5, 7-10]. In music theory, the distance between two pitches is defined as 

the musical interval measured by scales (the number of semitones) such as minor second (1 

semitones), major second (2 semitones), minor third (3 semitones), major third (4 semitones), etc. 

The interval between two adjacent notes in a melody is called melodic interval [7], namely, melody 

variation.  

In Hindemith’s theory, musical intervals have a natural sequence driven by harmonic and 

melodic forces like building stones with different strength, hardness, and density [11]. Much of 

our enjoyment of music is related to the balance of predictability and surprise. Deterministic 

repetitions and narrow intervals make music predictable and comprehensible, 

while random fluctuations and diversified intervals would let us feel unexpected refreshing [10]. 

Therefore quantifying the characteristics of melodic intervals helps us understand the essence 

melody creation in composition.    

Many efforts were made to quantify music, and the elements such as timbre, rhythm, pitch, and 

harmony are analyzed by mathematical methods [12-17]. A General Pitch Interval Representation 

is proposed to represent pitch structures of a wide variety of music styles [18]. Melodic intervals 

are studied on their relations to consonance and predicting music emotion [19, 20]. Nevertheless, 

few efforts were made to connect the essence of the melody composition and the quantitative 

characteristics of melodic intervals [13, 14]. This paper focuses on modeling and analyzing the 

mathematical characteristics of melody variations based on composition theory. 

The melody variations are represented by the number of semitones (distance between adjacent 

keys on a piano) based on the twelve-tone scale [7, 18]. The variation of a full octave has 12 

semitones. To facilitate analysis, the descending interval is taken to be the same as the ascending 

interval, and the rhythm is not considered. We extensively analyze various styles of tonal music, 

mainly from Baroque to modern pops [6] (see the database in Supplementary Dataset S1 and the 

analysis in Supplementary Materials II Section 1.4) and find the three mathematical characteristics 

of music melodies. These characteristics are quantified based on the music composition theories 

taught in all music schools worldwide. Firstly, if the notes of a music piece are considered as a 

stochastic sequence, it is stationary or its mean and other moments tend to be time-invariant. 

Second, the curve of melody in terms of the melodic variations is smooth, and its mathematical 
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smoothness tends to be a small constant. Third, the melodic variations are diversified with their 

entropy maximized. From these three characteristics, a constrained functional optimization 

problem or a constrained optimal control problem can be formulated. It is then discovered in this 

paper that all composers of different styles in the past two, three hundred years were casually 

pursuing the constrained entropy maximization in melody composition. Based on this formulation, 

we can derive that the music melody variations observe the Power Law by solving the problem 

based on the calculus of variation. The result is consistent with the observations difficult to explain 

in three decades. This study helps reveal the common characteristics of music melodies and 

promote the application of artificial intelligence (AI) in composition. 

2 Three mathematical characteristics in tonal music 

2.1 Stationary distribution of melody variations 

The first characteristic is the stationary distribution of note sequences. That is, if the notes of a 

music piece are considered as a stochastic sequence, the probability distribution of a particular 

melodic interval is stationary; in other words, the profile of melodic intervals approximates to 

constant as the notes move on. The reason behind this is the extensive use of composition 

techniques such as repetition, sequence, retrograde, and inversion (see some examples of score 

demonstrations of these repetitive techniques in Supplementary Materials II Figure SMII 1) [9, 

10]. The phrases, sentences, and paragraphs of the tonal music often recur. For example, small 

ternary, minuet, and scherzo are structurally A-B-A’, where A’ denotes a modified part originated 

from A. Rondo (typically A-B-A-C-A) and sonata have a similar repetitive structure. Such 

progression tends to the steadiness of melodic interval sequences. 

Moreover, a music piece is required to be structurally coherent and perceived as a whole [9]. 

Motive and theme should be like a germ that keeps growing [10]. To achieve this goal, composers 

would not use melodic intervals arbitrarily [8-10]. This results in the probability of a particular 

melodic interval in semitones to tend to be constant as the note sequence moves on:  

 𝑙𝑖𝑚
𝑁→∞

𝑝(𝑖, 𝑁) = 𝑝(𝑖), (SMI 1) 

where 𝑝(𝑖, 𝑁) is the probability of the 𝑖 semitone with 𝑁 notes. This implies that, no matter how 

the probability of a particular melodic interval starts in the melody, it tends to be constant when 

the melody develops. The evidence of this characteristic is clear since the data of various works of 

different styles supports this characteristic, as shown in Supplementary Dataset S2 and the six 

examples in Figure SMI 1.  

 

2.2 Smoothness of melody curves 

The second characteristic describes the smoothness of melody curves. In composition theory, 

melodic intervals are classified as wide intervals (𝑖 larger than 5) and narrow intervals (𝑖 from 1 to 

4). The melody develops primarily with narrow intervals, especially step-progression (𝑖 from 1 to 

2) [7-9, 21]. Second is the building unit of the melody and transitions of the larger melodic 

connections [8, 9, 11, 21] necessary to pursue a clear melodic line, enhance the structure, and 

promote the melody progress [9] (see the natural sequence of melodic intervals by Hindemith’s 

theory in Figure SMI 2).  

 

 



 

 

 

5 

 

Moreover, nonchord tones, including changing, passing, suspension, neighboring, anticipation, 

and free tone, play a vital role in melody development. Most nonchord tones form variations of 

seconds (𝑖 = 1, 2) versus the previous or next tone [9, 11, 21]. In addition, decorations are very 

common in a composition to enrich the melody as a moving and colorful unity and generally 

produce step intervals [7, 10].  

The usage of the above techniques causes the curve of melody variation as the degree of pitch 

variation over note sequences to be smooth [8]. The definition of the curve smoothness 𝑆 is based 

on the 𝐻𝑜̈𝑙𝑑𝑒𝑟  exponent ℎ𝑥 of fractal function 𝑓(𝑥)  [22-24] which represents the degree of 

irregularity around 𝑥 in the graphs of fractal functions and is defined as 

 
ℎ𝑥 = lim

𝜀→0
inf {

log|𝑓(𝑥) − 𝑓(𝑦)|

log|𝑥 − 𝑦|
: 𝑦 ∈ 𝐵(𝑥; 𝜀)},  (SMI 2)  

where 𝐵(𝑥; 𝜀) denotes the 𝜀-neighborhood of 𝑥. A melody curve with a large number of notes is 

wiggly and zigzag with melody variations and has the same nature as the graphs of fractal functions 

[25]. Therefore, based on the analysis in Supplementary Materials II Section 1.2, the curve 

smoothness 𝑆 is usually quantified as the expectation of log 𝑖  

 𝑆 = 𝐸(log 𝑖)＝∑𝑝(𝑖) log 𝑖

𝑖

→ 𝑚, (SMI 3) 

Moreover, the curve smoothness should approach a small constant 𝑚. The smoothness of the 

melody curves based on this definition is supported by the curves of various works (Figure SMI 3) 

and those in the Supplementary Dataset S3. 
 

2.3 Entropy maximization of melody variations 

The third characteristic is the entropy maximization of melody variations. Similar to 

thermodynamics and information entropy [26], which describe the randomness of a system or the 

uncertainty of information sources, define the entropy of melody variations as follows to measure 

their diversity: 

 𝐻𝑣 = −∑𝑝(𝑖) log 𝑝(𝑖)

𝑖

 (SMI 4) 

Tonal music has the nature of “developing variation”. The basic motive is modified or developed 

by wrapping, filling, transformation, expanding, reducing, etc. [7, 9, 10]. Composers generally try 

to have diversified variations, and therefore, the entropy 𝐻𝑣 must be maximized subject to the first 

two characteristics, which is supported by the data of various works (Figure SMI 4). 

Are the pieces of evidence of the above three characteristics sufficient enough with the 

supporting data from the tonal music pieces in various styles and periods as shown above and in 

Supplementary Datasets S2-S4? The pieces of evidence are reinforced by looking into the resulting 

feature due to the three characteristics. In fact, the following constrained functional optimization 

problem can be formulated: 

 max𝐻𝑣 = −∑𝑝(𝑖) ln 𝑝(𝑖),

𝑖

 (SMI 5) 

subject to  
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{
 
 

 
 ∑𝑝(𝑖) = 1    

𝑖

∑𝑝(𝑖) ln 𝑖 = 𝑚

𝑖

,
 (SMI 6) 

where 𝑝(𝑖) is the probability density function of the melodic interval for semitone 𝑖. In actual 

music pieces, the range of melodic interval 𝑖 is mainly from 1 to 19 and no more than 24 in general. 

3 Mathematical model and the Power Law derivation 

Based on the above three characteristics, the constrained entropy maximization problem is similar 

to the optimal control problems intensively studied in the 1970s to 1980s, and the solution to 𝑝(𝑖) 
is thus obtained by the calculus of variations [27, 28].  

By using the Lagrange multiplier method, we obtain 

  𝐿 = −∑[𝑝(𝑖) ln 𝑝(𝑖) + 𝜆0𝑝(𝑖) + 𝜆1𝑝(𝑖) ln 𝑖]

𝑖

+ 𝜆0 + 𝜆1𝑚;  𝜆0, 𝜆1 > 0. (SMI 7) 

Let 

      𝐽 = ∑[𝑝(𝑖)

𝑖

ln 𝑝(𝑖) + 𝜆0𝑝(𝑖) + 𝜆1 𝑝(𝑖)ln 𝑖] =∑𝐿𝑖.

