
SCIENCE CHINA
Information Sciences

July 2022, Vol. 65 170305:1–170305:19

https://doi.org/10.1007/s11432-021-3462-4

c© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2022 info.scichina.com link.springer.com

. RESEARCH PAPER .
Special Focus on Cyber Security in the Era of Artificial Intelligence

Defensive deception framework against
reconnaissance attacks in the cloud with deep

reinforcement learning

Huanruo LI1*, Yunfei GUO1, Shumin HUO1, Hongchao HU1 & Penghao SUN1,2

1Department of Computer Science, Information Engineering University, Zhengzhou 450001, China;
2Department of Communication Technologies, Academy of Military Science, Beijing 100091, China

Received 31 July 2021/Revised 19 January 2022/Accepted 25 March 2022/Published online 23 June 2022

Abstract Implementing defensive deception in the cloud is promising to proactively counter reconnaissance

attack. This technique presents decoys to camouflage cloud assets and distracts attack resource. However,

the major challenge is to develop an effective deception strategy to orchestrate digital decoys. To address

this issue, we propose a deep reinforcement learning (DRL)-based defensive deception framework. First,

we formulate a utility function, which mathematically models underlying threats associated with common

vulnerabilities among virtual machines in the cloud. Then, we customize training interfaces and the neural

networks for a DRL agent. The reward function reflects the effectiveness of asset concealment and the waste of

attack resources, referring to a comprehensive defense goal. Finally, the well-trained DRL agent generates the

optimal defense strategy. It specifies a more granular deception strategy than existing proposals. Simulation

results show that the proposed framework leads to a 7.87% average advantage in realizing the comprehensive

defense goal. Moreover, it can stably improve the concealment degree of cloud assets up to 20.58%, and

increase the attack cost up to 40.40%. This study shows that it is promising to improve cloud security with

deception defense and artificial intelligence techniques.

Keywords cyber deception defense, artificial intelligence, cloud security, reconnaissance attack, deep rein-

forcement learning, deception strategy

Citation Li H R, Guo Y F, Huo S M, et al. Defensive deception framework against reconnaissance attacks

in the cloud with deep reinforcement learning. Sci China Inf Sci, 2022, 65(7): 170305, https://doi.org/10.1007/

s11432-021-3462-4

1 Introduction

According to the cyber kill chain model, reconnaissance is a fundamental step for a cyberattack [1].
During this stage, the adversary collects essential information about the target system to prepare for
subsequent attacks. Protecting the operating systems (OSs)’ associated information of each working
node is significant, especially for the infrastructure-as-a-service (IaaS) cloud tenant network. The main
reasons are as follows. (1) The OS is a critical software infrastructure for the working nodes (i.e., virtual
machines (VMs)) in the IaaS cloud. Secure systems could be compromised in a stealthy way by attacks
on their OSs, instead of via their application or service vulnerabilities [2]. (2) Off-the-shelf OSs may
share security flaws [3]. Hence, the adversary could launch and rapidly spread attacks by exploiting on
OS-related common vulnerabilities.

However, preventing reconnaissance attacks is difficult. On the one hand, tenant networks often main-
tain a similar configuration for VMs concerning the feasibility of operation, development and manage-
ment [4]. A static and homogeneous configuration provides attackers a good opportunity to study the
target environment (i.e., the version and amount of installed OSs) for attack preparation (i.e., acquiring
specific tactics to exploit certain vulnerabilities). On the other hand, detecting reconnaissance traffics is
complicated. Attackers could employ existing networking tools to perform reconnaissance, and disguise
corresponding data packets with benign missions in the cloud [5].

