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Abstract The impact of information dissemination on epidemic control is essentially subject to individual

behaviors. Vaccination is one of the most effective strategies against the epidemic spread, whose correlation

with the information dissemination should be better understood. To this end, we propose an evolutionary

vaccination game model in multiplex networks by integrating an information-epidemic spreading process into

the vaccination dynamics, and explore how information dissemination influences vaccination. The spreading

process is described by a two-layer coupled susceptible-alert-infected-susceptible (SAIS) model, where the

strength coefficient between two layers characterizes the tendency and intensity of information dissemination.

We find that the impact of information dissemination on vaccination decision-making depends on not only

the vaccination cost and network topology, but also the stage of the system evolution. For instance, in a

two-layer BA scale-free network, information dissemination helps to improve vaccination density only at the

early stage of the system evolution, as well as when the vaccination cost is smaller. A counter-intuitive

conclusion that more information transmission cannot promote vaccination is obtained when the vaccination

cost is larger. Moreover, we study the impact of the strength coefficient and individual sensitivity on the

fraction of infected individuals and social cost, and unveil the role of information dissemination in controlling

the epidemic.
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1 Introduction

The epidemic control has been studied for many decades [1–4], since the outbreak and propagation of virus
may cause tremendous damage and bring huge (economic) losses. Various models, such as the susceptible-
infected-susceptible (SIS) model [5,6] and the susceptible-infected-recovered (SIR) model [7,8], have been
used to describe epidemic spreading processes. The understanding of disease-behavior dynamics motivates
more and more efforts to explore the epidemic dynamics beyond such models [9–11]. Individual behaviors,
such as wearing masks and washing hands [12], which may reduce the susceptibility to infection, can be
triggered by the awareness (information) diffusion. Funk et al. [13] studied how awareness impacts the
virus propagation in a well-mixed population, and they found that the awareness diffusion can reduce
the virus outbreak range, but cannot affect the epidemic threshold. Similarly, Wu et al. [14] explored the
impact of three different kinds of awareness on the epidemic spread in a scale-free networked population.
However, single-layer networks provide a limited representation of complex systems [15–17]. The efforts
in [13, 14] may fail to involve the realistic scenario where the information and virus spread via different
networks simultaneously.

Recently, multiplex networks representing social interactions at different contexts, e.g., individuals
transmit information through an online social network, and at the same time an epidemic propagates

*Corresponding author (email: cong li@fudan.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-020-3076-1&domain=pdf&date_stamp=2022-6-21
https://doi.org/10.1007/s11432-020-3076-1
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-020-3076-1
https://doi.org/10.1007/s11432-020-3076-1


Li X-J, et al. Sci China Inf Sci July 2022 Vol. 65 172202:2

among the individuals on a physical contact network, have been studied in [18–20]. The interactions
between layers (networks) may yield the outcomes beyond what isolated layers can capture [21,22]. Wang
et al. [23] explored the influence of positive and negative preventive information on epidemic propagation
in multiplex networks. Guo et al. [24] introduced a threshold model to describe the awareness cascading
phenomenon of human awareness and studied the interplay between the spreading of awareness and
epidemic in a multiplex network, which was composed of an awareness spreading network and an epidemic
spreading network. However, it assumed that the aware individuals are completely immune to infection,
that is, each individual chooses vaccination in response to information. In reality, behavioral adoption or
response, especially vaccination, is a complex process [25–27]. On the one hand, vaccination is regarded
as one of the most effective and protective behaviors (strategies) against virus propagation [28–30]. On
the other hand, vaccination usually comes with a vaccination cost, and the decision of an individual on
vaccination depends not only on his trade-off between the vaccination cost and the infection cost, but
also on the strategies of other individuals. Vaccination presents a social dilemma since a self-interested
individual expects to get benefit from other vaccinated individuals [31–34]. The outbreak of the COVID-
19 epidemic seriously threatens public health, and the only long-term solution to this epidemic is to
develop effective vaccines [35]. Although there is no vaccine available for the COVID-19 epidemic at the
time of writing this paper, understanding the relation between information dissemination and vaccination
behavior is critical to epidemic control.

In this study, we construct an evolutionary vaccination game in a multiplex network which is composed
of an information layer and a contact layer, and explore the role of information dissemination on vaccina-
tion. In order to reflect the reactions of individuals to risk information, we introduce an alert state (A)
into the SIS model, and propose a two-layer coupled susceptible-alert-infected-susceptible (SAIS) model
to describe the spreading process. Assume the alert individuals are less likely to be infected than the
susceptible individuals. We find that different behavioral responses to information have different impacts
on epidemic spread. Moreover, we explore the factors that affect the vaccination density, fraction of
infected individuals and social cost, which is one of the most important optimization subjects in epidemic
control.

