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Abstract Cross-modal retrieval (CMR) aims to retrieve the instances of a specific modality that are relevant

to a given query from another modality, which has drawn much attention because of its importance in bridging

vision with language. A key to the success of CMR is to learn more discriminative and robust representations

for both visual and textual instances to further reduce the heterogeneous discrepancy existing in different

modalities. In this paper, we address this challenging issue by proposing a heterogeneous memory enhanced

graph reasoning network, named HMGR, to connect the semantic correlations between vision and language.

On the one hand, we design a novel dual-path network architecture to generate relationship enhanced global

representations by employing modality-specific graph reasoning on extracted local features for each instance.

In this way, the topological interdependencies of both visual and textual intra-instance local fragments are

fully mined to achieve a deeper semantic understanding of the relationships between them. On the other hand,

we focus on utilizing inter-instance semantic correlated knowledge to enhance the discriminability of the final

learned representations, which is achieved by introducing a joint heterogeneous memory network to iteratively

restore both visual and textual instance-level information. Through interacting with long-term contextual

multimodal knowledge, an encouraging shared latent feature space for mitigating the heterogeneous gap across

different modalities can be learned. Extensive experiments under both image-text retrieval and video-text

retrieval scenarios on three benchmark datasets demonstrate the effectiveness of our proposed method.
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1 Introduction

With the explosive growth of multimedia data from social media and the Internet, cross-modal retrieval
(CMR) [1–3] has become an interesting and fascinating research topic in recent years. Such a task aims
at retrieving the instances of a specific modality that are relevant to a given query from another modality.
Compared with traditional unimodal retrieval systems [4,5], the key challenge in cross-modal retrieval is
to bridge the inherent heterogeneous gap resided in different modalities by fully exploiting the multimodal
discriminative information.

In recent decades, a surge of deep learning based approaches [6–9] have been proposed to alleviate this
problem and have made encouraging progress. Early studies [10–12] attempted to map the visual data
(e.g., images or videos) and textual data (e.g., sentences) into a shared latent feature space so that the
representations from different modalities can be directly compared with each other. For example, Kiros
et al. [12] designed a convolution neural network (CNN) encoder and a recurrent neural network (RNN)
encoder to extract the features for image and text respectively. However, such a one-to-one matching
scheme neglects the fine-grained details (e.g., image regions and textual words) that reflect different
semantic significance when depicting the whole visual or textual instance. Thus this coarse-grained
representation embedding strategy cannot fully exploit the intra-modal and inter-modal correlations to
learn discriminative representations, so as to limit the retrieval performance.
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Figure 1 (Color online) Illustration about the distinction of the semantic relevance among different words or visual objects, where

the solid line represents a strong correlation between the two entities and the dotted line represents a weak correlation between

them.

To mitigate this issue, a rich line of recent researches [8,13] focuses on learning local fragment features
to achieve a many-to-many matching scheme. A straightforward approach is to obtain a cross-modal
measurement by aggregating the similarities of all possible pairs between local fragments from both
modalities. For example, Karpathy et al. [6] developed a unified deep model to infer the latent alignment
between sentence segments and implicit local regions of an image that they depict. Lee et al. [8] proposed
a stacked cross-modal attention mechanism to measure the image-text similarity by aligning fragments
with all fragments from another modality. Such a many-to-many matching paradigm has made favorable
improvement in cross-modal retrieval.

However, few of these methods pay enough attention to the robustness and discriminability of the
learned features resided in individual modalities. On the one hand, the semantic relationship among
intra-instance local fragments (e.g., object-object relationship in an image and word-word relationship in
a sentence) always plays a key role in understanding the whole visual or textual instance. As illustrated
in Figure 1, taking the caption “A boy sitting in front of a table eating a cookie” for an example, the
semantic relevance of the pair “boy, eating” and the pair “table, eating” is apparently distinct. The same
circumstance occurs in a given image, where the relationship among different visual semantic concepts
is also different. However, few efforts have been devoted to mining such fine-grained intra-instance
correspondences. On the other hand, most of the existing methods generally learn the representations
of visual instance and textual instance relying on pair-wise multimodal data, and thereby the inter-
instance information is always neglected during the learning process, which includes samples sharing
similar semantic content from the same modality and semantic partly-correlated but labeled as unmatched
entities from another modality. As a result, the learned features are not discriminative enough. Such
a drawback leads to poor retrieval performance especially when encountering rarely appearing visual
contents or textual contents for lacking sufficient context information.

