
SCIENCE CHINA
Information Sciences

July 2022, Vol. 65 172102:1–172102:18

https://doi.org/10.1007/s11432-020-3193-2

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 info.scichina.com link.springer.com

. RESEARCH PAPER .

SAND: semi-automated adaptive network defense via
programmable rule generation and deployment

Haoyu CHEN1, Deqing ZOU2, Hai JIN1*, Shouhuai XU3 & Bin YUAN2

1National Engineering Research Center for Big Data Technology and System, Services Computing Technology and System Lab,

Cluster and Grid Computing Lab, School of Computer Science and Technology,

Huazhong University of Science and Technology, Wuhan 430074, China;
2National Engineering Research Center for Big Data Technology and System, Services Computing Technology and System Lab,

Hubei Engineering Research Center on Big Data Security, School of Cyber Science and Engineering,

Huazhong University of Science and Technology, Wuhan 430074, China;
3Department of Computer Science, University of Colorado at Colorado Springs, Colorado Springs 80918, USA

Received 29 September 2020/Revised 23 December 2020/Accepted 25 February 2021/Published online 8 February 2022

Abstract Cyber security is dynamic as defenders often need to adapt their defense postures. The state-of-

the-art is that the adaptation of network defense is done manually (i.e., tedious and error-prone). The ideal

solution is to automate adaptive network defense, which is however a difficult problem. As a first step towards

automation, we propose investigating how to attain semi-automated adaptive network defense (SAND). We

propose an approach extending the architecture of software-defined networking, which is centered on providing

defenders with the capability to program the generation and deployment of dynamic defense rules enforced by

network defense tools. We present the design and implementation of SAND, as well as the evaluation of the

prototype implementation. Experimental results show that SAND can achieve agile and effective dynamic

adaptations of defense rules (less than 15 ms on average for each operation), while only incurring a small

performance overhead.

Keywords network defense, adaptive defense, automated defense, programmable defense, security services,

software-defined networking, security management

Citation Chen H Y, Zou D Q, Jin H, et al. SAND: semi-automated adaptive network defense via programmable

rule generation and deployment. Sci China Inf Sci, 2022, 65(7): 172102, https://doi.org/10.1007/s11432-020-3193-2

1 Introduction

The importance of adaptive network defense, or adaptive defense for short, is well recognized because
defenders often need to adapt to dynamic situations, such as updating and enforcing the network security
policy to counter new attacks, assuring the consistence between the dynamic network security policies
enforced by multiple network defense tools (or defense tools or tools for short), and accommodating appli-
cations’ dynamic requirements that may affect the network security policy. In current practice, adaptive
network defense is achieved manually, which is tedious and error-prone and thus calls for automation.
To the best of our knowledge, the automation of adaptive network defense is largely open despite its
importance. This unpleasant situation is in contrast to that host-based defense has been automated to
some extent, such as the automation in installing software patches and updating anti-malware signatures.
In this paper, we make a first step towards achieving automated adaptive network defense.

1.1 Our contributions

We make three contributions. First, we initiate the study on automating adaptive network defense, and
explore the requirements of automated adaptive network defense solutions. To the best of our knowledge,
this is the first systematization on the requirements of automated adaptive network defense. These

*Corresponding author (email: hjin@hust.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-020-3193-2&domain=pdf&date_stamp=2022-2-8
https://doi.org/10.1007/s11432-020-3193-2
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-020-3193-2
https://doi.org/10.1007/s11432-020-3193-2

Chen H Y, et al. Sci China Inf Sci July 2022 Vol. 65 172102:2

requirements would guide future research directions towards fulfilling the ultimate goal of automated
adaptive network defense.

Second, given the difficulty in automating adaptive network defense, we propose investigating semi-
automated adaptive network defense (SAND). We design a SAND architecture, and implement a proto-
type system that accommodates three network defense tools (i.e., iptables1), Snort2), and Squid3)). For
implementing the prototype system, we need to overcome three challenges. (i) How can we accommodate
network defense tools that use heterogeneous, native network defense rules (or defense rules or rules for
short)? We resolve this problem by using a unified rule representation and automating the mapping
(or “translation”) between the rules in the unified representation and the native rules used by network
defense tools. (ii) How should a defender dynamically generate network defense rules? We resolve this
problem by equipping a defender with the capability to write SAND apps to generate network defense
rules. (iii) How should a defender dynamically deploy network defense rules? We resolve this problem by
leveraging the software-defined networking (SDN) technology to automate the deployment of dynamic
defense rules, while noting that leveraging SDN for SAND is economically viable in practice. We will
open source SAND to the community.

Third, we evaluate the SAND prototype system via concrete adaptive defense scenarios. Our experi-
ments show that SAND can effectively block (for example) the WannaCry attack. It is worth mentioning
that SAND imposes essentially no side-effect on the throughput of network defense tools because the
function of SAND (i.e., dynamically generating and deploying new defense rules) is orthogonal to the
enforcement of network defense rules.

We will discuss the limitations of the present study, which point out specific problems for future
research.

1.2 Related work

We classify related prior studies into two categories: those which are related to the functionality of SAND
and those which are related to the implementation of SAND.

From a functionality point of view, there are some recent studies that also leverage programmability
for network security, but in different contexts. For instance, Poseidon [1] defends against DDoS attacks
with programmable switches; Poise [2] focuses on in-network policies for achieving BYOD security; and
software-defined security platform [3] and security gateway [4] are proposed for IoT networks. The most
closely related prior work is PSI [5], which investigates how to use context-based network flow forwarding
to address some network-layer security problems. SAND is different from PSI in two important factors: (i)
SAND addresses both application-layer and network-layer security problems, whereas PSI can only cope
with network-layer security problems; (ii) SAND introduces the novel idea of dynamic generation and
deployment of defense rules, whereas PSI does not have such an important capability. In addition, there
are practical and theoretical studies on adaptive network defense. Practical studies typically focus on
defending against distributed denial-of-service (DDoS) attacks, including the detection of DDoS attacks
and the mitigation of their damage [6], coping with traffic control [7], and the investigation of counter-
measures [8]. There are studies on achieving adaptive defense via moving target defense [9]. Theoretic
studies focus on theoretic models of adaptive defense against multiple kinds of cyber attacks (e.g., [10,11])
or specific kinds of cyber attacks (e.g., advance persistent threats [12]); results presented in these studies
often are not tested in real-world environments. It is an important future research task to investigate how
to incorporate these studies into fully automated adaptive defense or the SAND architecture explored in
the present paper.

From an implementation point of view, SAND leverages SDN4) and network function virtualization
(NFV) [13], which respectively deal with the virtualization of networks and network functions. There are
many studies on SDN/NFV-based security, but these studies assume static defense policies or rules. For
example, FRESCO [14] provides security services for monitoring and processing network flows; FLOW-
GUARD [15] and VNGuard [16] implement firewall services as SDN applications; VFW Controller [17]
uses SDN mechanisms to achieve elastic control on virtual firewall policies; other studies aim to achieve
flexible network security enforcement [18] or assure packets are forwarded in desired paths [19]. SAND

1) iptables. http://www.netfilter.org/projects/iptables/.

2) Snort: Network Intrusion Detection & Prevention System. http://www.snort.org.

3) Squid:Optimising Web Delivery. http://squid-cache.org.

4) SDN: Software-Defined Network. https://www.opennetworking.org/sdn-resources/sdn-definition.

Chen H Y, et al. Sci China Inf Sci July 2022 Vol. 65 172102:3

Internet

Malicious

① Inbound
traffic

②

③

④ Benign
traffic

NIDS

Firewall

Traffic targeting
vulnerable servers

Based on the updated network
defense rules, decide to drop
the future malicious traffic to
the destination

Network defense tools

 Update network
defense rules in response
to new threats

Defender

Vulnerable

Servers

Figure 1 (Color online) Adaptive defense for new policy.

can be leveraged to make these systems enforce dynamic defense rules/policies. We stress that this novel
capability of SAND in enforcing dynamic defense rules/policies is beyond the reach of existing network
defense tools that may seem to be able to accomplish what SAND can do at a first glance. In particular,
one may think that an intrusion detection system can be configured to forward traffic according to its
detection result [20], which is comparable to what can be achieved by SAND; this is not true because the
intrusion detection system’s configurations are static and manually set, and cannot be dynamically and
(semi-)automatically adapted in real-time, which is achieved by SAND.

1.3 Paper outline

The rest of the paper is organized as follows. Section 2 explores the SAND architecture. Section 3
describes the SAND prototype system, which is evaluated in Section 4. Section 5 describes the limitations
of the present study. Section 6 concludes the paper.

2 The SAND architecture

In this section we motivate the SAND architecture by starting with three application scenarios, exploring
the requirements of adaptive defense, the desirable automated adaptive defense which is beyond the scope
of the current technology, and the practical SAND architecture.

2.1 Three motivating scenarios

We start with three motivating scenarios of adaptive network defense, which is achieved manually in
current practice.