*Corresponding author (email: viaviavialhr@outlook.com)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-021-3462-4&domain=pdf&date_stamp=2022-6-23
https://doi.org/10.1007/s11432-021-3462-4
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-021-3462-4
https://doi.org/10.1007/s11432-021-3462-4
https://doi.org/10.1007/s11432-021-3462-4

Li H R, et al. Sci China Inf Sci July 2022 Vol. 65 170305:2

Existing studies propose defensive deception to counter reconnaissance attacks to reverse the asymmet-
rical disadvantage for the defender [6]. Different from signature-based countermeasures (i.e., intrusion
detection system), defensive deception does not rely on prior knowledge to identify attacks. Instead, it
makes use of attackers’ incomplete cognition, and presents digital decoys to obfuscate reconnaissance [7].
Therefore, defensive deception is beneficial to not only camouflage system assets (i.e., by presenting decoy
fingerprinting), but also waste attack efforts (e.g., preparing tactics for falsified vulnerabilities).

To maximize the effectiveness of deception and fully achieve the defense goal, digital decoys should
be configured and placed strategically in the cloud [8]. That is, the defender should develop an optimal
deception strategy. Related work in this field is insufficient in the following aspects. (1) There is a
lack of adaptability to the multi-tenant cloud network [9]. Existing studies mainly established deception
strategies for the Intranet or web servers using game theory or attack graphs [10–12]. However, these
strategies are less optimal in configuring and placing decoys for the cloud due to the increasing size
of networks. As the size of a network does not only refer to the number of hosts, but also to the
number of active services and associated vulnerabilities, solving equilibria or attack graphs will encounter
climbing complexity [13,14]. (2) There is an inadequate fulfillment of a comprehensive deception defense
goal [15]. A comprehensive defensive deception goal shall comprise multiple aspects, such as obfuscating
reconnaissance by concealing system assets and distracting attack resources. However, existing studies
often consider a single perspective, such as mere attack prevention, attack detection, or attack mitigation.
This condition restraint will be the potential of deception defense in the cloud. (3) The deception strategy
has little granularity. Existing studies often present coarse-grained strategies and fail to specify detailed
configuration for decoys to a node-level. This limitation hinders the practical implementation of defensive
deception in the real world.

As the deception strategy defines the granular configuration and placement of decoys in the cloud, we
propose to formulate the solution of an optimal strategy as a security decision problem. The emerging
machine learning (ML) and artificial intelligence (AI) technologies bring us a new horizon to solve such
problems. For instance, Qu et al. [16] proposed the use of generative adversarial networks to ensure the
security of location information of 5G networks. Ning et al. [17] studied a deep reinforcement learning
(DRL)-based approach to allocating resource for the mobile blockchain security. DRL is a combination
of a deep neural network (DNN) and the reinforcement learning (RL). Accordingly, it is possible to solve
the deception strategy. First, the RL framework trains an agent to make an optimal configuration and
placement strategy through a trial-and-reward process. During training, the agent completely observes
the threat scenario of the cloud (i.e., the OS associated common vulnerabilities of multiple tenant net-
works) and generates decision actions to earn maximum accumulated reward (i.e., fulfilling defense goals).
Second, the DNN serves as a function approximator to map high dimensional input data with optimal
output actions. This method guarantees a more granular deception strategy for the cloud.

Therefore, we propose a defensive deception framework against reconnaissance attacks in the cloud with
DRL. Our work examined the common vulnerability-based threat scenario for the cloud, and customized
a DRL agent to generate the optimal deception strategy. The framework eventually presents a more
granular configuration and placement for digital decoys to counter reconnaissance attacks. Our main
contributions are as follows.

(1) We propose a defensive deception framework to counter reconnaissance attacks in the cloud tenant
network. To generate the optimal deception strategy, the framework considers concealing assets’ config-
uration and increasing the attack cost. The strategy configures and places decoys granularly to fulfill the
aforementioned comprehensive defense goal.

(2) We formulate a utility function to model the OS common vulnerability-associated threat scenario
for the cloud. Then we customize a DRL agent to solve the optimal deception strategy based on the
utility function.

(3) The simulation results show that the proposed defensive deception framework increases the attack
cost from 38.33% to 40.40% on average under different proportions and varieties of decoys, and improves
the concealment of the system asset up to 20.58%.