Based on the above observations, in this paper, we propose a heterogeneous memory enhanced graph
reasoning network (HMGR) for cross-modal retrieval. Firstly, we design a novel dual-path network archi-
tecture to generate context-aware global representations by employing modality-specific graph reasoning
on extracted local features. In this way, the intra-instance correlations are effectively mined. Secondly,
inspired by the long-term memorability of memory networks, we introduce an external heterogeneous
memory to integrate the inter-instance information during the representation learning process. Specif-
ically, at every input time step, we first read from the memory items to obtain the memory enhanced
visual and textual representations by leveraging the prior inter-instance information, and then we write
new information to the memory contents based on the current input multimodal knowledge. With the
reading and writing operations implemented on external memory contents, the inter-instance information
is leveraged to learn more discriminative features. The theoretical difference of memory-enhanced cross-
modal matching structure with traditional one-to-one matching and many-to-many matching systems is
illustrated in Figure 2.

The framework of our proposed HMGR approach is illustrated in Figure 3, and the main contributions
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Figure 2 (Color online) Illustration about the distinction between the memory-enhanced cross-modal matching scheme with

traditional (a) one-to-one and (b) many-to-many matching methods. (c) The memory-enhanced matching model can utilize inter-

instance information to enhance the discriminability of the learned representations.

of this paper are highlighted as follows.
(1) We propose a simple and interpretable dual-path graph reasoning network, which generates rela-

tionship enhanced visual and textual representations by exploiting the fine-grained semantic correlations
among vision-vision elements and language-language elements.

(2) We integrate a joint heterogeneous memory network to a unified visual semantic embedding model.
Through the reading and writing operations on external memory contents, inter-instance knowledge is
utilized as side information to learn more discriminative features.

(3) Extensive experiments are conducted under two cross-modal retrieval scenarios including image-
text retrieval and video-text retrieval. Our proposed method achieves state-of-the-art performance on
three benchmark datasets, demonstrating the effectiveness of the proposed method.

2 Related work

Our work is related to several research topics including cross-modal retrieval, graph reasoning and memory
networks. In this section, we briefly review the differences and connections between our work with some
recent encouraging methods.

2.1 Cross-modal retrieval

According to the global or local perspective when depicting the visual and textual instance, the current
mainstream approaches for cross-modal retrieval can be roughly divided into two categories:
(1) one-to-one matching methods and (2) many-to-many matching methods. One-to-one matching meth-
ods attempt to directly map the image/video and sentence into a shared latent feature space for similarity
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Figure 3 (Color online) The overall framework of our heterogeneous memory enhanced graph reasoning network, which consists

of three parts: (a) feature extraction to extract local features of each visual and textual instance, (b) dual-path graph reason-

ing module to generate global representations by capturing the fine-grained correlations between intra-instance fragments, and

(c) memory-enhanced representation learning to obtain more discriminative features by exploiting the inter-instance information.

measurement. For example, Kiros et al. [12] extracted the global representations for images and captions
with CNN encoder and RNN encoder respectively, and then applied hinge-based triplet ranking loss to
align these heterogeneous data. Based on their study, Faghri et al. [7] refined the ranking loss func-
tion with hard negatives mining and boosted the retrieval performance significantly. Mithun et al. [14]
constructed a joint representation embedding structure that encodes the video with multimodal cues
such as image, motion and audio features. To measure the similarity of image/video and sentence more
accurately, recently lots of many-to-many matching methods proposed to capture the fine-grained re-
lationships between visual fragments and textual words. Karpathy et al. [6] simply aggregated all the
local similarities of visual fragments and textual fragments to infer the final similarity measurement of
the whole image and text. Further, Lee et al. [8] utilized faster R-CNN to extract object features of
an image and proposed a stacked cross-attention network (SCAN) to align image objects with sentence
words. To address the polysemous phenomenon existing in video-text retrieval scenario, Song et al. [15]
learned multiple representations based on multi-head self attention mechanism for each visual and textual
instance by incorporating local features with global features.

2.2 Graph reasoning

Graph reasoning has gradually been shown to be an effective way of relational reasoning in many computer
vision tasks. Recently, various graph convolution network (GCN) based refined methods has been pro-
posed, such as gated graph neural networks (GGNN) [16], dynamic graph neural networks (DGNN) [17]
and graph attention networks (GAT) [18]. The most relevant technique to our work is GAT [18], which
was proposed to refine nodes’ representations by dynamically attending over neighborhoods’ features.
Graph reasoning has also been widely employed in many multi-modal networks. For example, Li et
al. [19] applied it to generate representations that capture key objects and semantic concepts of a scene.
In this study, we design a dual-path graph reasoning network to exploit the intra-instance semantic
relationship among vision-vision elements and language-language elements.