2.1.1 Motivating scenario 1: adaptive network defense for accommodating new security policy

When a defender becomes aware of a new attack (e.g., Heartbleed [21] or WannaCry5)), a patch may not be
available or installed (e.g., in fear of disrupting a critical service). Before a patch is available or installed,
the defender can adapt the network defense to counter the new attack without disrupting the service.
In the example of WannaCry, which exploits vulnerability MS17-0106) at port #445, Figure 1 highlights
the adaptive defense: 0© Upon becoming aware of WannaCry, the defender updates the defense rules
enforced at the firewall and network-based intrusion detection system (NIDS) such that 1© any inbound
traffic to a vulnerable server at port #445 must be vetted at the firewall and 2© when the firewall detects
such a network flow, it mirrors the flow to the NIDS, which examines this flow to determine if it contains
the WannaCry attack. 3© If the flow contains the WannaCry attack, the NIDS instructs the firewall to
drop future packets originating from the attacker and targeting a vulnerable server. 4© The firewall drops
WannaCry packets as instructed by the NIDS. Note that this adaptive defense is even more valuable when
there are multiple vulnerable servers because a single adaptation in the network defense could protect all
of the vulnerable servers.

5) Protecting customers and evaluating risk. https://blogs.technet.microsoft.com/msrc/2017/04/14/protecting-customers-and-

evaluating-risk/.

6) Patch to vulnerability MS17-010. https://technet.microsoft.com/en-us/library/security/ms17-010.aspx.

Chen H Y, et al. Sci China Inf Sci July 2022 Vol. 65 172102:4

Firewall
ABC.com

Web proxy

Host1Host1

Host2Host2

New rule: Block Host2

to ABC.com

New rule: Prohibit Host2 from

accessing cached ABC.com

Internet

Firewall1

Firewall2

Switch

Switch

Host1

Host2

NIDS2

NIDS1

Rule
migration

Rule
migration

VM
migration

Figure 2 (Color online) Adaptive defense assuring policy con-

sistence.

Figure 3 (Color online) Adaptive defense for achieving secu-

rity policy migration.

2.1.2 Motivating scenario 2: adaptive network defense for assuring dynamic security policy consistence

Figure 2 illustrates a network, where a web proxy is used in conjunction with a firewall. Suppose the new
security policy says that the firewall must block Host2’s access to ABC.com. This policy can be violated
when Host2 accesses the content of ABC.com cached at the proxy, which can occur after Host1’s access
to ABC.com. Thus, the defender must adapt the network defense to assure that Host2 is prohibited from
accessing cached ABC.com at the proxy. This can be achieved by adding a new defense rule at the proxy.

2.1.3 Motivating scenario 3: adaptive network defense for achieving security policy migration

Figure 3 illustrates a scenario of policy migration, which can be triggered by an application need (e.g., load
balancing). In this scenario, the communication between any virtual machine (VM) running on Host1 and
the Internet goes through the dashed path as well as Firewall1 and NIDS1, whereas the communication
between any VM running on Host2 and the Internet goes through the solid path as well as Firewall2 and
NIDS2. This kind of communication path restriction is not uncommon [22]. Adaptive network defense
means that when migrating a VM from Host1 to Host2, the relevant defense rules enforced at NIDS1 and
Firewall1 should be respectively migrated to NIDS2 and Firewall2.

2.2 Requirements of adaptive defense

We propose 5 basic requirements, namely compatibility, agility, efficiency, security, and effectiveness on
adaptive defense solutions.

• Compatibility. A solution should accommodate heterogeneous defense tools (e.g., firewall and
NIDS). A solution should incur minimal modifications to defense tools when making them support the
automated adaptive defense.

• Agility. A solution should incur the minimal delay in generating and deploying dynamic defense
rules because any delay permits the attacker to cause damages.

• Efficiency. A solution should incur a minimal performance overhead, including the time for loading
and running the modules affected by adaptive network defense.

• Security. A solution should assure the security in the generation and deployment of dynamic defense
rules. A solution should be able to resist denial-of-service attacks.

• Effectiveness. A solution should achieve the adaptive defense objective in question (e.g., detecting
and/or blocking the targeted attacks).

The preceding 5 basic requirements can be extended as needed.

2.3 Automated adaptive defense

The agility requirement motivates automated adaptive defense, which leads to the vision highlighted in
Figure 4. This vision is centered at an Orchestrator that automatically responds to external and internal
triggers, where external triggers come from the outside environment of a network (e.g., new attacks
leading to new security policies as shown in motivating scenario 1) and internal triggers come from the
network itself (e.g., assuring dynamic policy consistence as shown in motivating scenario 2 and achieving
security policy migration as shown in motivating scenario 3). Automated adaptive defense means that
the human defender is not involved.

Chen H Y, et al. Sci China Inf Sci July 2022 Vol. 65 172102:5

Orchestrator

Generate
adaptations

Deploy

⓪

①

②

External trigger

Network defense tools

(a) External triggers

Network defense tools

Orchestrator

Internal
trigger

⓪

①Generate adaptations

Deploy②

(b) Internal triggers

Defender

SAND orchestrator

Design &
program

adaptations

Deploy

①

②

Network defense tools

⓪ External trigger

(a) External triggers

① Internal
trigger

②Design &
program
adaptions

Network defense tools

SAND orchestrator

Internal
trigger

⓪ Deploy

Defender

③

(b) Internal triggers

Figure 4 (Color online) A vision for automated adaptive de-

fense. (a) External triggers; (b) internal triggers.

Figure 5 (Color online) The SAND idea derived from the

vision in Figure 4. (a) External triggers; (b) internal triggers.

Unfortunately, it is difficult to fulfill the vision, at least for two reasons. First, external triggers are
often written in natural language (worse yet, verbal communication) and thus may not be understood by
the Orchestrator, which is a software module. Second, handling new attacks or application needs may
have to involve human defenders. Addressing these two problems is beyond the scope of the present
study.

2.4 Semi-automated adaptive defense

As a first step towards fulfilling the vision mentioned above, we propose fulfilling SAND. As highlighted
in Figure 5, the idea of SAND is derived from the vision highlighted in Figure 4, but SAND may require
the defender to participate (e.g., writing programs to generate new defense rules).

In order to turn the SAND idea in Figure 5 into a concrete system architecture, we bear in mind
that network security management can be seen as a part of network function management because
security may be seen as a particular network function. Given that SDN has been motivated by, among
other things, the need to automate network function management, we propose leveraging SDN to design
SAND’s architecture. This choice can be justified as follows. (i) We can leverage SDN’s capabilities in
obtaining a centralized view of the network and automatically deploying the forwarding rules in SDN
switches to flexibly route network traffic between network defense tools. (ii) In order to automate the
deployment of dynamic defense rules, SAND needs to communicate with network defense tools. Since
an SDN controller can already communicate with SDN switches, we can leverage this capability to make
SAND communicate with network defense tools. (iii) The wide deployment of SDN in the real world may
ease the adoption of SAND. It is worth mentioning that the SDN capabilities mentioned in (ii) and (iii)
are not sufficient for SAND’s purposes.

2.4.1 SAND architecture

Figure 6 describes the SAND architecture, which extends the SDN architecture and inherits its layers of
application, control, and data. At the application layer, the defender can write both SAND apps and
regular SDN apps using the northbound interfaces that are extended from SDN. Nevertheless, SAND apps
are meant for generating and deploying dynamic defense rules, while SDN apps are used for managing
traffic. At the control layer, the SAND orchestrator provides programmable interfaces to SAND apps,
disseminates defense rules received from SAND apps to the relevant network defense tools, and reports
to SAND apps the messages received from network defense tools. At the data layer, there are SAND
enforcement points, each of which contains network defense tools (e.g., firewall or NIDS) and maintains
a SAND communication middleware to facilitate the communication between network defense tools and
the SAND orchestrator.

SAND apps. The defender writes a SAND app in response to an external or internal trigger. The
app collects the relevant information corresponding to a trigger, generates new defense rules, and deploys
these new defense rules to the relevant network defense tools. A SAND app can use the interfaces at the
northbound of the SAND orchestrator (i.e., the northbound APIs) to deploy dynamic defense rules to
the relevant network defense tools, and can receive reports (i.e., alerts or errors) from network defense
tools and possibly network status (e.g., flow paths) from SDN switches.

Chen H Y, et al. Sci China Inf Sci July 2022 Vol. 65 172102:6

SAND orchestrator
(extending SDN controller)

SAND northbound APIs (extending SDN APIs)

SAND communication protocol (extending SDN protocol)

Data layer

Control layer

Application layer

SAND enforcement point

SAND communication middleware
(extending SDN protocol)

Apps

ScriptsScriptsSAND app SDN app

ProxyProxyNIDS/NIPSFirewallFirewall
···

SAND enforcement point

SAND communication middleware
(extending SDN protocol)

FirewallFirewall

SDN switch

Network link

SAND interactions

ProxyProxyNIDS/NIPS

Figure 6 (Color online) The SAND architecture extends the SDN architecture, while keeping SDN’s functions intact.

