• Supplementary File •

ACCEL: An Efficient and Privacy-Preserving Federated Logistic Regression Scheme over Vertically Partitioned Data

Jiaqi Zhao¹, Hui Zhu^{1*}, Fengwei Wang¹, Rongxing Lu², Hui Li¹, Zhongmin Zhou³ & Haitao Wan³

¹State Key Laboratory of Integrated Networks Services, Xidian University, Xi'an 710071, China; ²Faculty of Computer Science, University of New Brunswick, Fredericton E3B 5A3, Canada; ³China Mobile (Suzhou) Software Technology Co., Ltd, Suzhou 215153, China

Appendix A Preliminaries

This section briefly reviews logistic regression, vertical federated learning, and the SHE technique, which serve as the fundamental building blocks of ACCEL. Moreover, the related notations of ACCEL are shown in Table A1.

Nototiona	Definition
Inotations	Demition
k_0, k_1, k_2	Security parameters.
PP, SK	Public parameter and secret key of SHE.
\oplus, \odot	Homomorphic addition and multiplication.
K	The number of participants.
$ heta^{(r)}$	Global model of r th training round.
D,N	The total number of data features and data samples.
$lpha,\lambda$	Learning rate and regularization parameter.
κ	Accuracy parameter.
$\mathcal{D}^{(k)}$	Local training data of P_k .
$X_n^{(k)}$	The <i>n</i> th data sample of P_k .
$x_{n,d}^{(k)}$	The <i>d</i> th feature value of $X_n^{(k)}$.
y_n	The label of n th data sample.
D_k	The number of P_k 's data features.
$\mathcal{V}^{(k)}, \mathcal{M}^{(k)}$	Data aggregation subvector and submatrix of P_k .
\mathcal{M}	Data aggregation matrix.
$\mathcal{M}^{(u,v)}$	Data aggregation submatrix of P_u and P_v .
$[\![x]\!]$	Ciphertext of x . (x can be an interger, vector, or matrix.)

Table A1 Notations of ACCEL

Appendix A.1 Logistic Regression

Logistic regression [1] is one of the most widely applied machine learning models in practice, which gains huge success in many fields such as spam classification, disease diagnosis, malicious traffic detection, and so on.

Logistic regression focus on describing the relationship between multiple continuous predictor variables and a classification result. Specifically, given the logistic regression model parameter $\theta = (\theta_0, \theta_1, \dots, \theta_D)$ and a data sample $X = (x_1, x_2, \dots, x_D)$, the output y can be obtained by computing

^{*} Corresponding author (email: zhuhui@xidian.edu.cn)

$$y = \frac{1}{1 + e^{-h(\theta, X)}},$$

where $h(\theta, X) = \theta_0 + \sum_{d=1}^{D} \theta_d x_d$, and y is a classification probability in [0, 1]. For training a logistic regression model, gradient descent [2] algorithm is used in our scheme. Specifically, given training data $\mathcal{D} = \{X_n, y_n\}_{n=1}^N$ and $X_n = (x_{n,1}, x_{n,2}, \cdots, x_{n,D}), \theta$ is updated iteratively to minimize the loss between the predicted value and the true value. At first, the loss function $L(\theta)$ can be computed as

$$L(\boldsymbol{\theta}) = \frac{1}{N} \sum_{n=1}^{N} \log(1 + e^{-y_n h(\boldsymbol{\theta}, \boldsymbol{X}^n)}) + \lambda \left\|\boldsymbol{\theta}\right\|^2$$

where λ is the l₂-norm regularization term. For facilitating the construction of data aggregation matrix, $L(\theta)$ can be approximated by 2-order Taylor series expansion as

$$L(\theta) = \frac{1}{N} \sum_{n=1}^{N} \log 2 - \frac{1}{2} y_n h(\theta, X_n) + \frac{1}{8} h^2(\theta, X_n) + \lambda \|\theta\|^2.$$