2.3 Memory networks

Memory networks have achieved great progress and successful application in several domains of artificial
intelligence. As one of the pioneering approaches, Graves et al. [20] proposed the neural Turing machines
to mimic the computer memory paradigm. Sukhbaatar et al. [21] integrated the external memory with
a recurrent attention model and the network is trained end-to-end. In view of multi-modal networks,
Xiong et al. [22] developed a dynamic memory network for visual and textual question answering. To
address video question answering, Fan et al. [23] designed a heterogeneous memory to learn global context
information from appearance and motion features of videos. Ref. [24] was the most closely related research
to ours, which also applied memory network in cross-modal retrieval. They focused on preserving the
fine-grained multimodal clews (e.g., visual objects and textual words) directly in their memory network
and updated the memory contents alternatively by them. Differently, in this paper we address to leverage
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memory network to preserve the instance-level information and update our memory contents by applying
a gated fusion operation on multimodal representations, which is more efficient.

3 Approach

Figure 3 illustrates the overall framework of our heterogeneous memory enhanced graph reasoning network
(HMGR). It has three sub-modules: features extraction, dual-path graph reasoning and memory-enhanced
representation learning. In the following, we will elaborate on each part in detail and introduce our
deployed objective function.

3.1 Features extraction

Image feature extraction. Given an image I, following [8,25], we aim to detect k salient objects O =
{o1,o2, . . . ,ok}. Specifically, we utilize faster R-CNN model with ResNet-101 as backbone pretrained on
Visual Genorme dataset, then feed these regional features into a fully-connected layer to obtain the final
D-dimensional feature vectors V = {vi}

k
i=1 ∈ R

k×D:

vi = Wooi + bo. (1)

Video feature extraction. As for video, we follow [15] to regard the averagely sampled T frames
F = {f1,f2, . . . ,fT } of a video as its local fragments, and then employ Resnet-152 pretrained on Imagenet
as the backbone to encode these local features. We take the final output 2048-dim vector of the mean
pooling layer as the frame representations. Similar to image encoder, a fully-connected layer is adopted
to transform them into a D-dimensional space:

vi = Wf fi + bf . (2)

Sentence feature extraction. BERT (bidirectional encoder representations from transformers) [26]
is a popular language understanding model that has achieved state-of-the-art results on plenty of down-
stream NLP tasks. Inspired by the huge success of BERT, in this study, we utilize a BERT-base model
pretrained on a large text corpus (Wikipedia) to extract 768-dimensional word-level representations for
each sentence. We then feed them into one fully-connected layer to get the final D-dimensional vectors:
T = {ti}

n
i=1 ∈ R

n×D, where n is the number of words in sentence.

3.2 Dual-path graph reasoning module

After obtaining the local fragment representations of visual data and textual data, we aim to leverage
the intra-modal semantic correlations contained in them to improve the modality-specific representations.
Next, we take the visual features {v1,v2, . . . ,vk} as examples to describe our deployed graph reasoning
module. We omit the same operation carried out on textual word features for simplicity.

Graph construction. By regarding all the visual local fragments {v1,v2, . . . ,vk} as vertexes, we
construct an undirected fully-connected graph G = (V , E), as shown in Figure 3(b). And we define
the adjacency matrix of the dynamic graph according to the semantic correlations of different nodes:
Ãi,j = vi · vj . Considering that each element in matrix A should be non-negative, we then perform
normalization along each row of matrix A as follows:

Ai,j =
Ã2

i,j∑k
j=1 Ã

2
i,j

. (3)

Afterwards, an identity matrix I ∈ R
k×k is added to address the self-loop relationships of nodes, and

then the final adjacency matrix is defined as Â = A+ I.