SAND orchestrator. The SAND orchestrator provides APIs at its northbound and communication
protocols at its southbound. The SAND northbound interface extends SDN’s northbound interface
with new APIs while keeping SDN’s northbound APIs intact (i.e., a network administrator can write
programs to manage SDN networks). The defender uses the SAND northbound APIs to write SAND
apps to dynamically generate and deploy new defense rules that are to be enforced at the relevant network
defense tools. The SAND southbound interface facilitates the communication between the orchestrator
and the network defense tools.

SAND enforcement point. A SAND enforcement point has: (i) one or multiple network defense
tools, which process the network traffic forwarded by connected SDN switches; and (ii) a SAND com-
munication middleware, which extends the SDN protocols to incorporate new functions to facilitate the
secure communication between the network defense tools and the SAND orchestrator via appropriate
cryptosystems (e.g., symmetric key encryption with message authentication).

2.4.2 Why dynamic forwarding rules are not sufficient for adaptive network defense?

SAND leverages SDN, including its dynamic forwarding rules, which however are not sufficient for adap-
tive defense. Although dynamic forwarding rules can instruct network traffic to go through dynamic
chains of network defense tools [5,8,19], they are only able to enforce the security policies that have been
set in network security tools, which we may call old or existing policies. In contrast, adaptive network
defense is about enforcing new security policies, which emerge (for example) when new attacks become
known by the defender; dynamic forwarding rules cannot defend against such new attacks no matter how
we forward the network traffic (simply because the network defense tools cannot detect or block them
yet).

3 The SAND prototype system

The SAND prototype system leverages RYU7) (an SDN controller), Open vSwitch8) (a virtual SDN
switch), iptables (a firewall), Snort (an NIDS), and Squid (a proxy) as building-blocks. Our source code
is available at the web9).

3.1 SAND apps

We implemented three apps corresponding to the aforementioned three motivating scenarios.

7) RYU openflow controller. https://github.com/osrg/ryu/.

8) OpenVSwitch. http://openvswitch.org/.

9) Source Code of SAND Project. https://github.com/handsomeBao/SDSNF/tree/SDSNF.

Chen H Y, et al. Sci China Inf Sci July 2022 Vol. 65 172102:7

Report from: iptables

Step 1: Report analysis

Report from: Snort

Report from: Squid

Context1 Action1

Network
defense

rules

Header1 Context1

Header2 Context2

Header3 Context3

Step 2: Rule generationMessages

Context2 Action2

Contextn Actionn

… …

Header 1 Tool_id1

Header 2 Tool_id2

Headern Tool_idn

… …

+

+

+

+

+

+Analysis function1

Analysis function2

Analysis functionx

…

Analyyysis funff ction1ononAnalysis function1

Analyyysis funff ction2ononAnalysis function2

Analyyysis funff ctionxononAnalysis functionx

…

(a)

Aug 13 01:15:06 mrbao Snort[13942]: [1:2024218:2]

Attack of ETERNALBLUE MS17-010 Echo Response

[Classification: Potential WannaCry Attack] [Priority:

1] {TCP} 10.26.11.122:14095 -> 194.30.160.41:445

source_ip: 10.26.11.122
destination_ip: 194.30.160.41
source_port: 14095
destination_port: 445
protocol: TCP

Attack of ETERNALBLUE
MS17-010 Echo Response

Report from Snort
Header

Context

Generated rules for iptables

+

Message

Step 2Step 1

source_ip: 10.26.11.122, protocol: TCP
destination_ip: 194.30.160.41
Tool_ID: 1

Deny

Deny

+
source_ip: 194.30.160.41, protocol: TCP
destination_ip: 10.26.11.122
Tool_ID: 1

(b)

Figure 7 (Color online) An example illustrating how a SAND app generates new defense rules in response to the new threat of

WannaCry. (a) A high-level description of the app’s report analysis and rule generation functionalities; (b) a concrete example

illustrating how the rule app analyzes a Snort report and automatically generates new rules for iptables to enforce.

3.1.1 Programming SAND app to accommodate new security policy (motivating scenario 1)

When the defender becomes aware of a new attack, say WannaCry, the defender can write a SAND app
to adapt the network defense as follows: (i) deploy defender-defined new defense rules for the iptables to
identify and mirror flows targeting port #445 to the Snort; (ii) deploy defender-defined new defense rules
for the Snort to examine whether a flow (mirrored from the iptables) contains a WannaCry attack or not;
and (iii) generate and deploy new defense rules to instruct the iptables to wait for the Snort’s examination
result and then act correspondingly (i.e., releasing/dropping the flow). In order to achieve (iii), there are
two options: (1) extend both iptables and Snort to let the latter directly report its examination result to
the former; (2) let the latter report to the SAND app, which then instructs the iptables to release/drop
the flow. We choose option (2) for two reasons. First, Snort cannot tell which iptables forwarded the flow
in question and therefore cannot tell to which iptables it should send the examination result. Second,
Snort’s examination result may need to be sent to a different iptables than the one that mirrored the
flow or even a different defense tool because a malicious flow ideally should be dropped by the firewall
closest to the source of the malicious flow.

Algorithm 1 is the pseudocode corresponding to the basic ideas discussed above. The app uses a
report analysis module to extract the flow header (for identifying the flow in question) and the context
(describing Snort’s verdict on the flow) from the received reports (Line 4) and then analyze the context.
If the analysis shows that the flow contains a WannaCry attack (Line 6), the SAND app will use the rule
generation module to generate a new defense rule with respect to the flow header and iptables Tool ID
to drop the flow (Line 7), and deploy the new defense rule to the iptables to drop future packets from the
attacking IP address (Line 8). The report analysis and rule generation modules are elaborated below.

Algorithm 1 SAND app for defending WannaCry attack via cooperation between iptables and Snort

Input: SAND and SAND-enabled iptables and Snort;

Output: Updated defense rules at the iptables (Tool ID = IDiptables) and Snort (Tool ID = IDSnort);

1: RuleInstall(IDiptables, Riptables); #Riptables: rules to mirror flows targeting port #445 to the Snort

2: RuleInstall(IDSnort, RSnort); #RSnort: rules for detecting the WannaCry attack.

3: while True do

4: Report← ListenToTool(IDSnort);

5: flow header, context← ReportAnalysis(Report);

6: if alert of WannaCry in context then

7: Riptables ← RuleGeneration(flow header, IDiptables, action = drop);

8: RuleInstall(IDiptables, Riptables); #Deploy the generated rule to iptables to drop the flow.

9: end if

10: end while

Figure 7(a) presents a general description of the SAND app’s report analysis module and the rule
generation module. Specifically, when the report analysis module receives a report from a defense tool,
the module analyzes the report to produce a message with a header (i.e., the flow header identifying the
flow in question) and a flow context (describing a defense tool’s annotation on the flow, such as Snort’s
alert indicating that the flow is malicious). Based on the flow context provided by the report analysis
module, the rule generation module selects an appropriate defense tool and generates rules represented
by “Action1 + Header1 + Tool ID1”, meaning that the defense tool with Tool ID1 must impose Action1

Chen H Y, et al. Sci China Inf Sci July 2022 Vol. 65 172102:8

on every packet of a flow identified by Header1.

Figure 7(b) presents a concrete example showing how the SAND app analyzes a Snort report and
generates new rules for the iptables. Specifically, when the SAND app receives a report from the Snort,
the app extracts the flow header and the context information from the report. Then, according to the
context information (i.e., “Attack of ETERNALBLUE MS17-010 Echo Response” indicating WannaCry),
the app interprets the report as an alert of WannaCry from the host IP 10.26.11.122 to destination IP
194.30.160.41. Finally, the app generates two rules to instruct the iptables with Tool ID “1” to block
communications between these two IP addresses.

3.1.2 Programming SAND app to assure dynamic security policy consistence (motivating scenario 2)

Algorithm 2 highlights the SAND app for assuring the consistence between the dynamic policies enforced
at the iptables and Squid. At a high level, when new defense rules need to be deployed into the iptables
(Line 1), the app extracts the destination port and the action fields from these new rules (Line 2). If
the action field in a rule indicates to block the access to a website (i.e., HTTP and HTTPS, or ports
#80 and #443, with the action being deny) (Line 3), the app extracts the source and destination IP
addresses from the rule (Line 4) and generates a corresponding Squid rule to block the source IP address
from accessing any cached content of the website corresponding to the destination IP address (Line 5),
and the app deploys this new rule to the Squid (Line 6). Finally, the app deploys the given new rule to
the iptables (Line 8).

Algorithm 2 SAND app for assuring dynamic policy consistence

Input: New defense rules to be deployed to the iptables;

Output: Updated defense rules at the iptables (Tool ID = IDiptables) and Squid (Tool ID = IDSquid);

1: for each new rule Riptables to be deployed to the iptables do

2: dst port, action ← RuleParse(Riptables); #Extract destination port and action for analysis.