𝑖

 (SMI 8) 

Based on the calculus of variations, we have 

 
𝛿𝐽 =∑[

𝜕𝐿𝑖
𝜕𝑝(𝑖)

𝛿𝑝(𝑖)] = 0,

𝑖

 (SMI 9) 

where 𝛿𝑝(𝑖) is the first-order variation of 𝑝(𝑖).  
If 𝑖 is continuous with 𝑖 ∈ (0,∞], the complementary cumulative distribution function (CCDF) 

is 

 
𝑇(𝑖) = ∫ 𝑝(𝑠)𝑑𝑠

∞

𝑖

= 𝑐𝑖−𝐷 , (SMI 10) 

where 𝑐 =
𝐶0

𝜆1−1
> 0 and 𝐷 = 𝜆1 − 1 > 0. This is exactly the Power Law function. However, the 

melody variations in semitone 𝑖 are positive integers, using the approximate integration method 

(see details in Supplementary Materials II Section 1.3) to compute the CCDF of melody variations 

𝑖 as follows: 

 

𝑇(𝑖) = 𝑃(𝐼 ≥ 𝑖) =∑𝑝(𝑠)

𝐼𝑏

𝑠=𝑖

 (SMI 11) 

 

=∑𝐶0𝑠
−𝜆1

𝐼𝑏

𝑠=𝑖

 (SMI 12) 

 =  𝑐𝑖−𝐷 + 𝑞𝐼𝑏 + 𝑒(𝑠, 𝑖), (SMI 13) 

where 𝑞𝐼𝑏 = −
𝐶0

𝜆1−1
𝐼𝑏
−𝜆1+1 < 0, 𝑒(𝑠, 𝑖) ≤

−𝐶0𝜆1

2

(𝐼𝑏−𝑖)
−𝜆1+1

𝐼𝑏−𝑖+1
, 𝑖 ∈ {𝐼𝑎, 𝐼𝑎 + 1,… , 𝐼𝑇}, 𝐼𝑏 is the upper 

bound of 𝑖, 𝐼𝑇 ≤ 𝐼𝑏 generally equals to 12 and integer 𝐼𝑎 is the lower bound of 𝑖 in the whole piece. 

The numerical results show that the error term 𝑒(𝑠, 𝑖) and the constant term 𝑞𝐼𝑏 can be ignored 

with the actual parameters in (SMI 13) (see details in Supplementary Materials II Section 1.3). 

Thus, we derive that the CCDF 𝑇(𝑖) of melodic intervals follows the Power Law as many 

studies have found [29-31]  
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          𝑇(𝑖) = 𝑃(𝐼 ≥ 𝑖) = 1 − 𝐹(𝑖) = 𝑐𝑖−𝐷 , (SMI 14) 

where 𝐹(𝑖) is the probability distribution function, and 𝑐 and 𝐷 are constants. Clearly log 𝑇(𝑖) 
versus log 𝑖 is an affine function or a straight line geographically. Therefore, we state that melody 

variations or melodic intervals of tonal music observe the Power Law consistent with our 

observation. We extensively analyzed the CCDFs of the music melody variations measured by 

semitones for various styles of tonal music, mainly from Baroque to modern pops [6]. Some typical 

examples are shown in Figure SMI 5A-D, and the rest observations are in Supplementary Dataset 

S5. 

4 The atonal music does not observe the Power Law 

Based on the cases presented here and many others in [29-31], we can conclude that the melody 

variations of all tonal music observe the Power Law. In other words, those who do not observe the 

Power Law are not tonal music, some of which are chromatic and atonal pieces.  

Around the 1900s, chromaticism and atonalism gradually rose [5]. It is shown that the melody 

variations of some atonal music promoted by some contemporary musicians since the 30s of the 

last century, such as the twelve-tone system advocated by Schoenberg DO NOT observe the Power 

Law [29]. The CCDFs of melody variations of two representative pieces of Stockhausen and 

Schoenberg are shown in Figure SMI 5E, F, and in fact, it is easy to derive that the CCDF of the 

twelve-tone system does not observe the Power Law as shown in Figure SMI 5G. The reason why 

some contemporary atonal music, such as the twelve-tone system, does not observe the Power Law 

is given as follows.  

For the atonal music whose CCDFs do not observe the Power Law, it is seen that not all the 

three mathematical characteristics hold. Atonal compositions are generally not required to be 

structurally coherent and perceived as a whole. Therefore, the probability of melody variations 𝑃 

may not be stationary, and the smoothness of the melody 𝑆  would be changeable without 

approaching a “smoothness attractor” as the melody develops. What is more, some atonal music 

pieces do not develop like an organism, so it is possible that the melodic intervals used during 

composing are not richer than before. That is, the melody variations entropy maybe decrease 

significantly at some time.  

The three mathematical characteristics, namely 𝑃, 𝑆 and 𝐻𝑣, of the atonal music that does not 

observe the Power Law, are demonstrated in Supplementary Materials II Figure SMII 15. 

We note that the twelve-tone system music usually DO NOT observe the Power Law. We 

illustrate and derive the twelve-tone system as follows. 

The core of the twelve-tone system is the tone row (basic set, series), a random and ordered 

arrangement of the twelve pitch classes (not twelve pitches) selected by composers, with each one 

occurring once and only once. The row has four basic forms: prime, retrograde, inversion, and 

retrograde inversion. If we let {𝑛1, 𝑛2, … , 𝑛12} be the prime tone row consisting of twelve pitch 

classes, then the retrograde, inversion and retrograde inversion can be described as 

{𝑛12, 𝑛11, … , 𝑛1}, {2𝑡 − 𝑛1, 2𝑡 − 𝑛2, … ,2𝑡 − 𝑛12} and {2𝑡 − 𝑛12, 2𝑡 − 𝑛11, … , 2𝑡 − 𝑛1}, where 𝑡 
is the mirror plane of inversion (see score demonstrations of the four basic forms in Supplementary 

Materials II Figure SMII 16). It is obvious that the four basic forms have the same variations. In 

addition, each of the four basic forms has twelve transpositions; that is, each one may be transposed 

to begin with any of the twelve pitch classes, so a single row has 48 versions. However, there are 

several ways in which rows are actually used in compositions. Some rows use the first three, four, 

or six notes as a pattern from which the rest of the row is derived (such a row is called a derived 
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set) and the segments of the tone row may appear simultaneously in different voice parts [5]. In 

conclusion, these ways make the pitches of the horizontal voice leading random and uniform. 

Based on the above description, we suppose that the pitch sequence generated by the twelve-

tone crafts is a uniform random distribution from 𝑎0 to 𝑏0, then the melody variation is the absolute 

value of the difference between two adjacent pitches. Mathematically, suppose that the stochastic 

variables 𝐴 and 𝐵 are independent and identical uniform random distributed from 𝑎0 to 𝑏0, where 

𝑎0 > 𝑏0 ≥ 0, then determine the distribution of 𝑊 = |𝐴 − 𝐵|. It is easy to obtain that the PDF of 

the stochastic variable 𝑊 = |𝐴 − 𝐵| is 

 

𝑓𝑊(𝑤) = {

2(−𝑤 + 𝑏0 − 𝑎0)

(𝑏0 − 𝑎0)2
,       0 ≤ 𝑤 ≤ 𝑏0 − 𝑎0,

0,                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

  (SMI 15) 

Therefore, the CCDF of the stochastic variable 𝑊 = |𝐴 − 𝐵| is 

 
𝑇(𝑖) = 𝑃(𝑊 ≥ 𝑖) = (1 −

𝑖

𝑏0 − 𝑎0
)
2

, (SMI 16) 

where 𝑖 is the melody variations (semitones). It is not the Power Law. Let 𝑏0 = 12, 𝑎0 = 1, then 

the CCDF of the melody variations of the compositions composed by the twelve-tone system is 

simulated from (SMI 16) in Figure SMI 5G. 

5 Discussions and conclusions 

In conclusion, the three mathematical characteristics of a melody, which are the stationary 

distribution of melody variations, the smoothness of the melody curves, and the entropy 

maximization of melody variations, are embedded in the composition theory and techniques taught 

in music schools worldwide. Based on these characteristics, it turns out that the composers of tonal 

music in the past 200-300 years all pursued the constrained entropy maximization of melody 

variations. The Power Law of music melody variations can thus be derived based on these three 

characteristics, consistent with the observations in the past three decades [29-31].  

In fact, the Power Law is quite universal for many natural and artificial events such as the 

earthquake scales, the number of lines connected to a node in a power grid, the times of a web 

page being browsed, the number of followers for a person in an online social network, the solar 

flare strength, the protein matching pairs, the number of collaborating actors/actresses in the same 

movie, the personal wealth in the US, and the frequency of words in a novel [32, 33]. There have 

been mainly three models: Yule Process (Simon Model) [34-37], Self-Organized Criticality [38], 

and Highly Optimized Tolerance (HOT) Theory [39] for explaining the mechanisms behind the 

Power Law in the above events. However, these models can not explain why melody variations or 

melodic intervals of tonal music observe the Power Law but the new model developed in this paper.    

The results in this paper fill the research gap of quantitative analysis on music melodies. A new 

model is developed to explain why melody variations of tonal music observe the Power Law. The 

finding can help us comprehend music with scientific quantification, can serve as a basis for 

investigating if there is any physiological reason why the public without music training likes tonal 

music, and provides a necessity for music composition aided by AI since a mechanism built in the 

AI aided composition methods to exclude the note series that do not observe the Power Law. This 

study provides a bridge between information science and music art. 
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6 Figures 

 
 

Figure SMI 1. Frequencies of melodic intervals (semitones) with the melody developing. (A) 

J. S. Bach, Concerto for oboe and violin in c minor. (B) Beethoven, Symphony No. 5 in c minor. 

(C) Mozart, Concerto for flute and harp in C Major. (D) Mendelssohn, Wedding March. (E) 

Tchaikovsky, Swan Lake. (F) Webber, Song “Memory” from opera “Cats”. More examples of this 

characteristic are shown in Supplementary Dataset S2. 