Graph reasoning network. In graph reasoning network, the self-attention operation is firstly per-
formed on the nodes. We compute attention coefficients that indicate the significance of node i on node
j as

êi,j = Wϕvi ·Wφvj . (4)
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In order to make coefficients of different nodes can be compared directly, a softmax layer is utilized to
normalize ei,j across all candidates of j:

ei,j =
exp(êi,j)∑

j∈Ni
exp(êi,j)

, (5)

where Ni is the neighborhood nodes number of node i, and then node i is represented as the weighted sum
of all other corresponding nodes’ feature representation based on the normalized attention coefficients
in (5):

v∗
i =

∑

j∈Ni

ei,jvj . (6)

Finally, we apply a multi-layer graph convolution on the newly transformed graph G∗ = (V ∗, E∗) to
further learn reasonable embeddings with residual connection. The network’s response at node i takes
every neighborhood nodes defined by graph correlations into consideration:

H(l+1) = Wr(σ(D
−1/2ÂD−1/2H(l)Wl)) +H(l), (7)

where H(l) denotes the l-th layer output of GCN, H(0) = V ∗, D is the diagonal degree matrix and
Di,i =

∑
j Âi,j , Wl is the learnable weight matrix of GCN with dimension of D ×D, Wr is the weight

parameter for residual connection, σ represents activation function, e.g., Relu function.

Modality-specific global representations. We take the last layer output of GCN Hv =
{
hi
v

}k

i=1
∈

R
k×D as the final relationship enhanced visual local fragment features. Similarly, we can get the relation-

ship enhanced sentence words representations Ht =
{
hi
t

}n

i=1
∈ R

n×D. Next, a simple average pooling
layer and L2-normalization are added to aggregate these local fragments into a final global representation:

vg =

∥∥∥∥∥
1

k

k∑

i=1

hi
v

∥∥∥∥∥
2

. (8)

As for sentence, we apply a convolutional neural network to aggregate local context information.
Concretely, three different sizes of kernels (1 × D, 2 × D, 3 × D) are carried out separately to capture
phrase level information, and then Max pooling is conducted across all the words to reduce redundancy.
Finally the three output vectors are concatenated and fed into a linear mapping layer to acquire the final
sentence representation. This process is expressed as

ps,i = relu(Wsh
i:i+s−1
t + bs), s ∈ {1, 2, 3} , (9)

qs = max {ps,1, . . . , ps,n} , (10)

tg = ‖Weconcat(q1, q2, q3) + be‖2, (11)

where We ∈ R
D×3D and be ∈ R

D are learnable weight matrix and bias of the linear layer, tg is the final
sentence representation.

3.3 Memory-enhanced representation learning

Although the above graph reasoning module effectively learns the instance global representation by ex-
ploiting the intra-modal semantic correlations, it still only pays attention to the information contained
in pairwise instances. In this subsection, we introduce how to take advantage of the external common
knowledge to enhance the modality-specific representations, which is achieved by employing the memory
network to restore both visual and textual instance-level information via multi-step iterative reasoning.
Then through the content-based addressing mechanism, memory-enhanced visual and textual represen-
tations are obtained by reading from heterogeneous memory slots. The implementation details are as
follows.

Reading. At every input time step, we review the previous learned instance-level semantic knowledge
preserved in heterogeneous memory to obtain a more discriminative representation. We first feed vg and
tg into a fully-connected layer to generate two modality-specific read heads vr and tr. To determine how
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and which memory cell to read from, firstly, we apply a content-based addressing mechanism to calculate
the soft attention weights for each individual row in memory slots based on the read head:

wi
r,v =

exp(vr ·M
i
t−1)∑N

i=1 exp(vr ·M i
t−1)

, (12)

wi
r,t =

exp(tr ·M
i
t−1)∑N

i=1 exp(tr ·M
i
t−1)

. (13)

Then the memory-enhanced representation is defined as the convex combination of every memory slot
vm =

∑N
i=1 w

i
r,vM

i
t−1. Similarly, we get textual memory-enhanced representation tm =

∑N
i=1 w

i
r,tM

i
t−1.

Writing. Since the memory’s volume (memory size) is limited, at the t-th input time, it is required
to selectively delete the previous information and write new information to the memory. Specifically, we
first implement gated fusion strategy on vg and tg to combine the currently input visual and textual
knowledge into one vector fg, and then feed fg into a fully-connected layer to generate 3 M-dimensional
vectors w, e,a as the write head, erase vector and add vector, respectively. The diagrammatic view of
reading and writing operation on memory network is illustrated in Figure 4.

fg = g ∗ vg + (1− g) ∗ tg,

g = sigmoid (Wgcat (vg, tg) + bg) ,
(14)

where ∗ is an element-wise product operation.
Giving an erase vector e and an add vector a emitted by controller network, we first regularize e by

e = sigmoid(e) to [0, 1], whose k-th element means the extent of the k-th dimension in Mt would be
erased, and then the M -length vector a is added to each memory location modified by writing weights
as follows:

M i
t = M i−1

t (1− wi
we) + wi

wa. (15)

The writing weights for every memory unit are calculated as

wi
w =

exp(w ·M i
t−1)∑N

i=1 exp(w ·M i
t−1)

. (16)

It is worthy to claim that the memory reading and writing operation carried out on video-text retrieval
task is similar with the operation performed on image-text retrieval task. The difference between the
two tasks lies on the different extracted local features for images and videos. For a given image, we
extract salient objects as local fragment features, while for videos, we extract key frames to capture
the temporal-level information. Considering some recent studies for CMR are also built upon graph
reasoning and memory networks, here we make some comparisons with these existing methods for a clear
understanding of this domain. Most of the existing GCN-based methods either apply graph reasoning
to capture the connections of features within individual modalities [19], or formulate the visual-semantic
matching task as a scene graph matching problem relying on additional parsing toolkit [27]. Compared
with them, we employ graph reasoning in conjunction with attention mechanisms on both visual and
textual modality to acquire the instance-level global representations. In this way, the correlations of
intra-instance fragment features are effectively mined to better align the information from two modalities.
To address the long-tail distribution of multimodal data, Refs. [24, 28] also resorted to memory network
for cross-modal retrieval, while they directly utilize the fragment-level features (image regions and textual
words) as interaction knowledge, which lacks the global understanding of such intra-instance features and
leads to inefficient cross-modal retrieval.

3.4 Optimization

As illustrated in Figure 3, our model outputs two pairs of embeddings for each instance pair, i.e., (vg, tg)
and (vm, tm). It is optimized by deploying the following objective function:

L = max[0,∆− s(V, T ) + s(V, T̂ )] + max[0,∆− s(V, T ) + s(V̂ , T )], (17)

where L denotes the triplet ranking loss with hard negative mining, which is widely used in many
cross-modal retrieval systems to encourage the similarity scores of positive pairs larger than negative
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Figure 4 (Color online) Illustration about the (a) reading and (b) writing mechanism operated on external heterogeneous memory

network.

ones’. (V̂ , T̂ ) denotes hard negative instances in a mini-batch. s is the similarity score for visual data V

and sentence T , which is calculated by sg = [cos(vg, tg) + cos(vm, tm)]/2, where cos denotes the cosine
similarity measurement, and ∆ is the margin for triplet ranking loss.

4 Experiments

We conduct two groups of experiments on two cross-modal retrieval tasks, which include image-text
retrieval and video-text retrieval to demonstrate the effectiveness of our proposed HMGR. For image-text
retrieval, two benchmark datasets, i.e., Flickr30K and MS-COCO datasets, are used to testify our model.
For video-text retrieval, we use the TGIF dataset to compare our performance with state-of-the-art
methods.

4.1 Datasets and implementation details

Datasets. MSCOCO contains 123287 images, and each image is annotated with 5 sentences. Follow-
ing [8], we split the dataset 113287 images for training, 5000 images for validation and 5000 images for
testing. We report the evaluation results by averaging over 5-folds of 1K testing images and the whole 5K
testing images. Flickr30K consists of 31783 images and each image is associated with 5 text descriptions.
We adopt the same split in [6], where both 1000 images for validation and testing, and the rest 29000
images for training. TGIF dataset is used to evaluate retrieval performance for video-text matching, and
following [15], the dataset is split into 80K training videos, 10708 validation videos and 34101 testing
videos, all the videos annotated with one caption.

Implementation details. We implement all our experiments in PyTorch toolkit with a single
NVIDIA GeForce RTX 2080ti GPU. For image feature extraction, we select 36 salient objects for each
image as local fragment features, whose dimensionality is 2048-dim. For videos, we averagely subsample
8 frames spread across each video as local features. As for the textual data, we use the BERT model
pretrained by [26] to represent each word token into a 768-dim vector. Note that the weights of all feature
extraction models are fixed during training procedure, and we update the network’s rest trainable pa-
rameters by adopting Adam optimizer with batch size 128 for image-text retrieval and 32 for video-text
retrieval. We train our model on all three datasets for 30 epochs, where the learning rate is set 0.0001
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Table 1 Image-text retrieval results on Flickr30K testing set in terms of Recall@K (R@K)