3: if dst port == (#80 or #443) AND action== deny then

4: src ip, dst ip ← RuleParse(Riptables); #Extract source and destination ip for rule generation.

5: RSquid ← RuleGeneration(src ip, dst ip, action = deny);

6: RuleInstall(IDSquid, RSquid); #Deploy the generated rule for policy consistence into Squid.

7: end if

8: RuleInstall(IDiptables, Riptables); #Deploy the iptables defense rule.

9: end for

3.1.3 Programming SAND app to achieve security policy migration (motivating scenario 3)

For the scenario, Algorithm 3 highlights the SAND app. Suppose we need to migrate a VM from Host1
to Host2, which are respectively protected by firewall iptables1 and iptables2. Suppose the IP address of
the migrating VM is to be changed from IP1 to IP2 because of the migration. After the VM is migrated,
the SAND app migrates all of the defense rules, which are related to the VM and enforced at iptables1,
from iptables1 to iptables2 as follows: (i) get all of the rules from iptables1 (Line 1); (ii) identify the
rules related to the VM (i.e., having IP1 in the source or destination IP address field) (Lines 2 and 3);
(iii) change IP1 in these rules to IP2 (Line 4) and deploy them to the iptables2 (Line 5); and (iv) delete
those rules involving IP1 from iptables1 (Line 6).

Algorithm 3 SAND app for achieving security policy migration

Input: IP address IP1 of the VM before migration and its IP address IP2 after migration;

Output: Updated defense rules in iptables1 (Tool ID = IDiptables1
) and iptables2 (Tool ID = IDiptables2

);

1: R
all
iptables1

← GetAllRules(IDiptables1
) #Get all of the rules from iptables1

2: for each rule Riptables1
in R

all
iptables1

do

3: if Riptables1
.src ip == IP1 OR Riptables1

.dst ip == IP1 then

4: R
updated

iptables1
← Change IP1 to IP2 in Riptables1

.src ip and Riptables1
.dst ip

5: RuleInstall(IDiptables2
, R

updated

iptables1
); #Deploy the changed rule to iptables2

6: RuleDelete(IDiptables1
, Riptables1

); #Delete the rules involving IP1 from iptables1
7: end if

8: end for

Chen H Y, et al. Sci China Inf Sci July 2022 Vol. 65 172102:9

RuleTable EntryRuleTable Entry

struct FlowHeader;

uint16_t Priority;

struct Proprietary;

uint32_t Type;

uint32_t Action;

 IPAddress

uint64_t upper_IP
uint64_t lower_IP
 IPAddress * next

 IPAddress

Port

uint16_t upper_port
uint64_t lower_port

 Port * next

Port

 *

(Varying for
different network

defense tools)

Proprietary

(Varying for
different network

defense tools)

Proprietary

struct Port sports
uint32_t flags

struct IPAddress src_IP uint32_t proto

FlowHeader

 struct Port dportsstruct IPAddress dst_IP

FlowHeader

Figure 8 Data structure of a RuleTable entry.

3.2 SAND enforcement points

A SAND enforcement point contains some network defense tools and a SAND communication middleware.
In practice, a SAND enforcement point can be deployed at a physical host, a virtual machine, or a
container; whereas, the SAND communication middleware and defense tools run as independent software.
In order to cope with the heterogeneous native rules used by defense tools, we introduce a unified rule
representation and extend each network defense tool with a RuleTable to make it SAND-compatible.
When writing a SAND app, the defender uses the unified rule representation to program new defense rules.
When the SAND orchestrator deploys these new defense rules written in the unified rule representation,
a program accompanying the RuleTable “translates” these new rules to the native representation of the
network defense tool in question.

3.2.1 Unified rule representation

We observe that a network defense rule can have up to three elements: a match field, an action field,
and an other field, despite that these fields may be located at different positions of a rule. Based on such
observation, we define the unified rule representation which summarizes the native rules in five fields.

(i) Flow Header. This field uniquely identifies a network flow, including its source and destination IP
addresses, source and destination ports, flag, and protocol. This field does not include the flow payload
because some network defense tools do not process the payload. For the network defense tools that do
process the payload, we put the payload in the Proprietary Info field.

(ii) Proprietary Info. This field contains the flow payload and possibly other kinds of information
that is needed by some network defense tools.

(iii) Priority. This field indicates the execution priority of a rule. This is an important matter
because different network defense tools may enforce their defense rules in different orders. For example,
iptables matches flows to rules from the top to the bottom of its native rule set and stops seeking any
further match once a flow is matched to a rule. We set the execution priority of a rule in the unified
representation to be the same as the execution priority of the corresponding native rule of a network
defense tool.

(iv) Type. This field specifies the type of a rule in the unified representation, which is the same as the
type of the corresponding native rule.

(v) Action. This field indicates how a network defense tool should cope with the packets of a flow in
question (e.g., dropping them or not). In our prototype, we implement the unified rule representation of
the native rules used by the aforementioned three network defense tools (i.e., iptables, Snort, and Squid).

3.2.2 RuleTable and “translator”

Figure 8 illustrates the data structure of a RuleTable entry. Since a native rule often corresponds to
a tuple of “(source IP address, destination IP address, source port, destination port)”, where an IP
address (or port) field can be one, multiple, or one or multiple ranges of IP addresses (port numbers),
the RuleTable needs to accommodate these rich semantics. For this purpose, the IPAddress (Port) struct
in the FlowHeader struct, which corresponds to the Flow Header field in the unified rule representation,
is implemented as a linked list (via a pointer called “next”). Each element on the link corresponds to
one or a range of IP addresses bounded between “upper IP” and “lower IP” (when these two values
are equal, indicating one IP address), and multiple (ranges) of IP addresses are described by multiple
elements on the linked list. The rich semantics in port numbers is accommodated in a similar fashion. The
Proprietary struct, which corresponds to the Proprietary Info field in the unified rule representation,
is implemented as a struct that varies with network defense tools.

Chen H Y, et al. Sci China Inf Sci July 2022 Vol. 65 172102:10

A message
from SAND
orchestrator

① Parsing
message

② Extracting field:
Tool_id

③③ Identifying
message type
③ Identifying
message type

OFP_RULE_MOD

Other messages

④ Extracting the
rule in unified
representation

④ Extracting
command sentence(s)

To the network
defense tool

A message from
a network

defense tool

② Finding corresponding
Tool_id in the table of

the defense tool

③ Packing
the message

To SAND
deployment

engine

①① Identifying
message type
① Identifying
message type

To specific network
defense tools

②② Known
attack
② Known

attackOFP_ NDT_ALERT

Other messages

③ Generating pre-
programmed Rules

Yes

No

(a)

(b)

Figure 9 Function of SAND communication middleware.

A RuleTable is accompanied by a “translator” program, which maps between the rules in the unified
representation and the native rules of network defense tools. In addition, this “translator” program
has two more functions: (i) notifying the SAND orchestrator that an operation on RuleTable (e.g.,
adding, modifying, or deleting a rule) is accomplished, and (ii) executing two commands issued by the
orchestrator, namely sending the rules in the RuleTable and sending the log of a network defense tool
to the SAND orchestrator. We denote that the RuleTable works as an extra map of the native rules for
the ease of deploying defense rules in heterogeneous network defense tools, while the defense tools still
run using their native rules, which means it exerts no influence on the performance of the defense tools
during the processing of network traffic.

3.2.3 The SAND communication middleware

We implement the middleware by extending the Open vSwitch 2.5.0, which is an open-source virtual
SDN switch written in C, because we want to leverage its communication mechanism as a building-block.

The extension is in three folds. The first extension is to implement a maintenance function for book-
keeping the network defense tools at a SAND enforcement point. In the prototype, this function is
implemented as a MySQL table with two attributes: Tool ID, which uniquely identifies a network de-
fense tool; and Port #, which is the source port used by the network defense tool to communicate with
the SAND orchestrator.

The second extension is to implement a security function, which protects the integrity of the commu-
nications (i) between the SAND orchestrator and the SAND communication middleware and (ii) between
the SAND communication middleware and the network defense tools. Recall that SDN does not offer any
mechanism to protect the secrecy or integrity of the communications between an SDN controller and an
SDN switch (for performance reasons). Given that the SAND orchestrator and the SAND communication
middleware may be often deployed at different computers, meaning that their communications can be
subject to attacks, it is necessary to protect the integrity of these communications. For this purpose,
we use the HMAC function in Openssl-1.0.1g. When the SAND middleware and its co-residing network
defense tools are deployed on the same computer or VM, we may also use this HMAC mechanism to pro-
tect the integrity between them. However, we choose not to protect the secrecy of these communications
because (i) the defense rules and the network defense tools’ reports may be known to the attacker already
(e.g., the defense rules for detecting WannaCry and the corresponding alerts generated by Snort) and
(ii) incorporating encryption may incur a more significant performance degradation than HMAC. When
the need to assure secrecy becomes apparent, symmetric key encryption can be easily incorporated to
protect the secrecy of the communications.