The rest of this paper comes as follows. Section 2 formulates the problem of this paper. Section 3
presents a two-layer coupled SAIS model, where the epidemic dynamics are theoretically and numerically
analysed. In Section 4, we introduce an evolutionary vaccination game in a multiplex network. Section 5
presents the vaccination performance against the epidemic propagation and the role of information.
Section 6 concludes the whole paper.

2 Problem formulation

Vaccination is an effective and preventive strategy against the epidemic propagation. When information
and epidemic spread simultaneously, the susceptible individuals may get to know the epidemic status
by receiving risk information from their infected neighbors. The qualitative analysis on the impact
of information dissemination on vaccination cannot reach a unified conclusion. Consequently, Xia and
Liu [30] proposed a belief-based model to study the impact factors of individual vaccination decisions.
However, the costs of individuals were not taken into account. Since an unvaccinated individual can
benefit from other vaccinated individuals, the vaccination decision-making of an individual depends not
only on his trade-off between the vaccination cost and the infection cost, but also on the strategies of
other individuals. Therefore, in this study, we propose an evolutionary vaccination game to model the
vaccination behaviors of individuals. The correlation between information dissemination and vaccina-
tion determines the vaccination density that affects the social cost. By integrating the propagation of
information-epidemic into the process of strategic selection and interaction, we explore how information
dissemination influences vaccination. Moreover, we illustrate the role of vaccination in epidemic control
by analyzing the correlation between the vaccination density and epidemic size, as well as study the
impact of the strength coefficient and individual sensitivity on the vaccination density.

In order to study the impact of information dissemination on vaccination, we assume that the vacci-
nated individuals are completely protected, regardless of the influence of vaccine efficiency. We take the
regularity of seasonal diseases and effectiveness of vaccination into account. Individuals who are prone to
immunization will be vaccinated before the outbreak of disease. The evolutionary vaccination game model
(as illustrated in Figure 1) includes two stages: the decision-making stage (stage 1) and the spreading
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Figure 1 (Color online) A schematic stage illustration of the evolutionary vaccination game model in a multiplex network. This

network consists of two layers. The information layer corresponds to a network where risk information spreads, while the epidemic

propagates on the contact layer. Individuals labeled by ‘V’ choose to be vaccinated during the stage 1. During the stage 2, the

vaccinated individuals are no longer involved in the epidemiological process which is described by the two-layer coupled SAIS model,

while the unvaccinated individuals are at risk of being infected.

stage (stage 2). During stage 2 (epidemic season) the epidemic and information (of the epidemic status)
propagate simultaneously at the corresponding layer. Each node (individual) unilaterally decides whether
to get vaccinated during stage 1, which is modeled by a vaccination game occurring before the start of
an epidemic season. A vaccinated individual will not be infected and no longer gets involved in the next
epidemic season, while the unvaccinated individuals have a risk of being infected. When the epidemic
process reaches a steady state, each individual will adjust his decision-making with respect to vaccination
for the next epidemic season.

3 The SAIS seasonal epidemics without vaccination

A two-layer multiplex network with different network topologies is illustrated in Figure 1. Both infor-
mation layer and contact layer have the same number of nodes with the size N . Each node (individual)
in one layer corresponds to its counterpart node in another layer. There are three possible states of
each node, susceptible (S), alert (A) or infected (I). In the information layer, a susceptible node can
perceive the risk information of virus from his infected neighbors, and convert to an alert node. Without
loss of generality, we assume that an alert node may ignore or not care about the risk information, and
become a susceptible node with rate η. In the contact layer, an infected node infects its susceptible and
alert neighbours with infection rates β and βA, respectively, where βA = ξβ. Taking into account the
complexity of individual decision-making behaviour in reality, we assume that the alert state is different
from the immune state, which means 0 < ξ 6 1. Each infected node recovers with rate µ.