  



 

 

 

10 

 

 
 

 

Figure SMI 2. The natural sequence of melodic intervals that driven by harmonic and 

melodic forces. In this figure, “octave (12)” denotes an octave containing 12 semitones, “fifth (7)” 

denotes a fifth containing 7 semitones, and so on. The intervals in the upper line are inversions of 

those in the lower line, and the double arrows show the corresponding inversion relationship. In 

Hindemith’s theory, melodic intervals are like individual building stones according to strength, 

hardness and density. Harmonic force is the strongest and diminishes towards the end, while 

melodic force is distributed in the opposite order. The most unambiguous interval is octave (12 

semitones), followed by the fifth (7 semitones). Major third (4 semitones) has the strongest 

harmonic force, and then the harmonic force decreases until it nearly disappears in the minor 

second (1 semitone) and major seventh (11 semitones). Major second (2 semitones) has the 

strongest melodic force, followed by the simplest melodic step, the minor second (1 semitone). 

The tritone (augmented fourth or diminished fifth, 6 semitones) has no melodic force and the 

weakest harmonic force [11]. 
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Figure SMI 3. The smoothness of melody curves 𝑺 tends to a small “smoothness attractor” 

as the melody develops. (A) J. S. Bach, Concerto for oboe and violin in c minor. (B) Beethoven, 

Symphony No. 5 in c minor. (C) Mozart, Concerto for flute and harp in C Major. (D) Mendelssohn, 

Wedding March. (E) Tchaikovsky, Swan Lake. (F) Webber, Song “Memory” from opera “Cats”. 

More examples are shown in Supplementary Dataset S3. 
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Figure SMI 4. The melody variation entropy 𝑯𝒗 achieves its maximum with the melody 

developing. (A) J. S. Bach, Concerto for oboe and violin in c minor. (B) Beethoven, Symphony 

No. 5 in c minor. (C) Mozart, Concerto for flute and harp in C Major. (D) Mendelssohn, Wedding 

March. (E) Tchaikovsky, Swan Lake. (F) Webber, Song “Memory” from opera “Cats”. More 

examples are shown in Supplementary Dataset S4. 
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Figure SMI 5. The CCDFs of the melody variations (semitones) of the tonal music observe 

the Power Law (A, B, C, and D), and the CCDFs of the melody variations (semitones) of the 

atonal music DO NOT observe the Power Law (E, F, and G). The first four music pieces are 

respectively (A) J. S. Bach, Concerto for oboe and violin in c minor. (B) Mozart, Concerto for 

flute and harp in C Major. (C) Beethoven, Symphony No. 5 in c minor. (D) Chopin, Mazurka in g 

minor. These four musicians are selected as the typical examples from Baroque to Romantic period, 

while the more general music pieces from other genres and periods are analyzed, of which the 

CCDFs of the melody variations (semitones) also observe the Power Law (see Supplementary 

Dataset S5). The three music pieces that Do Not observe the Power Law are respectively (E) 

Stockhausen, Capricorn. (F) Schoenberg, Themes and Variations euphonium solo bass. (G) 

Simulation based on Schoenberg’s twelve-tone system. More examples are shown in 

Supplementary Materials II Figure SMII 14. 
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Supplementary Materials II (SM II) 

1 Materials and methods 

1.1 Notation 

𝑩(𝒙; 𝜺) 𝜀-neighborhood of 𝑥 

𝑫 The exponent of Power Low function 

𝑫𝒍𝒐𝒘𝒆𝒓 The theoretical lower bound of 𝐷 

𝑫𝒖𝒑𝒑𝒆𝒓 The theoretical upper bound of 𝐷 

𝑫𝒇𝒊𝒕𝒕𝒊𝒏𝒈 The fitting of 𝐷 

𝒅 The difference of 𝐻𝑣
𝑓
 

𝒉𝒙 The 𝐻𝑜̈𝑙𝑑𝑒𝑟 exponent at 𝑥 

𝒉𝒏𝒋 The 𝐻𝑜̈𝑙𝑑𝑒𝑟 exponent at note 𝑛𝑗  

𝒉̅ The average of all ℎ𝑛𝑗  in a melody 

𝑯𝒗 Melody variations entropy 

𝑯𝒗
𝒇
  The arithmetic average filtering of 𝐻𝑣 

𝒊 Melody variation (namely, melody interval in semitones) 

𝑰𝒂 The lower bound of 𝑖 

𝑰𝒃 The largest melody variation in an actual composition 

𝑰𝑻 The upper bound of 𝑖 in CCDF 

𝑰(𝒕) Stochastic process of melody variation for semitones 𝑖 

𝑰𝒕 A sample of stochastic process {𝐼(𝑡), 𝑡 ∈ 𝑇} 

𝑰 The average of all samples 𝐼𝑡 

𝑳 Lagrange function 

𝒎 Smoothness attractor  

𝒎𝒆 The actual value of 𝑚 

𝒎𝒍𝒐𝒘𝒆𝒓 The theoretical lower bound of 𝑚 

𝒎𝒖𝒑𝒑𝒆𝒓 The theoretical upper bound of 𝑚 

𝑵 The total number of the notes of a melody 

𝒏𝒋 The 𝑛𝑗th note of a melody 

𝑷 Probability density function of 𝑖 

𝒑(𝒊) Probability of 𝑖 

𝒑𝒇(𝒊) Frequency of 𝑖 

𝑹𝟐 Goodness of fit (the coefficient of determination) 

𝑹𝑫 The ratio of the positive difference sum to the total difference of 𝐻𝑣
𝑓
 

𝒓(𝒌) Sample autocorrelation function (SAF) 

𝑺 Smoothness of melody curves  

𝑺(𝒏𝒋) 𝑆 of the first 𝑛𝑗  notes 
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𝑺𝒉(𝒊) The definition of Smoothness of melody curve with a simple melody variation 

𝑖 derived from 𝐻𝑜̈𝑙𝑑𝑒𝑟 exponent 

SSR Regression sum of squares 

SST Total sum of squares 

𝑻(𝒊) The complementary cumulative distribution function (CCDF) of melody 

variation 𝑖 
𝒖𝒔 The total number of descending intervals between note 𝑛𝑗  and 𝑛𝑠 of the melody 

consisting of a simple melody variation 𝑖  
𝒗𝒔 The total number of ascending intervals between note 𝑛𝑗  and 𝑛𝑠 of the melody 

consisting of a simple melody variation 𝑖  
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1.2 Derivation of the melody smoothness  

In Eq.3 of the main text, we define 𝑆 to measure the degree of melody smoothness as the 

expectation of log 𝑖 
 𝑆 = 𝐸(log 𝑖) =∑𝑝(𝑖) log 𝑖

𝑖

→ 𝑚. (SMII 1) 

This definition is based on the 𝐻𝑜̈𝑙𝑑𝑒𝑟  function described in [22, 27], where the 𝐻𝑜̈𝑙𝑑𝑒𝑟 
exponent of a fractal function 𝑓(𝑥) [24]at 𝑥 is defined as  

 
ℎ𝑥 = lim

𝜀→0
inf {

log|𝑓(𝑥) − 𝑓(𝑦)|

log|𝑥 − 𝑦|
: 𝑦 ∈ 𝐵(𝑥; 𝜀)}. (SMII 2) 

For fractal functions, such as continuous interpolation functions and continuous non-differential 

functions, the 𝐻𝑜̈𝑙𝑑𝑒𝑟 exponent ℎ𝑥 at a point 𝑥 represents the degree of irregularity around 𝑥 in 

the graphs of fractal functions, which demonstrates how oscillatory (or smooth) the graphs are at 

the neighborhood of point 𝑥. Therefore, the 𝐻𝑜̈𝑙𝑑𝑒𝑟 exponent is used to measure the smoothness 

of melody curves.  

In a piece of melody, by linking the pitches in its note sequence with equal rhythm unit since 

rhythm is not considered, we obtain a melody curve [11, 21] as shown in Figure SMII 2. This 

melody curve with a large number of notes can be analyzed by fractal theory since it is wiggly and 

zigzag with melody variations. We assume that (𝑛𝑗), the pitch of the 𝑛𝑗th note, is sampled from a 

latent continuous fractal function at 𝑥 = 𝑛𝑗 , 𝑗 = 1,2, … ,𝑁 . Then the melody variation 𝑖  in 

semitones is 𝑓(𝑛𝑗+1) − 𝑓(𝑛𝑗), 𝑗 = 1,2, … ,𝑁 − 1. Without loss of generality, we set the distance 

between two adjunct notes along time to 𝛿, i.e., 𝑛𝑗+1 − 𝑛𝑗 = 𝛿 ∈ (0,1), 𝑗 = 1,2, … ,𝑁 − 1.  

Assume the smallest rhyme unit between consecutive notes in melody curve function is 𝛿 

corresponding the 𝜀 in (SMII 2) [25] and there is only a single melody variation 𝑖 either descending 

or ascending randomly (Figure SMII 3). According to (SMII 2), the 𝐻𝑜̈𝑙𝑑𝑒𝑟 exponent of melody 

curve function 𝑓(𝑛) at note 𝑛𝑗  is 

 
ℎ𝑛𝑗 = lim

𝜀→𝛿
 inf {

log|𝑓(𝑛𝑗) − 𝑓(𝑛𝑘)|

log|𝑛𝑗 − 𝑛𝑘|
: 𝑛𝑘 ∈ 𝐵(𝑛𝑗; 𝜀)}. (SMII 3) 

For ℎ𝑛𝑗 , there must exist a note 𝑛𝑠 in 𝐵(𝑛𝑗; 𝜀) such that 

 
  ℎ𝑛𝑗 =

log |𝑢𝑠 − 𝑣𝑠|𝑖

log 𝜀𝑠
 (SMII 4) 

   

   = 𝑎𝑗 log 𝑖 + 𝑏𝑗 , (SMII 5) 

where 𝑢𝑠 , 𝑣𝑠 are the numbers of the descending and ascending intervals between note 𝑛𝑗  and 𝑛𝑠 

with 𝑢𝑠 ≠ 𝑣𝑠, 𝜀𝑠 = |𝑛𝑗 − 𝑛𝑠|, 𝑎𝑗 =
1

log𝜀𝑠
< 0 and 𝑏𝑗 =

log |𝑢𝑠−𝑣𝑠|

log𝜀𝑠
> 0. 