Method Image-backbone Text-backbone
Text retrieval Image retrieval

mR
R@1 R@5 R@10 R@1 R@5 R@10

m-CNN [11] VGG-19 CNN 33.6 64.1 74.9 26.2 56.3 69.6 54.1

VSE++ [7] ResNet-152 GRU 52.9 79.1 87.2 39.6 69.6 79.5 68.0

TIMAM [29] ResNet-152 Bert 53.1 78.8 87.6 42.6 71.6 81.9 69.3

SCO [30] ResNet-152 LSTM 55.5 82.0 89.3 41.1 70.5 80.1 69.8

SCAN [8] Faster R-CNN Bi-GRU 67.4 90.3 95.8 48.6 77.7 85.2 77.5

CAMP [31] Faster R-CNN Bi-GRU 68.1 89.7 95.2 51.5 77.1 85.3 77.8

SAEM [32] Faster R-CNN Bert 69.1 91.0 95.1 52.4 81.1 88.1 79.5

ACMM [24] Faster R-CNN Bi-GRU 80.0 95.5 98.2 50.2 76.8 84.7 80.9

MMCA [13] Faster R-CNN Bert 74.2 92.8 96.4 54.8 81.4 87.8 81.2

GSMN [27] Faster R-CNN Bi-GRU 76.4 94.3 97.3 57.4 82.3 89.0 82.8

HMGR (ours) Faster R-CNN Bert 78.4 94.2 97.9 60.0 86.2 91.7 84.7

Table 2 Image-text retrieval results on MSCOCO testing 1K set in terms of Recall@K (R@K)

Method Image-backbone Text-backbone
Text retrieval Image retrieval

mR
R@1 R@5 R@10 R@1 R@5 R@10

m-CNN [11] VGG-19 CNN 42.8 73.1 84.1 32.6 68.6 82.8 64.0

VSE++ [7] ResNet-152 GRU 64.7 – 95.9 52.0 – 92.0 –

SCO [30] ResNet-152 LSTM 69.9 92.9 97.5 56.7 87.5 94.8 83.2

SCAN [8] Faster R-CNN Bi-GRU 72.7 94.8 98.4 58.8 88.4 94.8 83.6

CAMP [31] Faster R-CNN Bi-GRU 72.3 94.8 98.3 58.5 87.9 95.0 84.5

SAEM [32] Faster R-CNN Bert 71.2 94.1 97.7 57.8 88.6 94.9 84.5

MMCA [13] Faster R-CNN Bert 74.8 95.6 97.7 61.6 89.8 95.2 85.8

ACMM [24] Faster R-CNN Bi-GRU 81.9 98.0 99.3 58.2 87.3 93.9 86.4

GSMN [27] Faster R-CNN Bi-GRU 78.4 96.4 98.6 63.3 90.1 95.7 87.1

HMGR (ours) Faster R-CNN Bert 81.8 96.5 99.0 67.5 92.2 96.3 88.9

for the first 15 epochs and 0.00001 for another 15 epochs. The margin delta in triplet ranking loss is set
to 0.2. The dimensionality of the final transformed joint embedding space D is set to 1024, and the sizes
of memory matrices M and N are set to 256 and 1024, respectively.

4.2 Evaluation metrics

Following previous study, we employ the recall at K (R@K, K = 1, 5, 10) as the evaluation metric,
which describes the fraction of ground truth instance being retrieved at top 1, 5, 10 results. Additionally,
the average recall rate “mR” is also used to testify the overall retrieval performance. The performance
results of the selected approaches are all from the original papers.

4.3 The performance of image-text retrieval

Tables 1–3 [29–34] depict the quantitative retrieval results on Flickr30K, MS-COCO 1K and 5K testing
sets, respectively. We observe that our model achieves promising performance with respect to all the
evaluation metrics on the two datasets. Concretely, it brings about 1.9%, 1.8% and 2.9% gains for “mR”
on Flickr30K, MS-COCO 1K and 5K testing set respectively compared with the previously leading model,
i.e., GSMN, which learns the correspondence of object, relation and attributes through graph structured
matching network. In addition, HMGR has an impressive advantage in image retrieval tasks compared
with its competitions. For example, it outperforms the second best approach GSMN in 2.6%, 3.9%, and
2.7% absolute points on Flickr30K on R@1, R@5, and R@10, respectively. As for the text retrieval task,
ACMM is the best, and this is probably because the fine-grained textual information preserved in their
memory network could provide more exhaustive clews to alleviate the semantic bias for understanding
sentences. Our HMGR also achieves comparable performance.
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Table 3 Image-text retrieval results on MS-COCO testing 5K set in terms of Recall@K (R@K)