Let pSi (t), p
A
i (t) and pIi (t) denote the probabilities for node i of being susceptible, alert and infected at

time t, respectively. Assume each node has the same sensitivity λ to the risk information. A susceptible
node i with degree ki may receive risk information and become an alert node with a probability θi(t) =

1 −
∏N

j=1(1 − λajip
I
j (t)), where aji is the element of adjacency matrix A of the information layer, and

aji = 1 if there is a link between nodes i and j. Define the transition probability for node i not being
infected by the neighbours as qSi (t) if i is a susceptible node, or as qAi (t) if i is an alert node. The element
of adjacency matrix B of the contact layer is defined as bji, and we have

{

qAi (t) =
∏N

j=1(1 − bjip
I
j (t)βA),

qSi (t) =
∏N

j=1(1 − bjip
I
j (t)β).

(1)

The transition probability diagrams for three states of the coupled SAIS propagation dynamics are
illustrated in Figure 2. Here, µ is the transition probability from the infected to the susceptible states,
η is the transition probability from the alert to the susceptible states, and the strength coefficient α

characterizes the tendency and intensity of information dissemination. For instance, the probability that
a susceptible node i remains susceptible at each time step is defined as αqSi (t)+(1−α)(1−θi). Specifically,
α = 1 corresponds to the case in a single-layer network, i.e., only the epidemic propagates in the contact
layer. The information and epidemic spreading processes coexist when 0 < α < 1.

The continuous time Markov approach can provide an exact description of the actual epidemic spread-
ing, however, the infinitesimal generator Q2N×2N [36] is difficult to obtain, especially for large scale
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Figure 2 (Color online) Transition probability diagrams for susceptible (S), alert (A), and infected (I) states of the coupled SAIS

propagation dynamics. Both susceptible and alert nodes can be infected by their infected neighbors, and the difference is that the

alert nodes have been informed. qSi is the transition probability for susceptible individual i not being infected by the neighbours; qAi
is the transition probability for alert individual i not being infected by the neighbours; θi is the transition probability for susceptible

individual i being informed by the infected neighbours; µ is the transition probability from the infected to the susceptible states;

η is the transition probability from the alert to the susceptible states; and α is the strength coefficient.

networks [37], since the Markov chain contains 2N states. Therefore, we utilize the microscopic Markov
chain approach [38] to explore the probability evolution of different states for node i,
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When pIi (t+ 1) = pIi (t) = pIi , we have















pSi =
(1−pI

i )[α(1−q
A
i )+η(1−α)]

α(1−qAi )+(1−α)(η+θi)
,

pAi =
(1−α)θi(1−p

I
i )

α(1−qAi )+(1−α)(η+θi)
,

µ
α
pIi = (1− qSi )p

S
i + (1− qAi )p

A
i .

(3)

Letting βA = ξβ, combining (3) with pSi + pAi + pIi = 1, the infection probability of node i in the
stationary state can numerically be computed by solving

pIi =
M + αη(1 − α)(1 − qSi )

M + αµ(1 − qAi ) + (1− α)[µ(η + θi) + αη(1 − qSi )]
, (4)

where M = α(1 − qAi )[(1 − α)θi + α(1− qSi )]. Thus, the infection density ρI can be computed as

ρI =
1

N

N
∑

i=1

pIi . (5)

In a multiplex network with two layers, the topology of each layer is different. For instance, the contact
layer of a two-layer BA scale-free network has a power-law degree distribution, and the information layer
is the same network with some extra random links. We perform the numerical simulations in a two-
layer ER network with network size N = 500 and a two-layer BA network with network size N = 1000,
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Figure 3 (Color online) Comparison of the infection densities ρI obtained by the SAIS model and Monte Carlo simulations as a

function of the infection rate β in (a) a two-layer ER network (N = 500) and (b) a two-layer BA scale-free network (N = 1000),

respectively. The result is the average solution of 100 realizations, where α = 0.5, λ = 0.3, µ = 0.6, η = 0.6, ξ = 0.5.

respectively. We find that there is a good agreement between the analytical and simulation results. As
illustrated in Figure 3, the infection density ρI increases with the increase of infection rate β. When
β > βc, the so-called epidemic threshold, the epidemic outbreaks and the infection density ρI > 0.

When β → βc, the probability 0 6 pIi ≪ 1, Eq. (2) can be further simplified as
{

qAi (t) = 1− ξβ
∑N

j=1 bjip
I
j(t),

qSi (t) = 1− β
∑N

j=1 bjip
I
j (t).