The third extension is to implement a communication function in the middleware to enable “orches-
trator to defense tools” and “defense tools to orchestrator” communications. Figure 9(a) illustrates “or-
chestrator to defense tools” communications. Specifically, when the orchestrator needs to communicate
with a network defense tool (e.g., to update some defense rules enforced at the network defense tool), the

Chen H Y, et al. Sci China Inf Sci July 2022 Vol. 65 172102:11

orchestrator sends a message to the middleware, which parses the message to extract the Tool ID of the
intended network defense tool and the message type. If the message type is OFP RULE MOD, an indicator
for updating defense rules, the middleware extracts the defense new rules (in the unified representation)
from the message content; otherwise, the middleware extracts the command(s) from the message and
then forwards the command(s) to the intended network defense tool.

Figure 9(b) illustrates “defense tools to orchestrator” communications, while noting that the middle-
ware distinguishes defense tools through the ports assigned to the defense tools and the orchestrator uses
Tool ID to distinguish defense tools. Specifically, when a defense tool needs to communicate with the or-
chestrator (e.g., notifying the orchestrator of the accomplishment of a RuleTable operation), the defense
tool sends a message to the middleware through the port assigned to the defense tool at the time the
tool is installed. The middleware uses this port number to identify the unique Tool ID associated with
this port number as recorded in the MySQL table mentioned above. The middleware sends the defense
tool’s message together with the defense tool’s Tool ID to the orchestrator. In order to reduce the delay
incurred by the middleware, we propose moving some SAND app functions to the middleware to avoid
unnecessary communications. As shown in Figure 9(b), when a defense tool sends an OFP NDT ALERT

message to the middleware, the middleware checks whether or not the alert contains a known attack. If
so, the middleware can directly generate some defender-programmed defense rules and sends them to the
relevant defense tools for enforcement (e.g., blocking the relevant packets).

3.3 SAND orchestrator

The SAND orchestrator has a northbound interface and a southbound interface. The northbound interface
is used by the defender to write SAND apps. This interface extends SDN’s northbound APIs with the
following SAND-specific APIs: (i) NDT RULE MOD, which is used to add, delete, or modify defense
rules enforced at defense tools; (ii) NDT ALL RULES REQUEST, which is used to fetch defense rules
enforced at defense tools; and (iii) EVENT LISTEN NDT, which is used by a SAND app to instruct the
SAND orchestrator to provide reports (e.g., alerts or errors) from defense tools.

The southbound interface supports secure communications between the SAND orchestrator and defense
tools. It extends SDN’s OpenFlow protocol10) by introducing two types of SAND-specific messages. First,
the SAND-to-NDT type includes 8 messages, 5 of which are used by the SAND orchestrator to communi-
cate with defense tools and the other 3 are used by defense tools to report to the SAND orchestrator after
accomplishing some activities. Second, we introduce two SAND asynchronous messages, which are used
by defense tools for reporting to the SAND orchestrator. These two messages, dubbed OFP NDT ALERT

and OFP NDT ERROR, may be reminiscent of SDN’s asynchronous messages (for SDN switches to report
to an SDN controller), but are actually different. This is because SDN’s buffering mechanism processes
messages sequentially (i.e., a new message is not read until the previous message has been processed),
which is not adequate for SAND because messages from defense tools can be in large volumes and can be
lost when the buffer is full. This explains why we use a special buffer at the SAND orchestrator and why
we let a dedicated thread manage the special buffer (i.e., the thread only listens for these two messages).
These messages are further discussed in Appendix A.

4 Evaluating the SAND prototype

Figure 10 describes the network environment that is common to our experiments of the three motivating
scenarios. We use two servers, Sever1 and Sever2. Each server has a 16-core Xeon 2.4 GHz, 128 GB RAM
and two 1 Gbps network interfaces and runs Ubuntu 16.04. Each server runs MaxiNet 1.1 [23] so that
the two servers formulate an SDN network. Each server runs 4 virtual SDN switches. Server1 has 7 VMs
(i.e., VM1 to VM7) that run Linux Ubuntu 14.04, VM7 runs a SAND orchestrator and SAND apps, and
each of the other 6 VMs runs as a SAND enforcement point, which contains the aforementioned SAND-
enabled iptables-v1.4.21 (Ubuntu 14.04), Snort-2.9.8.0, and Squid-2.7.STABLE9 as well as the SAND
communication middleware. Server2 runs 6 VMs (i.e., VM8 to VM13), each of which runs as a SAND
enforcement point that is the same as those in Sever1. Scenario-specific configurations are described later.

10) OpenFlow specification v1.3. https://www.opennetworking.org/images/stories/downloads/sdn-resources/onfspecifications/

openflow/openflowspec-v1.3.0.pdf.

https://www.opennetworking.org/images/stories/downloads/sdn-resources/onfspecifications/openflow/openflowspec-v1.3.0.pdf.
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onfspecifications/openflow/openflowspec-v1.3.0.pdf.

Chen H Y, et al. Sci China Inf Sci July 2022 Vol. 65 172102:12

VM (running SAND
orchestrator)Server 1

Server 2

VM VM VM VMVM

VM VM VM VMVM VM

iptables

SAND
communication

middleware

VM

Squid

Snort

VM

MaxiNet

Figure 10 The network topology for our experiments.

0 200 400 600 800 1000

0

200

400

600

800

1000

1200

1400

1600

R
ul

e
ge

ne
ra

ti
on

 t
im

e
fo

r
ea

ch
 r

ep
or

t
(m

s)

R
ul

e
ge

ne
ra

ti
on

 t
im

e
fo

r
ea

ch
 r

ep
or

t
(m

s)

Number of arriving reports (consecutively) Number of arriving reports (consecutively)

(a)

0 200 400 600 800 1000

0

10

20

(b)

Figure 11 (Color online) Time for automated generation of iptables rules upon the SAND app receiving the Snort’s reports.

(a) Consecutive Snort alert arrives; (b) intermittent Snort alert arrives.

4.1 Compatibility analysis

Compatibility is evaluated in two aspects. First, SAND’s unified rule representation can accommodate
heterogeneous native rules of iptables, Snort, and Squid. Second, SAND incurs small modifications: the
SAND orchestrator extends the RYU controller with an extra of 1.1k lines of code (LOC) in Python;
the SAND communication middleware extends the Open vSwitch with an extra 1.8k LOC in C; the
RuleTable only incurs an extra 2.7k LOC (or 6.43% of the original 42k codebase) in iptables, an extra
3.5k LOC (or 1.04% of the original 336k codebase) in Snort, and an extra 1.5k LOC (or 0.69% of the
original 216k codebase) in Squid.

4.2 Agility analysis

4.2.1 Measuring agility in motivating scenario 1

In our experiments with this scenario, we further run the SAND-enabled Snort and iptables in VM1. The
SAND app runs in VM7 to receive reports from the Snort and generate new defense rules for the iptables.

First, we measure the rule generation time. We consider two experiments: (i) the Snort generates 1000
reports consecutively (within 50 ms); (ii) the Snort generates 1000 reports intermittently at the interval
of 10 ms (i.e., 100 reports per second for 10 s). Figure 11(a) plots the result in experiment (i). We observe
that the rule generation time for each report increases sharply, as high as 1.5 s in the end; this is because
the RYU controller, which underlies the SAND orchestrator, uses a buffer to queue Snort reports before
releasing them to the SAND app sequentially. This may cause significant delays when there is a burst in
reports arriving, as shown in experiment (i). In order to measure the genuine rule generation time (while
excluding the impact of specific controller mechanisms), we carry out experiment (ii). Figure 11(b) plots
the result in experiment (ii). We observe that the rule generation time is less than 5 ms in most cases
(despite slight fluctuation), implying agility; this speedup comes from the fact that there is no waiting
time at the RYU controller for releasing Snort reports to the SAND app.