Method
Text retrieval Image retrieval

mR
R@1 R@5 R@10 R@1 R@5 R@10

VSE++ [7] 41.3 – 81.2 30.3 – 72.4 –

DPC [33] 41.2 70.5 81.1 25.3 53.4 66.4 56.3

SCAN [8] 50.4 82.2 90.0 38.6 69.3 80.4 68.5

CAMP [31] 50.1 82.1 89.7 39.0 68.9 80.2 68.3

MMCA [13] 54.0 82.5 90.7 38.7 69.7 80.8 69.4

IMRAM [34] 53.7 83.2 91.0 39.7 69.1 79.8 69.4

ACMM [24] 63.5 88.0 93.6 36.7 65.1 76.7 70.6

HMGR (ours) 62.9 87.6 92.2 43.1 72.5 82.9 73.5

Table 4 Video-text retrieval results on TGIF dataset in terms of Recall@K (R@K)

Method
Text retrieval Video retrieval

mR
R@1 R@5 R@10 R@1 R@5 R@10

DeViSE [10] 0.84 3.53 6.02 0.83 3.38 5.99 3.43

VSE++ [7] 0.42 1.63 3.60 0.55 1.89 3.77 1.98

Order [35] 0.51 2.09 3.80 0.48 2.13 3.86 2.15

Corr-AE [36] 0.89 3.41 5.61 0.90 3.48 5.97 3.38

PVSE [15] 2.32 7.49 11.94 2.17 7.76 12.25 7.32

HMGR (ours) 3.57 10.58 15.84 3.53 10.65 15.08 9.88

4.4 The performance of video-text retrieval

Table 4 [35, 36] presents the video-text retrieval results on TGIF dataset. For comparison, we cite the
performance of competitive algorithms reported in PVSE [15]. From Table 4, it can be observed that
our proposed method brings about 1%–3% improvement for R@1, R@5 and R@10 in both videos to text
retrieval and text to video retrieval compared with PVSE [15]. Additionally, it also achieves the best
performance on “mR”, which validates the effectiveness of our proposed method for video-text retrieval.

4.5 Ablation studies and analysis

In this subsection, we perform ablation studies to evaluate the effect of each component in our proposed
HMGR model. Specifically, we define the compared different model settings as follows:

baseline. It indicates we simply take the average over all extracted local fragments features as the
final global representation and without memory-enhanced representation learning module.

baseline+VR. It indicates we add visual graph reasoning module only to obtain global image repre-
sentation.

baseline+TR. It indicates we add textual graph reasoning module only to obtain global sentence
representation.

baseline+VR+TR. It consists of both visual and textual graph reasoning modules to get global
representation.

baseline+mem. This model introduces our memory-enhanced module and just uses the averaged
local features to interact with external memory slots.

HMGR (separate). In this experiment, we devise two separate modality-specific external memory
blocks to preserve the previous input visual and textual knowledge, respectively, which means the final
image memory-enhanced representation learning only utilizes visual inter-instance information and the
final sentence memory-enhanced representation learning only utilizes textual inter-instance information.

Analysis of each component. Table 5 shows the experimental results of different ablation settings on
Flickr30K and TGIF datasets. We observe that the retrieval performance of baseline model degenerates
significantly on both text retrieval and image/video retrieval because we removed our reasoning module
and memory-enhancement module. The retrieval accuracy increases apparently when baseline equipped
with visual or textual or both modality reasoning, which demonstrates the effectiveness of our dual-path
graph reasoning module. Note that baseline+TR performs better than baseline+VR, which is probably
because it is more difficult to capture the correlations between object-object elements than word-word
elements. Besides, we can see the memory-enhanced representation learning is beneficial to the overall
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Table 5 Analysis of each component of our HMGR on Flickr30K and TGIF datasets

Method

Flickr30K dataset TGIF dataset

Text retrieval Image retrieval
mR

Text retrieval Video retrieval
mR

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

baseline 45.7 75.2 84.9 32.0 62.8 73.9 62.4 0.63 3.44 4.76 0.59 2.93 5.64 3.00

baseline+VR 50.1 80.1 87.7 36.6 68.5 79.0 67.0 0.89 5.64 9.37 0.71 4.34 8.92 4.98

baseline+TR 62.8 87.4 93.0 45.1 74.9 82.8 74.3 1.24 6.72 9.89 1.16 5.63 10.46 5.85

baseline+VR+TR 67.9 89.7 94.9 51.7 80.2 87.7 78.7 1.96 7.55 11.27 1.94 6.59 12.37 6.95

baseline+mem 61.4 85.4 91.7 42.6 74.0 82.6 72.9 1.67 7.02 10.96 1.73 6.08 11.84 6.55