The smoothness of the whole melody curve should be the average value ℎ̅ of all ℎ𝑛𝑗 

 ℎ̅ =
1

𝑁
∑ℎ𝑛𝑗

𝑁

𝑗=1

 (SMII 6) 

   

 =
1

𝑁
∑(𝑎𝑗 log 𝑖 + 𝑏𝑗)

𝑁

𝑗=1

 (SMII 7) 
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 = (
1

𝑁
∑𝑎𝑗

𝑁

𝑗=1

) log 𝑖 + (
1

𝑁
∑𝑏𝑗

𝑁

𝑗=1

) (SMII 8) 

   

 = 𝑎̅ log 𝑖 + 𝑏̅, (SMII 9) 

where 𝑎̅ =
1

𝑁
∑ 𝑎𝑗
𝑁
𝑗=1  and 𝑏̅ =

1

𝑁
∑ 𝑏𝑗
𝑁
𝑗=1 . 

 Since we only consider the quantitative relations between the smoothness of melody curves and 

the melody variation for semitones 𝑖, the other elements are constants with respective to 𝑖. Thus, 

we obtain the melody smoothness of a single melody variation 𝑖 in the form of 

 𝑆ℎ(𝑖) = 𝑎̅ log 𝑖 + 𝑏̅, (SMII 10) 

where 𝑎̅, 𝑏̅ are constants, and 𝑎̅ < 0, 𝑏̅ > 0. 

The smoothness of a melody that consists of various melody variations with different 

occurrences is the weighted average of all melody variations 

 𝐸[𝑆ℎ(𝑖)] = 𝑏 + 𝑎∑𝑝(𝑖) log 𝑖,

𝑖

 (SMII 11) 

where 𝑝(𝑖) is the probability that melody variation 𝑖  appears and 𝑎 , 𝑏  are constants to 𝑖 . To 

simplify, we omit these constants in (SMII 11) and the smoothness definition in (SMII 1) is the 

correct representation of (SMII 2). Due to the stationary process and the extensive use of narrow 

intervals (especially step-progression) as presented in the main text, 𝑆 tends to a small constant 𝑚 

called “smoothness attractor” (SMII 1). 

 
1.3 Derivation of the Power Law of the CCDF of melody variations 

The probability distribution of music melody variations or melodic intervals of tonal music 

observes the Power Law consistent with some studies in the past [29-31]. In fact, the Power Law 

is quite universal for many natural and artificial events such as the earthquake scales, the number 

of lines connected to a node in a power grid, the times of a web page being browsed, the number 

of followers for a person in an online social network, the solar flare strength, the protein matching 

pairs, the number of collaborating actors/actresses in the same movie, the personal wealth in the 

US, and the frequency of words in a novel [32, 33]. There have been mainly three models: Yule 

Process (Simon Model) [34-37], Self-Organized Criticality [38], and Highly Optimized Tolerance 

(HOT) Theory [39] for explaining the mechanisms behind the Power Law in the above events. 

However, these models can not explain why melody variations or melodic intervals of tonal music 

observe the Power Law. 

Based on the three mathematical characteristics in the main text, a constrained functional 

optimization problem is formulated as follows 

 

max𝐻𝑣 = −∑𝑝(𝑖)

𝐼𝑏

𝑖=𝐼𝑎

ln 𝑝(𝑖), (SMII 12) 

subject to   
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{
  
 

  
 
∑𝑝(𝑖)

𝐼𝑏

𝑖=𝐼𝑎

= 1

∑ 𝑝(𝑖)

𝐼𝑏

𝑖=𝐼𝑎

ln 𝑖 = 𝑚,

 (SMII 13) 

where integers 𝐼𝑎 and 𝐼𝑏 are the lower and upper bounds of melody variation 𝑖 in the whole piece 

with 𝐼𝑎 < 𝐼𝑏. 

We solve the above problem based on the calculus of variations [27, 28]. First, we relax 

constraints (SMII 13) by Lagrange multipliers and obtain the Lagrange function 

 𝐿 =  𝐻𝑣 − 𝜆0𝑓0(𝑖, 𝑝(𝑖)) − 𝜆1𝑓1(𝑖, 𝑝(𝑖)), (SMII 14) 

where  

 

{
 
 
 
 

 
 
 
 
𝑓0(𝑖, 𝑝(𝑖)) = ∑𝑝(𝑖)

𝐼𝑏

𝑖=𝐼𝑎

− 1

𝑓1(𝑖, 𝑝(𝑖)) = ∑𝑝(𝑖) ln 𝑖

𝐼𝑏

𝑖=𝐼𝑎

−𝑚

 𝐻𝑣 = −∑𝑝(𝑖) ln 𝑝(𝑖)

𝐼𝑏

𝑖=𝐼𝑎

, (SMII 15) 

and 𝜆0, 𝜆1 ≥ 0 are Lagrange multipliers.   

Then, 

 

𝐿 =  𝐻𝑣 − 𝜆0(∑𝑝(𝑖)

𝐼𝑏

𝑖=𝐼𝑎

− 1) − 𝜆1(∑𝑝(𝑖) ln 𝑖

𝐼𝑏

𝑖=𝐼𝑎

−𝑚) (SMII 16) 

   

 

  = −∑ 𝑝(𝑖) ln 𝑝(𝑖)

𝐼𝑏

𝑖=𝐼𝑎

− 𝜆0(∑𝑝(𝑖)

𝐼𝑏

𝑖=𝐼𝑎

− 1) − 𝜆1(∑𝑝(𝑖) ln 𝑖

𝐼𝑏

𝑖=𝐼𝑎

−𝑚) (SMII 17) 

   

 

 = −∑[𝑝(𝑖) ln 𝑝(𝑖) + 𝜆0𝑝(𝑖) + 𝜆1𝑝(𝑖) ln 𝑖]

𝐼𝑏

𝑖=𝐼𝑎

+ 𝜆0 + 𝜆1𝑚. (SMII 18) 

Let 

 

𝐽 = ∑[𝑝(𝑖) ln 𝑝(𝑖) + 𝜆0𝑝(𝑖) + 𝜆1𝑝(𝑖) ln 𝑖]

𝐼𝑏

𝑖=𝐼𝑎

= ∑𝐿𝑖

𝐼𝑏

𝑖=𝐼𝑎

. (SMII 19) 

Suppose the optimal solution is 𝑝∗(𝑖), then the admissible trajectory around 𝑝∗(𝑖) is 

 𝑝(𝑖) =  𝑝∗(𝑖) + 𝛿𝑝(𝑖), (SMII 20) 

where 𝛿𝑝(𝑖) denotes the first-order variation of 𝑝(𝑖). 
By substituting (SMII 20) into (SMII 19), we obtain 
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𝐽 = ∑{[ 𝑝∗(𝑖) + 𝛿𝑝(𝑖)] ln[ 𝑝∗(𝑖) + 𝛿𝑝(𝑖)] + 𝜆0[ 𝑝
∗(𝑖) + 𝛿𝑝(𝑖)]

𝐼𝑏

𝑖=𝐼𝑎

+ 𝜆1[ 𝑝
∗(𝑖) + 𝛿𝑝(𝑖)] ln 𝑖}. 

(SMII 21) 

Its first-order variation is 

 

𝛿𝐽 = ∑ [
𝜕𝐿𝑖
𝜕𝑝(𝑖)

𝛿𝑝(𝑖)] ,

𝐼𝑏

𝑖=𝐼𝑎

 (SMII 22) 

known as the discrete Euler equation [27]. The necessary condition of maximizing the discrete 

function (SMII 21) is 𝛿𝐽 = 0, i.e.  

 𝜕𝐿𝑖
𝜕𝑝(𝑖)

𝛿𝑝(𝑖) = 0. (SMII 23) 

Since 𝛿𝑝(𝑖) can be any small non-zero value, then 

 𝜕𝐿𝑖
𝜕𝑝(𝑖)

= ln 𝑝(𝑖) + 1 + 𝜆0 + 𝜆1 ln 𝑖 = 0, (SMII 24) 

and we get 

 𝑝(𝑖) = 𝐶0𝑖
−𝜆1 , (SMII 25) 

where 𝐶0 = 𝑒
−(1+𝜆0) > 0 and  𝜆1 > 0. 

If 𝑖 is continuous with 𝑖 ∈ [0,∞], the CCDF is 

 
∫ 𝑝(𝑠)𝑑𝑠
∞

𝑖

= 𝑐𝑖−𝐷 , (SMII 26) 

where 𝑐 =
𝐶0

𝜆1−1
> 0, and 𝐷 = 𝜆1 − 1 > 0 and it is the Power Law function presented in Eq. 12 of 

the main text. 

However, the melody variations in semitone 𝑖  are positive integers and the complementary 

cumulative distribution function (CCDF) of melody variation 𝑖 should  

 

 𝑇(𝑖) = 𝑃(𝐼 ≥ 𝑖) =∑𝑝(𝑠)

𝐼𝑏

𝑠=𝑖

 (SMII 27) 

 

=∑𝐶0𝑠
−𝜆1

𝐼𝑏

𝑠=𝑖

, (SMII 28) 

where we only consider the range of 𝑖 from 𝐼𝑎 to 𝐼𝑇 (𝐼𝑇 ≤ 𝐼𝑏, and generally equals to 12).  

Next, we use the approximate integration method to compute the sum (SMII 28). This method 

is a reverse process of converting sum to integral in the definition of Riemann integral. 