The rest of this paper is organized as follows. Section 2 introduces the background and motivation.
Section 3 formulates the problem. Section 4 presents an overview of the proposed framework, and
Section 5 presents the details of the framework design. Section 6 presents and analyzes the simulation
and evaluation. Finally, Section 7 concludes this work.

Li H R, et al. Sci China Inf Sci July 2022 Vol. 65 170305:3

2 Background and motivation

2.1 Reconnaissance attacks in the cloud tenant network

In this study, we focus on internal reconnaissance attacks discussed by Roy et al. [18]. The adversary
usually performs technical reconnaissance (i.e., network scanning and probing) in the target cloud ten-
ant network through a previously compromised node. Although this action does not introduce instant
damage, it brings lasting and consequential impacts to the system. In a tenant network, if the adver-
sary maintains continuously stealthy reconnaissance, it will gradually be prepared to discover exploitable
common vulnerabilities and launch devastating attacks. This condition will eventually cause a giant loss
to the cloud. Countering internal reconnaissance is significant because the cloud tenant network provides
legitimate users with production services. Once being attacked, the interruption of multiple processes
and services will suffer immense loss [19]. However, it is difficult because of the following reasons.

(1) Reconnaissance attacks have technical advantage [20]. Network scanning techniques and tools,
such as the ICMP ping and the NMap, provide the attacker with mature tactics to study information
and configuration (i.e., IP blocks, OS fingerprinting, and software vulnerabilities).

(2) Malicious reconnaissance is often overlooked and difficult to identify [5]. On the one hand, the
attacker’s occasional probings may seem harmless and are sometimes neglected by the security admin-
istrator. On the other hand, such traffics are mixed with common legitimate network missions and are
hard to identify.

(3) The static and homogeneous virtual infrastructure of the cloud tenant network benefits from re-
connaissance attacks [21]. On the one hand, the static environment offers attackers extra time to sys-
tematically study the target. On the other hand, the homogeneous configurations allow attacks to be
propagated effortlessly due to common vulnerabilities.

2.2 Defensive deception for the cloud

Defensive deception is promising to counter reconnaissance as an active defense. It provides falsified in-
telligence to confuse attackers (i.e., using decoys to authentic system configuration), which will invalidate
information they collected during reconnaissance (i.e., exploitable vulnerabilities associated with system
configurations) and affect their following steps (i.e., prepare to exploit specific vulnerabilities). Existing
studies in this field could be divided into deception techniques and deception strategies.

The history of deception techniques dates back to the development of the Deception ToolKit [22], where
Cohen proposed various tactics including concealment, camouflage, falsified, and planted. Afterward,
Spitzner presented the honeypot system, a digital decoy, to lure, log, and learn malicious access [23]. The
effectiveness of deception techniques largely hinges on their interaction with attackers. Therefore, related
research has focused on improving the enticement of decoys. Nowadays, state-of-the-art techniques,
such as ML and natural language processing (NLP), are engaged to evolve deception techniques [8].
Various high-interactive digital decoys have been researched, such as honeytokens [24], honey-patches [25],
Honeyfile, decoy services [26], and decoy network devices [27]. These techniques can be installed in the
cloud as countermeasures [28].

Deception strategy is another component in implementing deception defense. A defender tailors specific
strategies to orchestrate enticing decoys according to defense goals (i.e., confusing reconnaissance) [29].
Game theory and attack graphs are often studied in developing the deception strategy [30]. In defending
cloud networks, Kandoussi et al. [20] used stochastic games to allocate honeypots and detect stealthy
attackers. Almohri et al. [31] developed a digraph-based strategy to place fake services in the cloud to
delay remote attackers. Other studies, such as [10, 32], leveraged attack graphs to model the virtual
network architecture and solve the placement of honeypots with the game theory. Satisfiability modulo
theories (SMT) were also employed to search for the optimal deception strategy. Duan et al. [15] proposed
CONCEAL to search for the optimal combination of shadow honeypots with the SMT.