HMGR (separate) 72.3 91.4 95.4 53.1 81.4 88.1 80.3 2.46 8.31 12.18 2.32 7.81 13.06 7.69

HMGR 78.4 94.2 97.9 60.0 86.2 91.7 84.7 3.57 10.58 15.84 3.53 10.65 15.08 9.88

Image Text Image Text Image Text(a) (b) (c)

Figure 5 (Color online) t-SNE visualization of distributions of image and sentence at different output steps on MS-COCO testing

sets. (a) Original features; (b) reasoning module output; (c) memory reading output.

retrieval accuracy. Furthermore, the performance improvements achieved by HMGR (separate) model
compared with baseline+VR+TR model demonstrate that it is also effective when we learn the final
memory-enhanced representations through interacting with two modality-specific memories, while the
better results of HMGR verify that more discriminative features can be learned by making full use of the
information of the two modalities together.

4.6 Qualitative results

To give a more comprehensive understanding of the learning process of our heterogeneous memory en-
hanced graph reasoning network, we visualize the distributions of visual feature and textual feature at
every output step in our model with the technique of t-SNE visualization on MS-COCO testing sets.
Specifically, we convert the original features, output features from graph reasoning module and output
features from memory enhanced module to 2-dimensional vectors with PCA, respectively, then plot these
points with different colors in Figure 5 according to which modality they come from. As illustrated in
Figure 5, we can see that after graph reasoning module, the distributions of visual data and textual data
become more consistent. The comparisons between Figure 5(c) with (a) and (b) reveal that after read-
ing from memory network, visual and textual instances achieve better alignment, which demonstrates
that our memory network fully exploits the external joint information to improve the discriminability
of the embedding representations, so as to alleviate the modality heterogeneous gap. Since the graph
reasoning module aims at generating modality-specific global representations that include key semantic
concepts in the scene. To validate this, we visualize the attention assignment of the key regions in a
given image in Figure 6. Specifically, we compute the inner-product similarity between each regional
features V ∗ = {v∗

1 ,v
∗
2 , . . . ,v

∗
k} and image global representation vg as the attention weights and highlight

the regions whose assigned weights are high. From Figure 6, we can observe that the key semantic con-
cepts are well addressed by our model after graph reasoning, e.g., for Figure 6(a), the model attends on
the horses which are reasonable to the ground-truth textual query. Figure 7 illustrates the qualitative
retrieving results from image-text and video-text bidirectional retrieval on MS-COCO and TGIF testing
sets, respectively. For each query item, we list the top-4 ranking instances from another modality. We
can observe that our model performs well under both retrieval tasks, and even the false retrieved results
have partial relation to the queries, which proves that our method can generate general and reasonable
representations over similar local fragments.
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Image Bounding boxes Attention map Image Bounding boxes Attention map

Image Bounding boxes Attention map Image Bounding boxes Attention map

(a) (b)

(c) (d)

Figure 6 (Color online) Visualization of attention weights on image activation maps. Specifically, we compute the inner-product

similarity between regional features V
∗ = {v∗

1
,v∗

2
, . . . ,v∗

k} and image global representation vg as the attention weights. Then

based on the generated attention weights, we visualize the corresponding attended visual information produced by graph reasoning

module. (a) Two horses are looking towards the camera while standing in the woods; (b) a baseball player with one leg kicking up

preparing to throw a ball; (c) a man in a tie is eating a hot dog; (d) a man wearing a hat and necklace made of bananas.
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a young oriental 
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around
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fridge
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(a) (b)

Figure 7 (Color online) Visualization of (a) image-text and (b) video-text bidirectional retrieval on MS-COCO and TGIF datasets.

For each query sample, we show top 4 ranked instances from another modality, where mismatched ones are with red boxes and

matched ones are with green boxes.

5 Conclusion

In this paper, we have proposed a novel heterogeneous memory enhanced graph reasoning network for
cross-modal retrieval. A dual-path graph reasoning module is designed to model the semantic relevance of
the intra-instance fragments to learn modality-specific instance-level representations. We also introduce a
heterogeneous memory network to enhance the discriminability of multimodal features by effectively ex-
ploiting the inter-instance information. Extensive experiments show that our method achieves competing
results both on image-text retrieval and video-text retrieval tasks.
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