(6)

Letting φi = pIi , combining (3) with (6) and omitting the second-order terms of φ, we obtain

µ

αβ
φi = (1− (1− ξ)pAi )

N
∑

j=1

bjiφj . (7)

Considering that θi is proportional to the sum of pIj , we obtain 0 6 pAi ≪ 1. Then, Eq. (7) can be
reduced to

N
∑

j=1

[

bji −
µ

αβ
ǫji

]

φj = 0, (8)

where ǫji is the element of the identity matrix. Eq. (8) has non-trivial solutions if and only if µ
αβ

is the
eigenvalue of adjacency matrix B. Therefore, we obtain the epidemic threshold

βc =
µ

α∆max(B)
, (9)

where ∆max(B) is the largest eigenvalue of matrix B. Obviously, the epidemic threshold βc depends on
the structure of contact layer B and the strength coefficient α.

Figure 4 illustrates the impacts of strength coefficient α on the epidemic threshold βc. We find that
the epidemic threshold decreases with the increase of α, regardless of the network topology. Moreover,
the epidemic threshold calculated by (9) is in agreement with the one obtained by the MC simulations
in a two-layer ER network and a two-layer BA scale-free network, respectively.

Figure 5 shows that the infection density ρI depends not only on the network size N but also on the
infection rate β. For a two-layer ER network (see Figure 5(a)), when the network size and the infection
rate exceed a certain value (N > 100, β > 0.7), both the network size N and infection rate β will no
longer affect the infection density ρI . For a two-layer BA scale-free network, the network size N affects
the infection density ρI only when the infection rate β < 0.3. When β > 0.3, the infection density ρI

only depends on β.
In order to reveal the role of behavioral response of the alert individuals, we investigate the impact of

coefficient ξ on the propagation dynamics. As illustrated in Figure 5(c), ξ does not affect the epidemic
threshold βc, but affects the infection density ρI . Moreover, we find that the impact of ξ on the infection
density ρI is various in different ranges of ξ. When ξ > 0.3, the ξ will not affect the infection density ρI .
The infection density is greatly reduced when ξ → 0, where all the alert individuals are immune to the
infection, as the assumption in [38]. However, individuals with risk information do not necessarily choose
vaccination in reality.
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Figure 4 (Color online) Epidemic threshold βc as a function of the strength coefficient α in (a) a two-layer ER network with

N = 200 in each layer and (b) a two-layer BA scale-free network with N = 500 in each layer, respectively. Parameters µ = 0.1,
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Figure 5 (Color online) Infection density ρI as a function of the infection rate β in multiplex networks with different N , where

each layer is (a) an ER network and (b) a BA scale-free network, respectively. The strength coefficient α = 0.5. (c) The impacts

of coefficient ξ on the infection density ρI and epidemic threshold βc.

4 Evolutionary vaccination game

For a network with two layers, although different layers represent social interactions at different contexts,
the strategic choices of an individual in one layer may affect that in the other layer. For simplicity, we
assume that each node and its counterpart node (which are the same node in different layers) have the
same strategy during the same stage.

The decision of an individual may be affected by many factors owing to the infection interactions. We
consider that there exists a communication cost T since risk information diffuses in the information layer.
In order to promote vaccination, we assume that the unvaccinated individuals have the communication
cost (1−α

α
)λT , which is negatively correlated with the strength coefficient α and individual sensitivity λ.

An individual choosing vaccination only has the vaccination cost C. Vaccination is completely effective
so that a vaccinated individual can fully protect himself and does not participate in the information-
epidemic process [39]. In addition to the communication cost, a non-vaccinated individual being infected
has the infection cost H . Since the strategy of an individual acts on both layers, the cost of an individual
is determined by the total costs of two layers. The cost of an individual i in a two-layer coupled network
is therefore denoted by

Ui = Cms +

[

Hvi +

(

1− α

α

)λ

T

]

(1−ms), (10)

where coefficient ms = 1 if individual i chooses vaccination, otherwise, ms = 0, and vi = 1 or 0 indicates
whether individual i is infected or not. Without loss of generality, we assume that the cost C of a
vaccinated individual is less than the cost H .

We define the proportion of individuals who choose vaccination as vaccination density, denoted by x.
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Figure 6 (Color online) The fraction of infected individuals ρI and social cost Esc (inset) as a function of the vaccination density

x with different strength coefficients α in (a) a two-layer ER network (N = 100) and (b) a two-layer BA network (N = 500),

respectively. Parameters: β = 0.3, µ = 0.1, η = 0.6, C = 0.4, T = 0.1 and ξ = 0.5.