Therefore, θ is updated as

$$\begin{cases} \theta_0^{(r+1)} = (1 - 2\lambda\alpha)\theta_0^{(r)} - \frac{\alpha}{N}\sum_{n=1}^N (\frac{1}{4}h(\theta^{(r)}, X_n) - \frac{1}{2}y_n) \\ \\ \theta_d^{(r+1)} = (1 - 2\lambda\alpha)\theta_d^{(r)} - \frac{\alpha}{N}\sum_{n=1}^N (\frac{1}{4}h(\theta^{(r)}, X_n) - \frac{1}{2}y_n)x_{n,d} \end{cases},$$

where $d = 1, \dots, D$, α is the learning rate, and r is current training round.

Finally, the above training process terminates until θ converges or the maximum iteration number is reached.

Appendix A.2 The SHE Technique

The SHE technique [3] can compute homomorphic addition and multiplication efficiently, which mainly contains three functions named KeyGen, Enc, and Dec, which are described detailedly in the following.

• KeyGen $(k_0, k_1, k_2) \rightarrow PP, SK$: Given the security parameters (k_0, k_1, k_2) satisfying $k_1 \ll k_2 < k_0$, select two large prime numbers p, q with $|p| = |q| = k_0$ and calculate $\mathcal{N} = pq$. Then, select a random number \mathcal{L} with $|\mathcal{L}| = k_2$. Finally, the secret key SK is (p, q, \mathcal{L}) and the public parameter PP is $(k_0, k_1, k_2, \mathcal{N})$.

• Enc(m) $\rightarrow c$: Given a message $m \in (-2^{k_1}, 2^{k_1})$, the ciphertext c is calculated with SK as

$$c = \operatorname{Enc}(m) = (r\mathcal{L} + m)(1 + r'p) \mod \mathcal{N},$$

where $r \in (0, 2^{k_2})$ and $r' \in (0, 2^{k_0})$ are two random numbers.

• $Dec(c) \rightarrow m$: Given a ciphertext c, the corresponding plaintext m can be retrieved with SK through computing

$$\begin{split} m' &= (c \bmod p) \bmod \mathcal{L}, \\ m &= \operatorname{Dec}(c) = \begin{cases} m', (m' < \frac{\mathcal{L}}{2}) \\ m' - \mathcal{L}, (else) \end{cases} \end{split}$$

Sepecifically, given two ciphertexts $c_1 = \text{Enc}(m_1)$, $c_2 = \text{Enc}(m_2)$, and a plaintext m_3 , the SHE technique has the following four homomorphic properties:

- Ciphertext homomorphic addition: $c_1 \oplus c_2 = c_1 + c_2 \mod \mathcal{N} = \operatorname{Enc}(m_1 + m_2)$,
- Plaintext-ciphertext homomorphic addition: $c_1 \oplus m_3 = c_1 + m_3 \mod \mathcal{N} = \operatorname{Enc}(m_1 + m_3)$,
- Ciphertext homomorphic multiplication: $c_1 \odot c_2 = c_1 \cdot c_2 \mod \mathcal{N} = \operatorname{Enc}(m_1 \cdot m_2)$,
- Plaintext-ciphertext homomorphic multiplication: $c_1 \odot m_3 = c_1 \cdot m_3 \mod \mathcal{N} = \operatorname{Enc}(m_1 \cdot m_3), (m_3 > 0),$

where \oplus and \odot represent the homomorphic addition and multiplication.

References

- 1 Hosmer Jr D W, Lemeshow S, Sturdivant R X. Applied logistic regression. John Wiley & Sons, 2013
- 2 Yang Q, Liu Y, Cheng Y, et al. Federated learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, 2019, 13(3): 1-207
- Mahdikhani H, Lu R X, Zheng Y D, et al. Achieving o(log3n) communication-efficient privacy-preserving range query in 3 fog-based iot. IEEE Internet Things J., 2020, 7(6): 5220-5232