2.3 Limitations of existing studies

An optimal deception strategy should be adaptive to certain threat scenarios and defense goals (i.e.,
against the reconnaissance attacks in the cloud tenant network), considering a comprehensive defense goal
(i.e., concealing system assets and increasing the attack cost), and granular for decoys (i.e., specifying

Li H R, et al. Sci China Inf Sci July 2022 Vol. 65 170305:4

deployable amounts and configurations). With these requirements, we conclude that the main limitations
of existing studies are as follows.

(1) Lack of adaptability to the multi-tenant cloud network [9]. Existing studies mainly employ game
theory and attack graphs to search for the optimal strategy for the Intranet or web. On the one hand,
they focus less on the common vulnerability of critical software components. On the other hand, their
approaches are less resilient to concerning the size of multi-tenant cloud networks.

(2) Inadequate fulfillment of the comprehensive defense goal [15]. A comprehensive deception defense
goal should comprise multiple perspectives, such as the concealment of system assets and the increase
in attack cost. However, existing studies often achieve a single defense goal, such as attack prevention,
attack detection, and attack mitigation [8].

(3) Insufficient granularity in configuration [8]. Existing studies mainly employed coarse-grained de-
ception strategies. For example, Ref. [10,33] studied the optimal amount to deploy honeypots, Ref. [31,32]
studied the optimal location to place decoys in the obscured cloud and Intranet network topology. These
studies provide novel ideas to establish deception strategies. However, they fail to specify the exact type
and configuration of corresponding decoys (e.g., versions of OSs and services). This condition hinders
defenders from precisely orchestrating credible decoys in the cloud.

2.4 Opportunities

The emerging DRL is promising for building up an effective deception strategy for the cloud. DRL is
a combination of the DNN and RL [34]. The RL framework trains an agent to learn from a trial/error
interaction under a dynamic environment. It reasonably models the attacker’s stealthy reconnaissance
on the cloud assets (including the real and decoys). Aligning with the DNN as the function approxima-
tor, DRL can map high-dimensional input data (i.e., the threat scenario) with optimal decisions (i.e.,
granular deception strategy). For example, Sethi et al. [35] applied DRL to detect intrusions in the cloud
infrastructure. They trained the DRL agent to classify and respond to attacks with near real-time VM
logs.

Another important benefit of solving the deception strategy with DRL is that the corresponding model
training does not require a beforehand statistical analysis. That is, the DRL agent will be adaptable to
various threat scenarios (e.g., different sizes and vulnerable nodes) of multiple tenant networks in the
cloud.

A profound study on the enticement and credibility of digital decoys also empowers the implementation
of defensive deception in the cloud. For instance, a mainstream technique, Honeyd [36], allows us to
distribute and manage virtual hosts as decoys across the local area network (LAN) with a daemon process.
Moreover, Cowrie [37], a mid-interactive decoy system, could be built into the container. Such techniques
could be utilized in the cloud without occupying overwhelming computing resources. Moreover, a majority
of existing studies on decoys, including Honeyd and Cowrie, accept customization using a configuration
file. This function provides a solid foundation to configure and present decoys with the granular deception
strategy generated by the DRL agent.

Accordingly, this work focuses on a DRL-enabled deception strategy. We customized neural networks
and threat scenario interfaces for the DRL algorithm. After multiple rounds of interaction, the well-
trained DRL agent generated a fine-grained strategy for decoys to counter reconnaissance attacks. The
defense goal was formulated as the training goal, ensuring that the strategically deployed decoys could
maximize obfuscation on reconnaissance and increase the attack cost.

3 Problem formulation

In this section, we propose a threat model for the multi-tenant cloud network and formulate the defense
problem. In the threat model, we consider a single attacker,whose ultimate goal is to collect configura-
tion information of the tenant network through limited rounds of probing. The configuration information
mainly refers to the security settings, OS fingerprints, and vulnerabilities. The defender’s goal is to obfus-
cate the attacker’s reconnaissance and waste attack resources by strategically configuring and presenting
decoy hosts. The notations used for problem formulation and threat are summarized in Table 1.