Therefore, 

 

𝑇(𝑖) =∑𝐶0𝑠
−𝜆1

𝐼𝑏

𝑠=𝑖

= ∫ 𝐶0𝑠
−𝜆1

𝐼𝑏

𝑖

𝑑𝑠 + 𝑒(𝑠, 𝑖) (SMII 29) 

 
=

𝐶0
𝜆1 − 1

[𝑖−𝜆1+1 − 𝐼𝑏
−𝜆1+1] + 𝑒(𝑠, 𝑖) (SMII 30) 

 =  𝑐𝑖−𝐷 + 𝑞𝐼𝑏 + 𝑒(𝑠, 𝑖), (SMII 31) 
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where 𝑐 =
𝐶0

𝜆1−1
> 0,𝐷 = 𝜆1 − 1 > 0, 𝑞𝐼𝑏 = −

𝐶0

𝜆1−1
𝐼𝑏
−𝜆1+1 < 0, 𝑒(𝑠, 𝑖) ≤

−𝐶0𝜆1

2

(𝐼𝑏−𝑖)
−𝜆1+1

𝐼𝑏−𝑖+1
, 𝑖 ∈

{𝐼𝑎, 𝐼𝑎 + 1,… , 𝐼𝑇}. The CCDF 𝑇(𝑖) contains a term of the Power Law function 𝑐𝑖−𝐷, a constant 

term 𝑞𝐼𝑏 for 𝑖, and an error term. 

First, we discuss the common ranges of 𝐼𝑏 and 𝐼𝑇 in actual music works. In music works, the 

upper bound of melody variation 𝐼𝑏 is usually not smaller than 19 (see the statistical results in 

Figure SMII 4). Furthermore, the most common intervals are not larger than 12 (Figure SMII 4). 

Hence, we set the upper bound 𝐼𝑇 equal 12 in CCDF in general (sometimes 𝐼𝑇 may equal other 

values in different compositions, e.g. 7-10). 

Next, we simulate the disturbance of the error term and the constant term 𝑞𝐼𝑏 in 𝑇(𝑖) (SMII 31) 

with the above 𝐼𝑏 and the different exponent 𝐷 (set 𝐶0 as a proper value). Figure SMII 5 shows 

that the error term hardly disturbs the value in 𝑇(𝑖) (SMII 31), then 

 

𝑇(𝑖) =∑𝐶0𝑠
−𝜆1

𝐼𝑏

𝑠=𝑖

 (SMII 32) 

 =  𝑐𝑖−𝐷 + 𝑞𝐼𝑏 + 𝐸𝑟𝑟(𝑠, 𝑖) (SMII 33) 

 ≈  𝑐𝑖−𝐷 + 𝑞𝐼𝑏 . (SMII 34) 

 Figure SMII 6 shows that the usual values of 𝐼𝑏 and 𝐷 conduce to smaller 𝑞𝐼𝑏 for 𝑇(𝑖), which 

means that 𝑞𝐼𝑏  can generally be omitted and 𝑇(𝑖) approximately follows the Power Law 𝑐𝑖−𝐷. 

This conclusion is examined in Figure SMII 7, stating that the actual 𝑇(𝑖) calculated from (SMII 

27) fit the simulation results from Eq.12 in the main text. From above, 𝑞𝐼𝑏 can be ignored for the 

actual values of parameters in (SMII 31). 

Thus, the CCDF of melody variations (semitones 𝑖) of the tonal music observes the Power Law: 

 𝑇(𝑖) = 𝑃(𝑥 ≥ 𝑖) = 𝑐𝑖−𝐷, (SMII 35) 

where 𝑖 = {𝐼𝑎, 𝐼𝑎 + 1,… , 𝐼𝑇}, 𝐼𝑇 ≤ 𝐼𝑏 . In general, 𝐼𝑎 = 1 or 2, 𝐼𝑇 = 12, 𝐼𝑏 ≥ 19. 

Furthermore, we can determine the possible values of exponent 𝐷 and the smoothness attractor 

𝑚 in the Power Law (SMII 35). For simplicity, we consider the continuous function 

 𝑝(𝑖) = 𝐶0𝑖
−𝜆1 ,  (SMII 36) 

satisfying 

 

{
 
 

 
 ∫ 𝑝(𝑖)𝑑𝑖

𝐼𝑏

𝐼𝑎

= 1

∫ 𝑝(𝑖)ln 𝑖
𝐼𝑏

𝐼𝑎

𝑑𝑖 = 𝑚.  

 (SMII 37) 

From (SMII 37), we obtain 𝑚 ∈ (ln 𝐼𝑎 , ln 𝐼𝑏) and 𝜆1 ∈ (1 −
1

ln 𝐼𝑏−𝑚
, 1 +

1

𝑚−ln 𝐼𝑎
). Since 𝑚 is a 

small constant satisfying 𝑚 <
ln 𝐼𝑎+ln 𝐼𝑏

2
 and 𝑚 < ln

𝐼𝑏

𝑒
, then 𝜆1 ∈ (1,1 +

1

𝑚−ln 𝐼𝑎
) and 

 
𝐷 = 𝜆1 − 1 ∈ (0,  

1

𝑚−ln 𝐼𝑎
). (SMII 38) 

Thus, we can obtain 

 
𝑚 ∈ (ln 𝐼𝑎 , min {ln 𝐼𝑏 − 1,

ln 𝐼𝑎 + ln 𝐼𝑏
2

}). (SMII 39) 

Next, we compare the theoretical ranges with the actual results of parameter 𝐷 and smoothness 

attractor 𝑚 (the corresponding 141 compositions are listed in Table SMII 1). On the one hand, we 
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calculate the actual value 𝑚𝑒  of the smoothness attractor 𝑚 from (SMII 1) and the theoretical 

values 𝑚𝑙𝑜𝑤𝑒𝑟 and 𝑚𝑢𝑝𝑝𝑒𝑟 (the lower and upper bounds of 𝑚) from (SMII 39) with the actual 𝐼𝑎 

and 𝐼𝑏 of a given music piece. All the values of 𝑚𝑒 , 𝑚𝑙𝑜𝑤𝑒𝑟 and 𝑚𝑢𝑝𝑝𝑒𝑟 for the 141 music works 

are shown in Figure SMII 8, which indicates that the actual values 𝑚𝑒 are located in the theoretical 

range (𝑚𝑙𝑜𝑤𝑒𝑟, 𝑚𝑢𝑝𝑝𝑒𝑟). On the other hand, we calculate the theoretical upper bound 𝐷𝑢𝑝𝑝𝑒𝑟 of 𝐷 

from (SMII 38) (the theoretical lower bound is zero) and the corresponding actual values 𝐷𝑓𝑖𝑡𝑡𝑖𝑛𝑔 

obtained from fitting CCDF by the Power Law function (SMII 35) (see Section 1.4). From Figure 

SMII 9, we conclude that 𝐷𝑓𝑖𝑡𝑡𝑖𝑛𝑔 is under the theoretical upper bound 𝐷𝑢𝑝𝑝𝑒𝑟. 

As a result, the actual data are consistent with the ranges of exponent 𝐷 and smoothness attractor 

𝑚 analyzed theoretically. 

 
1.4 Music data processing and analysis 

We gather 141 tonal compositions of the major and minor mode music as typical examples, 

ranging in 14 periods and genres in pre-Baroque, Baroque, classicism, romanticism, rationalism, 

impressionism, neoclassicism, and popular music (some songs with an accompaniment) [6]. Table 

SMII 2 provides an overview of these pieces. The original MIDI format files of the 141 

compositions are obtained [40]. 

MIDI (Musical Instrument Digital Interface) is a digital communication language and 

compatible specification that allows multiple hardware and software electronic instruments, 

performance controllers, computers, and other related devices to communicate with each other 

over a connected network. It is now the most prevalent representation of music recording the 

primary attributes of music (pitch, duration, articulation, ornamentation, dynamics, and timbre). 

An obvious advantage of MIDI is that its data can be input directly into a hardware device or 

software program (known as a sequencer), edited and transferred to electronic instruments or other 

devices to create music or control any number of parameters [41]. 

An overview of all tonal music used in this study is in the file of Dataset S1.xlsx. The table 

includes three worksheets. The first named “MusicInf” provides the information of all the MIDI 

files, including music index, group index, genre or period, composer, and the composition title. 

The second worksheet “Genre&Period” provides the group index, genres, periods, and the typical 

musicians of the genre groups. The last sheet “MidiPitch” gives the matrix of all channels and 

pitches of 141 music pieces that convert from MIDI files in MATLAB 2017 by MIDI toolbox 1.1. 

 

1.41 The CCDFs from the actual data: the Power Law 

The melody variations for semitone 𝑖 of the notes sequence is calculated as 

 𝐼(𝑗) = 𝑓(𝑛𝑗+1) − 𝑓(𝑛𝑗), 𝑗 = 1,2, … ,𝑁 − 1, (SMII 40) 

where 𝑓(𝑛𝑗) denotes the pitch of the 𝑛𝑗th note, 𝐼(𝑗) is the 𝑗th melody variation, and N is the total 

number of the notes. 

We count the frequencies 𝑝𝑓(𝑖)  of the melody variation 𝑖  in [𝐼𝑎, 𝐼𝑏]  by (SMII 40) and the 

complementary cumulative distribution function (CCDF) of the melody variation 𝑖 from 𝐼𝑎 to 𝐼𝑇 

via 

 

𝑇(𝑖) =∑𝑝𝑓(𝑙),

𝐼𝑏

𝑙=𝑖

 (SMII 41) 
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where 𝑝𝑓(𝑙)  is the frequency of melody variation 𝑙  for the 𝑁  notes, and 𝑖 = {𝐼𝑎, 𝐼𝑎 +

1,… , 𝐼𝑇}, 𝐼𝑇 ≤ 𝐼𝑏. 𝐼𝑎, 𝐼𝑏 and 𝐼𝑇 refer to the same definitions in Section 2. 