Second, we measure the rule deployment time, including the time for deploying defense rules in the

Chen H Y, et al. Sci China Inf Sci July 2022 Vol. 65 172102:13

Table 1 Time for deploying new rules (unit: ms)

Tool Adding Deleting Modifying Average Integrity (%)

Squid 3.21 3.45 4.07 3.58 30.68

iptables 12.16 13.67 14.33 13.39 14.62

Snort 11.98 12.28 14.08 12.78 17.89

0 10 20 3

3.63

0 40 50
2.5

3.0

3.5

4.0

4.5

5.0

5.5

T
ot

al
 t

im
e

fo
r

ge
ne

ra
ti

ng
 a

nd
 d

ep
lo

yi
ng

co
rr

es
po

nd
in

g
ru

le
s

fo
r

S
qu

id
 (

m
s)

Number of iptables rules to be deployed

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

2

4

6

8

10

12

14

16

18

20

22

T
ot

al
 r

ul
e

m
ig

ra
ti

on
 t

im
e

(s
)

Experiment times

Time of getting all rules
Time of modifying ip
Time of installing 224 rules
Time of deleting 224 rules

Figure 12 (Color online) Time for policy consistence. Figure 13 (Color online) Rule migration time.

unified representation into the RuleTable and the time for translating them into native rules of the defense
tools by the program accompanying the RuleTable. In this experiment, we run the three network defense
tools (i.e., iptables, Snort, and Squid) in VM5 and the SAND app in VM7. These new defense rules are
deployed by the SAND app. Table 1 summarizes the results averaged over 100 independent experiment
runs. The last column represents, on average, the percentage of the amount of time spent on protecting the
communication integrity both between the SAND orchestrator and the SAND communication middleware
and between the SAND communication middleware and the defense tools. We observe that the average
rule deployment time for iptables and Snort is 2×–3× longer than that of Squid, which can be explained
as follows. On one hand, the native rules of iptables reside in the user space, while iptables itself runs in
the kernel space, meaning that updating a RuleTable in the user space (to avoid re-compiling the kernel)
incurs an update to some native rule(s) in the kernel space, which incurs communications with the Linux
kernel and causes delays. On the other hand, Snort uses complicated rules because it needs to analyze
the traffic payload, which incurs much time delay.

4.2.2 Measuring agility in motivating scenario 2

In this experiment, we have the SAND-enabled iptables (running in VM2), which allows anyone to access
a website at a specific IP address. Suppose the new defense rules, which are to be enforced at the iptables,
are to deny access to the website from 50 specific IP addresses. The SAND app (running in VM7) not only
needs to deploy these 50 rules to the iptables, but also needs to generate their corresponding defense rules
for the SAND-enabled Squid (also running in VM2) to enforce. Figure 12 plots the time of generating
and deploying new defense rules for the Squid to enforce; these two are measured together because they
both are small. On average, it takes 3.63 ms for the SAND app to generate and deploy a defense rule for
the Squid, which demonstrates the agility of SAND.

4.2.3 Measuring agility in motivating scenario 3

In our experiment, the SAND app (running in VM7) migrates the defense rules enforced by the SAND-
enabled iptables (running in VM5) to the SAND-enabled iptables (running in VM6). Figure 13 plots the
generating and deploying time it takes to migrate 224 rules, which happens to be the case in the example.
The rule generation time refers to the total time for the app to get all rules from iptables1 and to update
the IP addresses, while the deployment time refers to the total time for the app to deploy the updated
rules into iptables2 and to delete the migrated rules from iptables1. On average (over 20 experiment
runs), it takes 0.82 s to get all of the relevant rules from iptables1 and 0.11 s to update the IP addresses,

Chen H Y, et al. Sci China Inf Sci July 2022 Vol. 65 172102:14

290.812

880.604

300.483
378.542

992.171

Squid (50 rules) iptables (100 rules) Snort (552 rules)

S
ta

rt
up

 t
im

e
(m

s)

Security tools

Without SAND RuleTable

With SAND RuleTable
1000

200

400

800

600

0

A
le

rt
 m

es
sa

ge
 l

os
s

ra
te

 (
%

)

Message sending rate (102/s)

Without buffer in SAND deployment engine

With buffer in SAND deployment engine

20

10

0

0 200 400 600 800 1000 1600 1800 20001200 1400

Figure 14 Defense tools’ loading time. Figure 15 (Color online) Loss rate of messages from defense

tools to SAND orchestrator: with vs. without using buffer at

SAND orchestrator (x-axis unit: 100 messages per second).

meaning 0.93 s for generation. It takes 6.90 s to deploy the 224 rules to iptables2 and 5.87 s to delete the
224 rules from iptables1, meaning 12.77 s for deployment. Therefore, we can claim that the SAND app
for achieving policy migration is agile.

4.3 Efficiency analysis

We extend the three defense tools (i.e., iptables, Snort, and Squid) with a RuleTable and measure the
time for loading it. In our experiment, we run the three network defense tools in VM8. We measure the
loading time of the RuleTable for the three network defense tools. Figure 14 plots the loading time of
the three defense tools, averaged over 30 independent experiment runs, with vs. without SAND-enabled.
For iptables, the loading time is applicable only to SAND-enabled iptables because standard iptables
resides in the Linux kernel (rather than the user space), while recalling that the RuleTable resides in the
user space. We observe that the average loading time, including the initialization of a RuleTable with
100 rules, is smaller than 400 ms, which is small. The extra loading time incurred by SAND for the other
two tools is even smaller.

4.4 Security analysis

First, security of rule generation requires the following: SAND apps are not vulnerable (otherwise, the
report analysis or rule generation module can be compromised); SAND orchestrator is not vulnerable
(otherwise, SAND apps running on top of it can be compromised).

Second, security of rule deployment requires the following: the SAND orchestrator is not vulnerable
(otherwise, the deployment process can be compromised); the defense tools are not vulnerable (otherwise,
the deployment process can be compromised). Under these assumptions, cryptographic keys used by these
end points for assuring the integrity of messages are assured, so do the integrity of the new rules and
messages that are protected by them.

Third, we consider robustness against denial-of-service attacks. For this purpose, we show that SAND
can deal with bursts of deployment-incurred messages via the buffer at the SAND orchestrator. We use
the experiment environment described in Figure 10 to measure the degree at which SAND can tolerate,
with a buffer of 16 MBytes in the SAND orchestrator, bursts of messages generated by defense tools for
reporting to the SAND orchestrator. In our first experiment, we let one SAND-enabled iptables instance
in VM10 generate and send 50000 messages consecutively to the SAND orchestrator in VM7. We observe
no message loss because one iptables can only generate no more than 35000 messages per second (in our
setting). In our second experiment, we let eight SAND-enabled iptables instances (i.e., VM1 to VM4 in
Server1 and VM10 to VM13 running in Server2), simultaneously generate and send messages. Figure 15
plots the results and shows that (i) the SAND orchestrator without using a buffer is able to process at
most 80000–90000 messages per second and (ii) the loss rate increases rapidly once the message rate goes
above 90000 messages per second; in contrast, the use of the buffer leads to no message loss even when
the message rate reaches 200000 messages per second. This not only justifies our use of buffers, but also
highlights that the defender needs to be aware of this matter when allocating resources to the SAND
orchestrator (i.e., allocation of RAM).

Chen H Y, et al. Sci China Inf Sci July 2022 Vol. 65 172102:15

Snort rule for alerting

WannaCry ransomware

alert tcp any any -> HOME_NET 445
(msg: “Attack of ETERNAL-

BLUEMS 17-010 Echo Response”;

flow: from_server, established;

content: “|00 00 00 31 ff |SMB|2b

00 00 00 00 98 07 c0|”; depth:16;

fast_pattern; content: “|4a 6c 4a 6d 49

68 43 6c 42 73 72 00|”; distance: 0; flow-

bits:isset, ETPRO.ETERNALBLUE;

classtype: trojan-activity; sid:2024218;

rev: 2;)

SAND orchestrator

infected VM
ip: 192.168.1.1

vulnerable VM
ip: 192.168.1.2

SAND app for defending WannaCry

SAND
communication

middleware

iptables
(w/ RuleTable)

Snort
(w/ RuleTable)

VM
(enforcement
point)

(0) New rules

(0) New rules

(0) N
ew

 ru
les

(4) A
ler

t

(6
) E

nf
or

ce
(2

) A
tta

ck
 fl

ow
s t

ar
ge

tin
g

po
rt

44
5

(5) Deploy

 Switch

(3) Mirror flows with
destination port 445

for content inspection

(1) Run the
WannaCry
malware

(7) Defense
succeed

Figure 16 (Color online) Experiment showing SAND blocks WannaCry.

4.5 Effectiveness analysis

4.5.1 Effectiveness in accommodating new security policy (motivating scenario 1)

In this experiment, the defender, upon becoming aware of WannaCry, writes a SAND app to add the
following Snort rule to detect WannaCry attacks11).