The infection rate becomes (1− x)β during the epidemic season [40]. The infection density

ρI(x) =
1

N

N
∑

i=1

pIi (x), (11)

where pIi (x) is the infection probability for node i in the stationary state, which can be obtained in
Section 3. The social cost of a multiplex network with N nodes is

Esc = N

[

xC +

[

(

H +
(

1−α
α

)λ
T
)

ρI (x)
1−x

+
(

1−α
α

)λ
(

1− ρI (x)
1−x

)

T

]

(1− x)

]

= N
[(

C −
(

1−α
α

)λ
T
)

x+HρI(x) +
(

1−α
α

)λ
T
]

.

(12)

We study the vaccination dynamics and predict vaccination behavior of individuals through pairwise
interactions in a two-layer coupled network. Once the spreading process in this season ends, each individ-
ual updates his strategy for the next epidemic season. We adopt the Fermi rule [41, 42] for the strategy
updating. At each round, individual i randomly selects a neighbour j in the information layer, compares
their costs, and learns the strategy of individual j with the probability,

w(Si←Sj) =
kai
ki

1

1 + exp[−κ(Uj − Ui)]
, (13)

where ki is the degree of individual i, and kai is the number of alert neighbours of individual i. Si and
Ui represent the strategy and the cost of individual i, respectively. Parameter κ represents the selection
intensity, measuring how much the selection depends on the cost difference.

5 Vaccination performance and role analysis of information

In order to study the vaccination performance in epidemic control, we consider that a proportion x of
individuals chooses to be vaccinated in a two-layer ER network and a two-layer BA network, respectively,
and explore the impacts of vaccination on the fraction of infected individuals ρI and social cost Esc.

As illustrated in Figure 6, the fraction of infected individuals ρI , as well as social cost Esc, under a
smaller strength coefficient α is less than those under a larger strength coefficients α. That is, for a fixed
vaccination density x, as the information transmission increases, the fraction of infected individuals ρI

and social cost Esc decrease, which is consistent with the finding in Section 3. Furthermore, the fraction of
infected individuals ρI and social cost Esc decrease with the increase of vaccination density x, regardless
of the network topology. Therefore, we conclude that the increase of vaccination density can effectively
reduce the epidemic size and social cost, and help to control the spreading of epidemics.
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Figure 7 (Color online) (a) and (c) the vaccination density x and social cost Esc (inset), (b) and (d) the fractions of infected

individuals ρI and alert individuals ρA (inset) as a function of time t under different strength coefficients α in a two-layer ER

network. Parameters: N = 100, µ = 0.1, β = 0.3, η = 0.6, λ = 0.3, T = 0.1 and ξ = 0.5. (a) and (b): C = 0.1, (c) and (d):

C = 0.6.

How to promote vaccination motivates us to explore the impact factors of vaccination. We first compare
the vaccination density x under different strength coefficients α to determine the effect of information
dissemination intensity on the vaccination decision-making. Simulations are performed in a two-layer ER
network and a two-layer BA scale-free network, respectively. The initial vaccination density x and the
fraction of infected individuals ρI are set to 0.1 and 0.2, respectively. As illustrated in Figures 7(a) and (c),
in a two-layer ER network, vaccination density x increases with the decrease of strength coefficient α at
the early stage of the system evolution (t < 200). The opposite is true when the system evolution reaches
the steady state, regardless of the vaccination cost C. In terms of the fraction of infected individuals ρI

and social cost Esc, the fraction of infected individuals ρI and social cost Esc under a smaller strength
coefficient α are less than or equal to those under a larger strength coefficient α when the vaccination
cost is smaller (C = 0.1, see Figure 7(b)). When the vaccination cost is larger (C = 0.6, see Figure 7(d)),
the comparative result depends on the stage of the system evolution. We conclude that information
dissemination can promote vaccination and reduce the epidemic size at the early stage of the system
evolution, and the opposite is true when the system evolution reaches the steady state, in the two-layer
ER network.

In a two-layer BA scale-free network, the impacts of information dissemination on vaccination and epi-
demic control are related to the vaccination cost C. Figures 8(a) and (b) show that when the vaccination
cost is smaller (C = 0.1), the results of comparison between the vaccination density x, the fraction of
infected individuals ρI and social cost Esc under different strength coefficients α are similar to those in a
two-layer ER network. Information dissemination helps to improve vaccination density x and reduce the
epidemic size ρI at the early stage of the system evolution. When the vaccination cost is larger (C = 0.6,
see Figure 8(c)), vaccination density x increases with the increase of strength coefficient α, which indi-
cates that information dissemination cannot promote vaccination. In terms of the fraction of infected
individuals ρI , we find that the fraction of infected individuals ρI under a smaller strength coefficient α
is less than that under a larger strength coefficient α at the early stage of the system evolution (t < 200).
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Figure 8 (Color online) (a) and (c) the vaccination density x and social cost Esc (inset), (b) and (d) the fractions of infected

individuals ρI and alert individuals ρA (inset) as a function of time t under different strength coefficients α in a two-layer BA

network. Parameters: N = 500, µ = 0.1, β = 0.3, η = 0.6, λ = 0.3, T = 0.1 and ξ = 0.5. (a) and (b): C = 0.1, (c) and (d):

C = 0.6.