We plot the CCDFs of 141 compositions with log-log coordinates, and the straight line is clear 

in every figure (Dataset S5.xlsx), which is equivalent to the Power Law function 𝑦 = 𝑐𝑥−𝐷. We 

fit the data by an affine function 𝑦 = 𝑎𝑥 + 𝑏 and measure the goodness of fit by the coefficient of 

determination R-squared [42] 

 

𝑅2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
=
∑ (𝑦̂𝑗 − 𝑦̅𝑗)

2𝑁
𝑗=1

∑ (𝑦𝑗 − 𝑦̅𝑗)
2𝑁

𝑗=1

, (SMII 42) 

where 𝑦̅𝑗 is the mean value of the sample points and 𝑦𝑗 and 𝑦̂𝑗 are observations and fitting values. 

A larger 𝑅2 indicates a better fitting result. Figure SMII 10 shows all 𝑅2 for 141 compositions and 

more detailed results are provided in Dataset S5.xlsx. The results demonstrate that all CCDFs of 

the 141 music pieces observe the Power Law and that the parameters are well consistent with the 

theoretical analysis in Section 2. 

  

1.42 𝑷: A stationary distribution 

Consider the frequencies of the melody variation 𝑖  (generally from 1 to 12) of all 141 

compositions from the first 50 notes to the entire notes (see figures in Dataset S2.xlsx). To measure 

whether the distribution is stationary or not, we consider the stationarity of the stochastic 

process {𝐼(𝑡), 𝑡 ∈ 𝑇} (𝐼(𝑡) denotes melody variation). The conditions for a stationary stochastic 

process {𝐼(𝑡), 𝑡 ∈ 𝑇} are as follows [43]:        

1. If the mean 𝑀(𝑡) = 𝐸[𝐼(𝑡)] exists, its quantity must be a constant, 𝑀(𝑡) = 𝑀 for all 𝑡. 
2. If the second moment 𝐸[𝐼(𝑡)2] is finite, and then the variance σ2 = 𝐸[(𝐼(𝑡) − 𝑀)2] is a 

constant, independent of time. 

3. The covariance 𝐸[(𝐼(𝑡) −𝑀)(𝐼(𝑠) −𝑀)] that depends only on the time difference |𝑡 − 𝑠|. 
 

We calculate the first two conditions as well as the sample autocorrelation function (SAF) 

(corresponding the third condition above) to test the stationarity of the stochastic process 
{𝐼(𝑡), 𝑡 ∈ 𝑇}. The sample autocorrelation function is defined by 

 
𝑟(𝑘) =

∑ (𝐼𝑡 − 𝐼)̅(𝐼𝑡+𝑘 − 𝐼)̅
𝑛−𝑘
𝑡=1

∑ (𝐼𝑡 − 𝐼)̅2
𝑛
𝑡=1

, 𝑘 = 1,2,3, …, (SMII 43) 

where 𝐼𝑡 is a sample of stochastic process {𝐼(𝑡), 𝑡 ∈ 𝑇}, namely the 𝑡th melody variation of a music 

piece and 𝐼 ̅is the mean of all samples. 

For a stationary process, the mean and standard deviation are constants over 𝑡, and the sample 

autocorrelation function 𝑟(𝑘)  decreases to 0 with  𝑘  increasing (may fluctuates around 0 and 

gradually converges to 0). Figure SMII 11 demonstrates the SAFs, means, and standard deviations 

of four music pieces, and the rest results are depicted in Dataset S2.xlsx. It is seen that the 

stationary nature of all 141 cases is clear.    

 

1.43 𝑺: The smoothness of melody curves  

Calculate the smoothness of melody curves 𝑆 of all 141 compositions from the first 20 notes to 

the entire notes via Eq.3 in the main text. Then, the difference between 𝑆 and the smoothness 

attractor 𝑚𝑒 is 



 

 

 

25 

 

 ∆𝑆 = 𝑆(𝑛𝑗) − 𝑚𝑒 , (SMII 44) 

where 𝑆(𝑛𝑗) denotes the smoothness of melody curves of the first 𝑛𝑗  notes. We plot ∆𝑆 of the note 

sequence (see Figure SMII 12). The rest of empirical data of ∆𝑆 are provided in Dataset S3.xlsx, 

where we can obtain that each 𝑆 of 141 music pieces tends to the smoothness attractor 𝑚𝑒. 

 

1.44 𝑯𝒗: The maximum of the melody variations entropy 

For all 141 compositions, we calculate the melody variations entropy 𝐻𝑣 from the first 20 notes 

to the entire notes by Eq.4 in the main text. It is obvious that the melody variations entropies 𝐻𝑣 

increase as the note sequence moves on (see Dataset S4.xlsx). To see this characteristic exactly, 

we calculate the arithmetic average filtering [44] of 𝐻𝑣 in moving windows and the difference 𝑑 

as follows 

 𝑑𝑗 = 𝐻𝑣
𝑓
(𝑛𝑗+1) − 𝐻𝑣

𝑓
(𝑛𝑗), 𝑗 = 1,2,3, …, (SMII 45) 

where 𝐻𝑣
𝑓
(𝑛𝑗) is the arithmetic average filtering of 𝐻𝑣(𝑛𝑗) for the first 𝑛𝑗  notes. 

Then, we get the ratio of the total difference to the total positive difference defined by 

 
𝑅𝐷 =

∑ 𝑑𝑗𝑗

∑ 𝑑𝑘
+

𝑘
, (SMII 46) 

where 𝑑𝑘
+ denotes the positive difference of 𝐻𝑣

𝑓
, and 𝑘 is the index of all positive differences. 

Figure SMII 13 presents all 𝑅𝐷 of 141 compositions. We can obtain that almost all 𝑅𝐷 are closer 

to 1, indicating 𝐻𝑣 increase significantly as the melodies develop.  
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2 Figures and Tables 

 
Figure SMII 1. Repetitive techniques: sequence, retrograde, and inversion. (A) Sequence. 

Mozart, 12 Variations on "Ah, vous dirai-je, Maman", K. 265, the first variation. (B) Retrograde. 

Bach, BWV 1079, Crab Canon in Music Offering. (C) Inversion. Brahms, Symphony No.1 in c 

Minor, III, the Theme. 
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Figure SMII 2. Melody curve. Middle C (C4) is assigned the number 60 in MIDI data [5, 41]. 

The pitch increases per semitone, the corresponding number adds 1. Such as 61 represents C#4, 

and 72 corresponds C5. Here extract the first 400 notes of the main voice leading from Rhapsody 

in Blue by Gershwin. 

 

 
 

Figure SMII 3. A melody curve consists of a single melody variation 𝒊 = 𝟐. The horizontal and 

the vertical grid represent note and pitch respectively, where 𝑛𝑗+1 − 𝑛𝑗 = 𝛿 ∈ (0,1), |𝑓(𝑛𝑗+1) −

𝑓(𝑛𝑗)| = 𝑖, 𝑗 = 1,2, … ,𝑁 − 1. 
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Figure SMII 4. The proportion of compositions with the largest melody variations are more 

than or equal to 𝑰𝒃 in 126 music pieces from Baroque to modern pop music (see Dataset in 

Table SMII 2). We can see that for most pieces (91.27%) the values of 𝐼𝑏 are not smaller than 14. 

The pieces with 𝐼𝑏 more than or equal to 16 also occupy a large proportion, 88.10%. What is more, 

for about 77.78% of the compositions the largest melody variation 𝐼𝑏 is not smaller than 19.  
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Figure SMII 5. Simulation results for Eq. SMII 32 and Eq. SMII 34. For different exponent 𝐷 

and different upper bound of melody variation 𝐼𝑏 in Figure SMII 4, 𝑇(𝑖) = ∑ 𝐶0𝑠
−𝜆1𝐼𝑏

𝑠=𝑖  (SMII 32) 

and 𝑇(𝑖) = 𝑐𝑖−𝐷 + 𝑞𝐼𝑏 (SMII 34) are simulated above, which indicates the two equations are close, 

namely, the error term 𝑒(𝑠, 𝑖) can be ignored. 
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Figure SMII 6. Simulation results. For different exponent 𝐷  and different upper bound of 

melody variation 𝐼𝑏  in Figure SMII 4, 𝑇(𝑖) = 𝑐𝑖−𝐷 + 𝑞𝐼𝑏  is simulated above. (A) 𝐼𝑏 = 14; 

(B) 𝐼𝑏 = 16; (C) 𝐼𝑏 = 19; (D) 𝐼𝑏 = 24. If 𝐼𝑏 is fixed, the simulation solution is closer to a straight 

line in the log-log coordinate system when 𝐷 is larger. If 𝐷 is fixed, the larger 𝐼𝑏 is, the closer the 

simulation solution is to a straight line in the log-log coordinate system. That is, the parameters 𝐷 

and 𝐼𝑏 are large enough the term 𝑞𝐼𝑏 could be ignored with regards to the Power Law term 𝑐𝑖−𝐷 in 

(SMII 31). Hence, the function 𝑇(𝑖) can be approximated as the Power Law function 𝑐𝑖−𝐷 with 𝐼𝑏 

equaling to or more than 19 and a fixed 𝐷. 
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Figure SMII 7. Consistency between the simulated data and the actual data. (A) Prelude and 

Fugue in C# Major, BWV 848 by J. S. Bach. The largest and smallest melody variation 𝐼𝑎 and 𝐼𝑏 

are 1 and 22 respectively, and the upper bound of melody variation 𝐼𝑇 of the CCDF is 12. (B) 