Figure 16 describes the experiment with VM1 and two computers, which are connected via an SDN
switch. Both computers run Windows XP SP3 without patching MS17-010 and with port #445 open
(i.e., vulnerable to WannaCry). VM1 runs SAND-enabled iptables and Snort to examine the traffic
to these two computers and runs a SAND communication middleware. The experiment environment is
isolated from the Internet for ethical and security reasons. The experiment proceeds as follows: (0) When
becoming aware of the WannaCry attack, the defender writes the aforementioned SAND app and runs
it in VM7 to add a rule to the iptables’ RuleTable to instruct the iptables to mirror flows targeting port
#445 to the Snort. For performance optimization and as discussed in Subsection 3.2.3, we run the app’s
function for processing the reports received from the Snort at the SAND communication middleware.
(1) Run the WannaCry malware in the computer with IP address 192.168.1.1, which is immediately
infected (i.e., showing the ransom window). (2) When the infected computer (192.168.1.1) attempts to
infect the vulnerable computer (192.168.1.2), the iptables sees the flow targeting destination port #445.
(3) The iptables lets the flow pass (i.e., the iptables is used for intrusion detection rather than intrusion
prevention) while mirroring the flow to the Snort. (4) The Snort examines the flow, detects that the
flow contains the WannaCry attack, generates an alert, and sends the alert to the SAND communication
middleware. (5) The middleware parses the alert and generates a new defense rule to be enforced by the
iptables to block any further traffic originating from the infected computer (192.168.1.1). (6) The iptables
enforces the new defense rule. (7) In about 2 min, we see an iptables log entry showing that it blocks a
WannaCry attack from the infected computer (192.168.1.1) to the vulnerable computer (192.168.1.2) and
a Snort log entry showing an alert corresponding to this attempted attack. In multiple runs of the same
experiment, we consistently observe the 2-minute delay, which appears to be inherent to the WannaCry
malware sample we use. Our experiments show that SAND successfully protects the vulnerable computer
(192.168.1.2) from WannaCry because the generation and deployment of new rules take no more than
20 ms, meaning that the adaptive defense takes effect sooner than the 2-minute delay of the WannaCry
malware’s attempt at attacking the vulnerable computer (192.168.1.2).

4.5.2 Effectiveness in assuring dynamic security policy consistence (motivating scenario 2)

Figure 17 describes the setting for measuring the effectiveness in assuring dynamic policy consistence.
First, we confirm the security policy inconsistence problem via the following experiment: let a browser
running in VM2 access a target website to cause the Squid to cache the website content; manually install
a defense rule to the iptables to block VM2 from accessing the website; observe that VM2 still can access
the website’s content cached in the Squid. Second, we confirm SAND can assure the security policy
consistence via the following experiment: (1) run SAND-enabled iptables and Squid in VM2; (2) run the
aforementioned SAND app for the motivating scenario 2 in the VM7 to assure the consistence between the

11) EternalBlue Snort Rule. https://securingtomorrow.mcafee.com/executive-perspectives/analysis-wannacry-ransomware-

outbreak/.

Chen H Y, et al. Sci China Inf Sci July 2022 Vol. 65 172102:16

iptables
(w/ RuleTable)

SAND app for assuring dynamic policy consistence

(3) Add a new rule to the iptables

(5) Deploy the rules

VM7

(2) Run the SAND app

(4) Generate a
corresponding
rule for Squid

Squid
(w/ RuleTable)VM2

SAND orchestrator

SAND communication middleware

(1) Run SAND-enabled defense tools

SAND app for policy migration

iptables 1 iptables2VM1 VM2

VM3

SAND communication
middleware2

Switch

(3) Deploy rules
to be migrated

(4) Delete
migrated rules

SAND communication
middleware1

SAND orchestrator

(2) Pick out rules having src/dst ip 129.114.10.128
& change the ip to 129.114.10.129

(1) Get all
rules

Figure 17 (Color online) Experiment for assuring policy con-

sistence.

Figure 18 (Color online) Experiment for iptables rule migra-

tion.

policies enforced by the iptables and Squid; (3) add a new defense rule to the iptables to block the VM2

from accessing the website (i.e., set the source IP address to be the IP address of VM2, the destination
IP address to be the website, the destination port to be 80 and the action to be REJECT); (4) the SAND
app, upon receiving the new defense rule for the iptables, generates a corresponding defense rule for the
Squid to block the VM2 from accessing the website content cached at the Squid; (5) Deploy the new
defense rules to the iptables and the Squid, respectively. Our experiment confirms that VM2 can neither
access the website nor the cached content at the Squid.

4.5.3 Effectiveness in achieving security policy migration (motivating scenario 3)

Figure 18 describes the setting for measuring the effectiveness in achieving security policy migration.
Suppose a VM, which has IP address 129.114.10.128 and runs on one computer (not shown in Figure 10)
and is protected by the iptables1 running in VM5 (in Figure 10), needs to be migrated to another
computer with IP address 129.114.10.129 and then should be protected by the iptables2 running in VM6

(in Figure 10). We confirm that SAND can achieve security policy migration as follows: (1) run SAND-
enabled iptables in VM5 and VM6; (2) run the SAND app for achieving security policy migration in VM7

to use the aforementioned NDT ALL RULES REQUEST command to get the rules enforced by iptables1;
(3) identify the defense rules that have the source or destination IP address 129.114.10.128 and update the
address to 129.114.10.129; (4) run the SAND app to use the aforementioned NDT RULE MOD command
to deploy the updated defense rules to iptables2; (5) run the SAND app to instruct iptables1 to delete the
defense rules involving IP address 129.114.10.128 because they have been migrated; (6) check the rules
in iptables1 and iptables2 to confirm that (i) SAND respectively migrates the defense rules involving IP
address 129.114.10.128 from iptables1 to the defense rules involving IP address 129.114.10.129 in iptables2
and (ii) the migrated rules are deleted from iptables1.

5 Limitations

The present study has some limitations. (i) From a functionality point of view, SAND only achieves
semi-automation because defenders have to write apps to generate new defense rules, while recalling that
automation cannot be achieved before addressing the difficulties described in Subsection 2.3. (ii) From
a methodological point of view, the present study focuses on demonstrating the feasibility of SAND via
three defense tools. As discussed in Appendix B, we also examined four other network defense tools,
namely pfSense12) and IPFire13) (firewalls), Suricata14), and FreeWAF15) (web application firewall), and
observed that the unified rule representation can accommodate their native rules. Still, we may need
to extend the unified rule representation to accommodate other defense rules (e.g., those using scripting
languages16)17)). (iii) From an implementation point of view, SAND extends SDN and therefore inherits
its limitations, such as the delay from an SDN controller to the SDN data plane. (iv) From a management
point of view, complex defense rules can cause conflicts between them, which can be resolved by leveraging

12) pfSense — World’s Most Trusted Open Source Firewall. https://www.pfsense.org/.

13) www.ipfire.org — Welcome to IPFire. https://www.ipfire.org/.

14) Suricata: Opensource IDS/IPS/NSM engine. https://suricata-ids.org/.

15) High-performance WAF built on the OpenResty stack. https://github.com/wangfakang/FreeWAF.

16) Nginx—High performance load balancer, Web server and Reverse Proxy. https://www.nginx.com/.

17) HAProxy — The Reliable, High Performance TCP/HTTP Load Balancer. http://www.haproxy.org/.

Chen H Y, et al. Sci China Inf Sci July 2022 Vol. 65 172102:17

techniques such as [24–27]. (v) From a practical point of view, SAND assumes that the triggers are true,
which may or may not hold in general. This can be mitigated by only dealing with the trusted triggers.

6 Conclusion

We have motivated and presented SAND as the first step towards fully automated network defense. We
introduced the SAND architecture for semi-automated adaptive network defense via programmable gener-
ation and deployment of dynamic network defense rules. We reported a SAND prototype implementation
by extending both the northbound and southbound interfaces of SDN. For this purpose, we introduced
a unified representation of network security rules that can be automatically mapped to native network
security rules used by some network security tools; this unified representation would be of independent
value because it can be extended to accommodate all of the kinds of network defense tools that are used
in practice. Experiment results show that SAND can indeed automate the generation and deployment of
dynamic network security rules in the defense for the motivating scenarios. We hope SAND will inspire
more research towards achieving full-fledged automated cyber defense. Towards this goal, the limitations
discussed in Section 5 represent some outstanding open problems for future research.

Acknowledgements This work was supported by Key Program of National Science Foundation of China (Grant No. U1936211),

Shenzhen Fundamental Research Program (Grant No. JCYJ20170413114215614), and Key-Area Research and Development Pro-

gram of Guangdong Province (Grant No. 2019B010139001).

References

1 Zhang M H, Li G Y, Wang S C, et al. Poseidon: mitigating volumetric DDoS attacks with programmable switches. In:

Proceedings of the 27th Annual Network and Distributed System Security Symposium, San Diego, 2020

2 Kang Q, Xue L, Morrison A, et al. Programmable in-network security for context-aware BYOD policies. In: Proceedings of

the 29th USENIX Security Symposium, 2020. 595–612

3 Sebastián E, Lewis G A, Grabowski C, et al. KalKi: a software-defined IoT security platform. In: Proceedings of the 6th

IEEE World Forum on Internet of Things, New Orleans, 2020. 1–6

4 McCormack M, Vasudevan A, Liu G Y, et al. Towards an architecture for trusted edge IoT security gateways. In: Proceedings

of the 3rd USENIX Workshop on Hot Topics in Edge Computing, 2020

5 Yu T L, Fayaz S K, Collins M, et al. PSI: precise security instrumentation for enterprise networks. In: Proceedings of Network

and Distributed System Security Symposium, San Diego, 2017

6 Zou C C, Duffield N, Towsley D, et al. Adaptive defense against various network attacks. IEEE J Sel Areas Commun, 2006,

24: 1877–1888

7 Li M H, Li M. An adaptive approach for defending against DDoS attacks. Math Problems Eng, 2010, 2010: 1–15

8 Fayaz S K, Tobioka Y, Sekar V, et al. Bohatei: flexible and elastic DDoS defense. In: Proceedings of USENIX Security

Symposium, Washington, 2015. 817–832

9 Cho J H, Sharma D P, Alavizadeh H, et al. Toward proactive, adaptive defense: a survey on moving target defense. IEEE

Commun Surv Tut, 2020, 22: 709–745

10 Xu S H, Lu W L, Xu L, et al. Adaptive epidemic dynamics in networks. ACM Trans Auton Adapt Syst, 2014, 8: 1–19

11 Huang L N, Zhu Q Y. Strategic learning for active, adaptive, and autonomous cyber defense. In: Adaptive Autonomous

Secure Cyber Systems. Cham: Springer, 2020. 205–230

12 Huang L N, Zhu Q Y. Adaptive strategic cyber defense for advanced persistent threats in critical infrastructure networks.