This may be because the fraction of alter individuals ρA under a smaller strength coefficient α is more
than that under a lager strength coefficient α, and some basic protection behavior, such as wearing masks
and washing hands, triggered by information dissemination, can reduce the effective infectivity. In this
case, information dissemination helps to control the epidemics. The opposite is true when the system
evolution reaches the steady state. In summary, the impact of information dissemination on collective
vaccination behavior depends on not only the vaccination cost C and network topology, but also the stage
of the system evolution.

We further explore the effect of sensitivity coefficient λ on vaccination. For the sake of simplicity, we
assume that each individual has the same sensitivity λ to the information. We perform simulations on
a two-layer ER network and a two-layer BA scale-free network, respectively. We find that vaccination
density x increases with the increase of sensitivity coefficient λ at the early stage of the system evolution
(t < 200) in a two-layer ER network (see Figures 9(a) and (c)). The opposite is true when the system
evolution reaches the steady state, regardless of the vaccination cost C. That is, information dissemination
contributes to improving vaccination density x and reducing the epidemic size ρI at the early stage of the
system evolution. In a two-layer BA scale-free network, vaccination density x increases with the decrease
of sensitivity coefficient λ when the vaccination cost is larger (C = 0.6, see Figure 10(c)). In this case,
increased individual sensitivity to information does not promote vaccination.

Above all, we conclude that the impact of information dissemination on individual vaccination behavior
depends on not only the vaccination cost C and network topology, but also the stage of the system
evolution. In a two-layer ER network, information dissemination helps to improve vaccination density
and reduce the epidemic size at the early stage of the system evolution. The opposite is true when the
system evolution reaches the steady state, regardless of the vaccination cost C. In a two-layer BA scale-
free network, information dissemination can promote vaccination only at the early stage of the system
evolution, as well as when the vaccination cost is smaller. When the vaccination cost is larger, vaccination
density decreases with the increase of information dissemination.
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Figure 9 (Color online) (a) and (c) the vaccination density x, (b) and (d) the fractions of infected individuals ρI and alert

individuals ρA (inset) as a function of time t under different sensitivity coefficients λ in a two-layer ER network. Parameters:

N = 100, β = 0.3, µ = 0.1, η = 0.6, α = 0.5, T = 0.1, ξ = 0.5, κ = 20. (a) and (b): C = 0.1 (c) and (d): C = 0.6.
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Figure 10 (Color online) (a) and (c) the vaccination density x, (b) and (d) the fractions of infected individuals ρI and alert

individuals ρA (inset) as a function of time t under different sensitivity coefficients λ in a two-layer BA network. Parameters:

N = 500, β = 0.3, µ = 0.1, α = 0.5, η = 0.6, T = 0.1, ξ = 0.5, κ = 20. (a) and (b): C = 0.1, (c) and (d): C = 0.6.
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6 Conclusion

Individuals behavioral responses to information dissemination determine the influence of information on
epidemic control. Taking into account the complexity of decision-making of individuals in vaccination, we
have presented an evolutionary vaccination game model by incorporating the information-epidemic prop-
agation process into the vaccination dynamics, and explored the influence of information dissemination
on vaccination. We find that the impact of information dissemination on vaccination decision-making
depends on not only the vaccination cost and network topology, but also the stage of the system evo-
lution. In a two-layer ER network, information dissemination helps to improve vaccination density and
reduce the epidemic size at the early stage of the system evolution, and the opposite is true when the
system evolution reaches the steady state. Compared with a two-layer ER network, the same result can
be obtained in a two-layer BA network when the vaccination cost is smaller, and information dissemina-
tion cannot promote vaccination when the vaccination cost is larger. Since information dissemination is
inevitable during the epidemic, the correlation between information dissemination and vaccination may
provide a guidance for the authorities to implement information regulation for epidemic control. However,
the stochastic fluctuations that lead to the extinction of infection in finite networks [43] have not been
considered in this paper, which may be of interest in multiplex vaccination games in the future.
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