Turkish March in Bb Major, Op. 113, No. 4 by Beethoven. The largest melody variation 𝐼𝑏 is 24, 

the lower and the upper bound of melody variations of the CCDF, 𝐼𝑎  and 𝐼𝑇 , are 2 and 10 

respectively. (C) Piano Sonata No. 16 in C Major, K. 545, Mvt. 1 by Mozart. 𝐼𝑎 is 1, 𝐼𝑏 is 12 and 

𝐼𝑇 is 7. (D) Blue and White Porcelain, a piece of modern pop music with an accompaniment by 

Jay Chou from China with 𝐼𝑏 is 29 and 𝐼𝑎, 𝐼𝑇 are the same as (A). 
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Figure SMII 8. Comparison of the smoothness attractor 𝒎 between the theoretical range 

(𝒎𝒍𝒐𝒘𝒆𝒓,𝒎𝒖𝒑𝒑𝒆𝒓) and the actual value 𝒎𝒆. The 141 compositions of the horizontal ordinate are 

sorted by the value 𝑚𝑙𝑜𝑤𝑒𝑟 in order to have a good view. 
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Figure SMII 9. Comparison of the exponent  𝑫  between the theoretical range 

(𝑫𝒍𝒐𝒘𝒆𝒓, 𝑫𝒖𝒑𝒑𝒆𝒓) and the actual value 𝑫𝒇𝒊𝒕𝒕𝒊𝒏𝒈.  𝐷𝑙𝑜𝑤𝑒𝑟 = 0 for all compositions. 
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Figure SMII 10. The coefficient of determination R-squared (goodness of fit) for CCDF 

fitting the Power Law in log-log coordinate system. 𝑅2 of all pieces are larger than 0.83 and 

most of them (132 pieces) are larger than 0.9. 
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Figure SMII 11. The AFCs, means, and standard deviations with the latter half of note 

sequences of four music pieces. The AFCs approach 0, meanwhile the means and standard 

deviations are stationary. (A) The Art of Fugue, Counterpoint, BWV 1080 by J. S. Bach. (B) 

Fantastic Symphony, Op. 14, Mvt. 5 Songe d'une nuit du sabbat by Berlioz. (C) Symphony No. 2 

in D Major, Op. 73, Mvt. 1 by Brahms. (D) Thriller by Michael Jackson. 
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Figure SMII 12. The difference ∆𝑺 between the smoothness of melody curves 𝑺 and the 

smoothness attractor 𝒎𝒆  with the melody developing. ∆𝑆  approaches to 0 with the note 

sequence moving on, which illustrates the smoothness of melody curves 𝑆 tending to smoothness 

attractor 𝑚𝑒. (A) Sonata D Minor, K. 141, by D. Scarlatti. (B) The Art of Fugue, Counterpoint, 

BWV 1080, by J. S. Bach. (C) Messiah HWV 56, Part 1: Every valley shall be exalted (tenor), by 

Handel. (D) Piano Sonata No. 16 in C Major, K. 545, Mvt. 1, by Mozart. (E) La campanella 

Grandes etudes de Paganini, S. 141 No. 3, by Liszt. (F) Der Erlkonig, Op. 1 D. 328, by Schubert.  
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Figure SMII 13. The ratios of the total difference to the total positive difference of the 

arithmetic average filtering 𝑯𝒗
𝒇
. All 𝑅𝐷 of 141 music pieces are above 0.67 and 85.1% of them 

are larger than 0.9 such that the melody variations entropy 𝐻𝑣  reaches the maximum with the 

melody developing. 
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Figure SMII 14. The CCDFs of the variations (in semitones) of the atonal music DO NOT 

observe the Power Law. (A) Schoenberg, Madonna (vocal) from Pierrot Lunaire. (B) Berg, 

Prolog 1 from Lulu. (C) Webern, the second song from Der siebente Ring. (D) Messiaen, 

Turangalila Symphony, Mov. II.  
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Figure SMII 15. The three mathematical characteristics of some atonal music that do not 

observe the Power Law. (A) and (B) show the probability 𝑝(𝑖) of Madonna (vocal channel) from 

Pierrot Lunaire by Schoenberg and the second movement from Turangalila Symphony by 

Messiaen beginning with the first 20 notes. With the melody developing, the frequencies are not 

stationary. (C) and (D) are the smoothness of melody curves 𝑆 of the second song from Der 

siebente Ring by Webern and the second movement from Turangalila Symphony by Messiaen, 

beginning with the first 20 notes. They do not tend to be any constant. (E) and (F) show that the 

melody variations entropies decrease around the note of the 120th and 1800th. These two 

compositions are the second song from Der siebente Ring by Webern and the second movement 

from Turangalila Symphony by Messiaen, respectively. 

 

 



 

 

 

40 

 

 
 

Figure SMII 16. The four basic forms (prime, retrograde, inversion, and retrograde 

inversion) of the twelve-tone row from Suite, Op. 25 (1923) by Schoenberg [5].  
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Table SMII 2. An overview of 141 tonal compositions of 14 periods and genres from pre-

Baroque to modern pop music. 
Group 

index 

Period Genre Composition Composer Music 

index 

1 Before 17th Before 
Baroque 

(1). Conductus: Ave virgo virginum 
(2). Bon jour, bon mois, bon an et bonne estraine 

(3). Chanson balladée 

(4). Quant en moy/Amour et biaute/Amara valde 
(5). Miserere 

(6). Missa Pange lingua 
(7). Si dolce el tormento 

(8). Goe yee, my canzonets 

(9). Es taget vor dem Walde 
(10). Missa Ecce ancilla domini 

(11). Quam pulchra es 

(12). Thus Sings My Dearest Jewel 
(13). Voce mea ad Dominum 

(14). Voglio Di Vita Uscir 

Perotin 
Dufay 

Machaut 

Machaut 
William Byrd 

Josquin 
Monteverdi 

Thomas Morley 

Elslein 
Ockeghem 

John Dunstable 

Thomas Weelkes 
Benedetto Croce 

Monteverdi 

1 
2 

3 

4 
5 

6 
7 

8 

9 
10 

11 

12 
13 

14 

2 1600s - 1750s Baroque 

Instrumental 
Music 

(1). La Follia 

(2). The Four Seasons, Concerto NO. 4 in F Minor, Winter, 
Op. 8 No. 4, RV. 297 

(3). Concerto for 2 Cellos in G Minor, RV. 531 

(4). Bassoon Concerto in A Minor, RV. 497 
(5). La Follia, Sonata in D Minor, Op. 1 No. 12, RV. 63 

(6). Sonata D Minor, K. 141 

(7). Keyboard Sonata in A Minor, K. 532 
(8). Keyboard Sonata in D Minor, K. 138 

F. Couperin  

Vivaldi 
 

Vivaldi 

Vivaldi 
Vivaldi 

D.Scarlatti 

D.Scarlatti 
D.Scarlatti 

15 

16 
 

17 

18 
19 

20 

21 
22 

3 17th Early 

Baroque 
Vocal Music 

(1). Bellerophon Ouverture 

(2). L'Orfeo Vieni Imeneo 
(3). Verleih uns Frieden 

(4). O primavera 

J. B. Lully  

Monteverdi 
Heinrich Schutz 

Monteverdi 

23 

24 
25 

26 

4 1600s - 1750s Baroque (1). Concerto for oboe and violin in c minor, BWV 1060, II 

(2). "Peasant Cantata" Mer hahn en neue Oberkeet N0. 8 Aria 
(soprano): Unser trefflicher, in B Minor, BWV 212 

(3). The Art of Fugue, Counterpoint, BWV 1080 

(4). Violin Concerto in E Major, BWV 1042 

(5). Prelude and Fugue in C# Major, BWV 848 

(6). Minuet in G major, BWV Anh. 115 
(7). Toccata and Fugue in D Minor, BWV 565 

(8). Violin Concerto in A Minor, BWV 1041 

(9). Messiah HWV 56, Part 3: The trumpet shall sound  
(10). Messiah HWV 56, Part 1: Every valley shall be exalted 

(tenor) 

(11). Suite No. 4 in D Minor, HWV 437: III. Sarabande 
(12). Duetto “Son nata a lagrimar”, HWV 17 

(13). Zadok the Priest (Coronation Anthem No. 1, HWV 258) 

(14). Passacaglia, HWV 432 
(15). Les Boreades, Act 4 Entree de Polymnie 

(16). Las indias galantes Les Sauvage 

(17). La poule 

J. S. Bach 

J. S. Bach 
 

J. S. Bach 

J. S. Bach 

J. S. Bach 

J. S. Bach 
J. S. Bach 

J. S. Bach 

Handel 
Handel 

 

Handel 
Handel 

Handel 

Handel 
Rameau 

Rameau 

Rameau 

27 

28 
 

29 

30 

31 

32 
33 

34 

35 
36 

 

37 
38 

39 

40 
41 

42 

43 

5 1730s - 1750s Early 
Classicism 

(1). Che farò senza Euridice From Orfeo ed Euridice 
(2). La serva padrona Se tu m'ami 

C. W. Gluck 
G. B. Pergoles 

44 
45 

6 1730s - 1815s Classicism (1). Piano Sonata No. 15 in D Major, Op. 28 "Pastoral" 

(2). Symphony No. 5 in c minor, Op. 67 
(3). Violin Sonata No. 5 in F Major, Spring Mvt. 1 Allegro, 

Op. 24 

(4). Symphony No. 9 in D Minor, Mvt. 2 Part 1, Op. 125 
(5). Hallelujah From Christ On The Mount Of Olives, Op. 85 

(6). "Moonlight Sonata" Piano Sonata No. 14 in C sharp 

Minor "Quasi una fantasia", Op. 27, No. 2 
(7). Symphony No. 6 in F Major, Op. 68 

(8). Serenade in D Major for Violin, Viola and Cello, Op. 8 

(9). Turkish March in Bb Major, Op. 113, No. 4 
(10). Overture From Egmont, Op. 84 