SIGMETRICS Perform Eval Rev, 2019, 46: 52–56

13 Mijumbi R, Serrat J, Gorricho J L, et al. Network function virtualization: state-of-the-art and research challenges. IEEE

Commun Surv Tut, 2016, 18: 236–262

14 Seungwon S, Phillip A P, Vinod Y, et al. FRESCO: modular composable security services for software-defined networks.

In: Proceedings of Network and Distributed System Security Symposium, San Diego, 2013

15 Hu H X, Han W, Ahn G-J, et al. FLOWGUARD: building robust firewalls for software-defined networks. In: Proceedings of

the 3rd Workshop on Hot Topics in Software Defined Networking, Chicago, 2014. 97–102

16 Deng J, Hu H X, Li H D, et al. VNGuard: an NFV/SDN combination framework for provisioning and managing virtual

firewalls. In: Proceedings of IEEE Conference on Network Function Virtualization and Software Defined Networks, San

Francisco, 2015. 107–114

17 Deng J, Li H D, Wang K C, et al. On the safety and efficiency of virtual firewall elasticity control. In: Proceedings of Network

and Distributed System Security Symposium, San Diego, 2017

18 Xia M, Shirazipour M, Zhang Y, et al. Optical service chaining for network function virtualization. IEEE Commun Mag,

2015, 53: 152–158

19 Fayaz S K, Luis C, Vyas S, et al. Enforcing network-wide policies in the presence of dynamic middlebox actions using

FlowTags. In: Proceedings of the 11th USENIX Symposium on Networked Systems Design and Implementation, Seattle,

2014. 543–546

20 Amann J, Sommer R. Providing dynamic control to passive network security monitoring. In: Proceedings of the 18th Inter-

national Symposium on Research in Attacks, Intrusions, and Defenses, Kyoto, 2015. 133–152

21 Durumeric Z, Kasten J, Adrian D, et al. The matter of heartbleed. In: Proceedings of the 2014 Internet Measurement

Conference, Vancouver, 2014. 475–488

22 Ramaswamy C. Secure virtual network configuration for virtual machine (VM) protection. NIST Special Publ, 2016, 800:

125B

23 Wette P, Dräxler M, Schwabe A. MaxiNet: distributed emulation of software-defined networks. In: Proceedings of IFIP

Networking Conference, Trondheim, 2014. 1–9

https://doi.org/10.1109/JSAC.2006.877137
https://doi.org/10.1155/2010/570940
https://doi.org/10.1109/COMST.2019.2963791
https://doi.org/10.1145/2555613
https://doi.org/10.1145/3305218.3305239
https://doi.org/10.1109/COMST.2015.2477041
https://doi.org/10.1109/MCOM.2015.7081089

Chen H Y, et al. Sci China Inf Sci July 2022 Vol. 65 172102:18

24 Horn A, Kheradmand A, Prasad M R. Delta-net: real-time network verification using atoms. In: Proceedings of the 14th

USENIX Symposium on Networked Systems Design and Implementation, Boston, 2017. 735–749

25 Chen F, Liu A X, Hwang J H, et al. First step towards automatic correction of firewall policy faults. ACM Trans Auton

Adapt Syst, 2012, 7: 1–24

26 Panda A, Lahav O, Argyraki K J, et al. Verifying reachability in networks with mutable datapaths. In: Proceedings of the

14th USENIX Symposium on Networked Systems Design and Implementation, Boston, 2017. 699–718

27 Stoenescu R, Popovici M, Negreanu L, et al. SymNet: scalable symbolic execution for modern networks. In: Proceedings of

the ACM SIGCOMM 2016 Conference, Florianopolis, 2016. 314–327

Appendix A SAND-specific messages in the extended OpenFlow protocol

Table A1 Summary of the two types of SAND-specific new messages introduced at the orchestrator’s southbound interface

Message type Message name Purpose of a message

OFPRT ALL RULES REQUEST Request the defense rules of a defense tool.

OFPRT ALL RULES REPLY Reply to the SAND orchestrator with the requested defense rules.

OFPRT LOG REQUEST Request the logs of a defense tool.

SAND-to- OFPRT LOG NDT REPLY Reply to the SAND orchestrator with the requested logs.

NDT

OFPRT RULE MOD

OFPRM ADD Add a new rule to the RuleTable and map it to a native rule of a defense tool.

OFPRM MODIFY Modify a rule in the RuleTable and map it to a native rule of a defense tool.

OFPRM DELETE Delete a rule from the RuleTable and map it to the native rule set of a defense tool.

OFPRM NDT REPLY Reply to the SAND orchestrator that the defense rules have been updated.

SAND OFP NDT ALERT A defense tool alerts the SAND orchestrator of a threat.

asynchronous OFP NDT ERROR A defense tool reports runtime errors to the SAND orchestrator.

Table A1 summarizes the two types of SAND-specific messages that are introduced at the orchestrator’s southbound interface:

SAND-to-NDT messages (SAND orchestrator to defense tools) and SAND asynchronous messages (defense tools to SAND orches-

trator).

Appendix B Examination on accommodation of unified rule representation in open-source

network defense tools

Table B1 Summary of the 7 network defense tools whose native rules are accommodated by the unified rule representation

Category Name

Unified rule representation

Basic header
Priority Proprietary Type Action

src/dest ip src/dest ports flag protocol

Firewall

iptables X X – X X Table name Chain name X

pfSense X X Disable X X Extra options Interface X

IPFire X X – X X Additional settings FW/NAT X

IDS
Snort X X Operator X X Rule options – X

Suricata X X Operator X X Rule options – X

Proxy Squid X X – X X Object name Acl/Http access X

WAF FreeWAF X – – X X Name, Sub-policy Default or not –

In the main body of the paper, we reported that the unified rule representation can accommodate the heterogeneous rules used by

three network defense tools, namely iptables, Snort, and Squid. In order to see the applicability of the unified rule representation,

we also examined four other network defense tools. In total, we investigated the native rule representations of 3 firewalls (i.e.,

iptables, pfSense, and IPFire), 2 NIDSes (i.e., Snort and Suricata), 1 proxy (i.e., Squid), and 1 Web Application Firewall or WAF

(i.e., FreeWAF). Table B1 summarizes how the native rules of these 7 network defense tools can be accommodated by the unified

rule representation.

https://doi.org/10.1145/2240166.2240177

	Introduction
	Our contributions
	Related work
	Paper outline

	The SAND architecture
	Three motivating scenarios
	Motivating scenario 1: adaptive network defense for accommodating new security policy
	Motivating scenario 2: adaptive network defense for assuring dynamic security policy consistence
	Motivating scenario 3: adaptive network defense for achieving security policy migration

	Requirements of adaptive defense
	Automated adaptive defense
	Semi-automated adaptive defense
	SAND architecture
	Why dynamic forwarding rules are not sufficient for adaptive network defense?

	The SAND prototype system
	SAND apps
	Programming SAND app to accommodate new security policy (motivating scenario 1)
	Programming SAND app to assure dynamic security policy consistence (motivating scenario 2)
	Programming SAND app to achieve security policy migration (motivating scenario 3)

	SAND enforcement points
	Unified rule representation
	RuleTable and ``translator''
	The SAND communication middleware

	SAND orchestrator

	Evaluating the SAND prototype
	Compatibility analysis
	Agility analysis
	Measuring agility in motivating scenario 1
	Measuring agility in motivating scenario 2
	Measuring agility in motivating scenario 3

	Efficiency analysis
	Security analysis
	Effectiveness analysis
	Effectiveness in accommodating new security policy (motivating scenario 1)
	Effectiveness in assuring dynamic security policy consistence (motivating scenario 2)
	Effectiveness in achieving security policy migration (motivating scenario 3)

	Limitations
	Conclusion
	SAND-specific messages in the extended OpenFlow protocol
	Examination on accommodation of unified rule representation in open-source network defense tools