(11). Deutsche Nationalhymne (Das Lied der deutschen) 

(12). The tears of Caledonia (Hob XXXIa:201) 
(13). L Concerto for flute and harp in C Major, K. 299, I 

(14). Symphony No. 40 in G Minor, K. 550 

Beethoven 

Beethoven 
Beethoven 

 

Beethoven 
Beethoven 

Beethoven 

 
Beethoven 

Beethoven 

Beethoven 
Beethoven 

Haydn 

Haydn 
Mozart 

Mozart 

46 

47 
48 

 

49 
50 

51 

 
52 

53 

54 
55 

56 

57 
58 

59 



 

 

 

42 

 

(15). 12 Variations on “Ah vous dirai-je Maman”, K. 265 
(16). Die Zauberflote (The Magic Flute), K. 620, Chor der 

Priester: O, Isis und Osiris 

(17). Piano Sonata No. 16 in C Major, K. 545, Mvt. 1 
(18). Die Zauberflote (The Magic Flute), K. 620, Queen of the 

Night Aria 

(19). Requiem in D Minor, K. 626 Dies irae 
(20). Dona Nobis Pacem, K. 257, No. 7 

(21). Piano Concerto No. 21 in C Major K. 467, Mvt. 2 

Mozart 
Mozart 

 

Mozart 
Mozart 

 

Mozart 
Mozart 

Mozart 

60 
61 

 

62 
63 

 

64 
65 

66 

7 1820s - 1900s Romanticism (1). L'Enfance du Christ, Op. 25, Part II: Ladieu Des Bergers 
(2). Fantastic Symphony, Op. 14, Mvt. 1 Reveries Passions 

(3). Fantastic Symphony, Op. 14, Mvt. 4 Marche au supplice 

(4). Fantastic Symphony, Op. 14, Mvt. 5 Songe d'une nuit du 
sabbat 

(5). Symphony No. 2 in D Major, Op. 73, Mvt. 1 

(6). Symphony No. 3 in F Major, Op. 90, Mvt. 1 
(7). Symphony No. 3 in F Major, Op. 90, Mvt. 3 

(8). Symphony No. 4 in E Minor, Op. 98, Mvt. 1 

(9). Symphony No. 4 in E Minor, Op. 98, Mvt. 4 
(10). Symphony No. 4 in E Minor, Op. 98, Mvt. 2 

(11). Mazurka in g minor, Op. 67, No. 2 

(12). 12 Etudes In Gb Major, Black Keys, Op. 10 No. 5   
(13). Consolation No. 3 in Db Major, S. 172 

(14). La campanella Grandes etudes de Paganini, S. 141 No. 3 

(15). Bndiction de Dieu dans la solitude, S. 173 
(16). Hungarian Rhapsody in C# Minor, S. 244 No. 2 

(17). Liebestraum No. 3 In Ab Major, S. 541 No. 3, Notturno 

III O lieb 
(18). Transcendental Etudes, S. 139 No. 2, Molto Vivace 

(19). Transcendental Etudes, S. 139 No. 5, Feux Follets 

(20). Wedding March, Op. 61 
(21). Elijah, Op. 70, MWV A25, So ihr mich von ganzem 

Herzen suchet 

(22). Symphony No. 2 in Bb Major, Op. 52, Hymn of Praise 
(23). Lieder ohne Worte, Op. 67 No. 2, Lost Illusions 

(24). Piano Sonata in G Minor, Op. 105 

(25). Ruh Du bist die Ruh', D. 776 , Op. 59 No. 3 
(26). Impromptu No. 1 in F Minor, Op. 142, D. 935 

(27). Der Erlkonig, Op. 1 D. 328 

(28). Quintet in A Major,  Op. 114, The Trout 
(29). Allegretto in C Minor, D. 915 

(30). Symphony No. 8 in B Minor, D. 759 

(31). Die Forelle, D. 550 
(32). Impromptu in Ab Major, Op. 90 No. 4, D. 899  

(33). String Trio in Bb Major, D. 471 Allegro 

(34). Symphony No. 9 in C Major, D. 944, The Great Mvt. 1 
(35). String Quartet Death and the Maiden in D Minor, D. 810   

(36). 5 Lieder, Op. 106 No. 1, Stndchen 
(37). Kinderszenen, Op. 15 

(38). Frauenliebe und Leben, Op. 42 No. 2, Er der Herrlichste 

von allen 

Berlioz 
Berlioz 

Berlioz 

Berlioz 
 

Brahms 

Brahms 
Brahms 

Brahms 

Brahms 
Brahms 

Chopin 

Chopin 
Liszt 

Liszt 

Liszt 
Liszt 

Liszt 

 
Liszt 

Liszt 

Mendelssohn 
Mendelssohn 

 

Mendelssohn 
Mendelssohn 

Mendelssohn 

Schubert 
Schubert 

Schubert 

Schubert 
Schubert 

Schubert 

Schubert 
Schubert 

Schubert 

Schubert 
Schubert 

Schubert 
Schumann 

Schumann 

67 
68 

69 

70 
 

71 

72 
73 

74 

75 
76 

77 

78 
79 

80 

81 
82 

83 

 
84 

85 

86 
87 

 

88 
89 

90 

91 
92 

93 

94 
95 

96 

97 
98 

99 

100 
101 

102 
103 

104 

8 19th 19th Century 
Opera 

(1). Der Freischutz Jagerchor 
(2). Faust Avant de quitter ces lieux 

(3). William Tell Overture 

(4). Ride of the Valkyries 

Weber 
Gounod 

Rossini 

Wagner 

105 
106 

107 

108 

9 1850s -1900s 19th Century 

Nationalism 

(1). Swan Lake Complete Ballet, Op. 20 

(2). Norwegian Dance, Op. 35 No. 3 

(3). Fire Salmer: I Himmelen, Op. 74 No. 4  
(4). Peer Gynt Suite, Op. 46 No. 1, Morning Mood 

(5). Piano Concerto in A Minor, Op. 16 Mvt. 1 

(6). Norwegian Dance, Op. 35 No. 1 
(7). Norwegian Dance, Op. 35 No. 2 

Tchaikovsky 

Grieg 

Grieg 
Grieg 

Grieg 

Grieg 
Grieg 

109 

110 

111 
112 

113 

114 
115 

10 1880s - 1910s Late 

Romanticism 

Symphony No. 6 in A Minor, Mvt. 1 Mahler 116 

11 1880s - 1930s Impressionis
m 

(1). Reverie 
(2). Mirrors, M. 43, I. Noctuelles 

(3). Mirrors, M. 43, IV. Alborada del gracioso 

(4). Gaspard de la nuit, M. 55, I. Ondine 

Debussy 
Ravel 

Ravel 

Ravel 

117 
118 

119 

120 



 

 

 

43 

 

12 20th 20th Century 
Nationalism 

(1). Andante Festivo 
(2). Valse Triste 

(3). Violin Concerto 

(4). Appalachian Spring 
(5). Rhapsody in Blue, Piano solo 

(6). An American in Paris, Piano solo 

(7). Piano Concerto in F Major, I. Allegro for 2 pianos 
(8). Piano Concerto in F Major, II. Adagio Andante con 

moto for 2 pianos 

(9). Piano Concerto in F Major, III. Allegro agitato for 2 
pianos 

Sibelius 
Sibelius 

Sibelius 

Copland 
Gershwin 

Gershwin 

Gershwin 
Gershwin 

 

Gershwin 

121 
122 

123 

124 
125 

126 

127 
128 

 

129 

13 1900s - 1950s Neoclassicis

m 

(1). Trumpet Sonata, Mvt. 2 

(2). Scaramouche, II Modéré 

Hindemith 

Milhaud 

130 

131 

14 1950s - now Pop Music (1). Nikita 
(2). Yesterday 

(3). Memory Cats 

(4). As Long As You Love Me 
(5). Thriller 

(6). Wine 

(7). Roppongi Pure School 
(8). Forever love 

(9). Blue and White Porcelain  
(10). Coral Sea  

Elton John 
The Beatles 

Lloyd Webber 

Backstreet Boys 
Michael Jackson 

Japan and Korea 

Japan and Korea 
Japan and Korea 

Jay Chou (China) 
Jay Chou (China) 

132 
133 

134 

135 
136 

137 

138 
139 

140 
141 

 

  



 

 

 

44 

 

3 Legends for Datasets (separate file) 

 

Dataset S1.xlsx: An overview of tonal music. This table includes three worksheets. The first worksheep named 

“MusicInf” provides all the information of the music pieces with the index, file name, composer, and title. The second 

worksheet “Genre&Period” gives the group index, genres, periods, and the typical musicians, and the last worksheet 

“MidiPitch” provides all the pitches and channels of 141 compositions. 

 

Dataset S2.xlsx: The probability 𝑃 of all 141 music pieces. The worksheet “P_Figure” provides the figures of 𝑃, from 

the first 20 notes to the entire notes and the figures of mean, standard deviation, and SAF of the latter half of the 

musical note sequence. 

 

Dataset S3.xlsx: The smoothness of melody curves 𝑆 of music pieces. The first worksheet “S_Figure” depicts the 

figures of ∆𝑆 from the first 20 notes to 𝑁 notes. The second worksheet “m_e” presents the mean value and the standard 

deviation sum of 𝑆 of the last half of notes. 

 

Dataset S4.xlsx: The variation entropy 𝐻𝑣  of all music. The worksheet “Hv_Figure” shows the figures of 𝐻𝑣  from the 

first 20 notes to the entire notes. 

 

Dataset S5.xlsx: The CCDFs of all 141 music pieces in Dataset S1.xlsx. The first worksheet “Figure” provides the 

CCDF figures in the log-log coordinate system. The second worksheet “Fitting” is the fitting results by polyfit function 

in the log-log coordinate system. The third worksheet “T(i)” lists the CCDF data. 
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