Li H R, et al. Sci China Inf Sci July 2022 Vol. 65 170305:5

Table 1 Summary of notations

Notation Description

Ω : Hi,X
n → {ON × X} A finite set of configuration information of the target tenant network

n The amount of hosts in the target tenant network

Hi,X
n The nth host in the target tenant network with i OS and X security configuration

ON = {osi|i = 1, 2, . . . ,m} A subset of m-type OS configuration in the target tenant network

X ∈ {vul, sec, dec} A finite set of security configuration, denoting vulnerable, secured and decoy hosts, respectively

U =
∑

i

∑
K wKVK

i,x Utility function that maps the possible impacts with OS common vulnerabilities

K = {s, k, a, d} The categories of vulnerabilities: system software, kernel, application, and driver

Ed Deception entropy that evaluates the concealment degree of system assets

OA Attack strategy, a subset to ON

OD The set of OS for defense resources, a subset to ON

P (OD) The defender’s strategy, specifying the distribution over OS configuration in OD

3.1 Preliminaries and metrics

Firs, we use n to denote the amount of hosts Hn in a target tenant network. Let Ω denote a finite
set of configuration information of the target, such that Ω : Hi,X

n → {ON × X|X ∈ {vul, sec, dec}}.
ON represents the OS configuration, where ON = {osi|i = 1, 2, . . . ,m} containing m types of OS. And
X refers to the security configuration of each host, where vul, sec, dec denotes vulnerable, secured, and
decoy hosts, respectively. In particular, different Ω with dissimilar variants represents different tenant
networks in the cloud platform.

In the target network, ∀osi ∈ ON shares a number of common vulnerabilities with one another. If
a vulnerability could be used to impact one or more components, then it can be used to compromise
many or all of software components simultaneously. This kind of vulnerability is defined as the common
vulnerability. Garcia et al. [3] classified OS vulnerabilities into the following stacks: system software,
kernel, application, and driver. We use VK

i,j to denote the number of common vulnerabilities between a

pair of OS, osi, and osj , where K = {s, k, a, d} denote the category, and i 6= j, osi, osj ∈ ON. VK
i,i is a

scalar denoting the number of vulnerabilities in a single OS, osi. Hereby, we define a utility function to
calculate the impacts of OS-associated common vulnerabilities:

Definition 1 (Utility function U). U maps the possible impacts with the amount of common vul-
nerabilities among OSs. The weights wK denote the severeness of vulnerabilities being exploited per
category [19]. Exploiting on vulnerabilities in each category has dissimilar impacts and difficulty, such
that

U =
∑

i

∑

K

wKVK
i,x,

s.t. i = 1, 2, . . . ,m,

wK =

4, K = s,

3, K = k,

2, K = a,

1, K = d.

(1)

Definition 2 (Deception entropy Ed). Measures the concealment degree of system configuration and
evaluates the confusion of information introduced by deception. The concealment of system configuration
is used to evaluate the effectiveness of defensive deception [15]. Ever since Shannon has named missing
information by entropy in the information theory, it has become a universally accepted definition of this
term. In the network system, existing studies employ different forms of entropy to describe the diversity or
richness of configuration [38], whose fundamental measurement is the information presented to potential
observers. The insight of deception entropy Ed, is to evaluate the concealment of system configuration
and confusion on information when decoys are deployed in the tenant networks.

Ed = −

i
∑

pi ln pi s.t. pi =

∑

K VK
i,i

∑

i

∑

K VK
i,i

. (2)

Li H R, et al. Sci China Inf Sci July 2022 Vol. 65 170305:6

VM

With

deception

Cloud platform

VM VM

VM
CentOS

VM VM

VM
Win2003

VM
Win2003

VM VM

VM
CentOS

Tenant

nework 1

Without

deception

VM

VM
CentOS

VM VM

VM
Win2003

VM

VM
Win2008

VM
Ubuntu

VM

VM
Win2003

VM

VM
CentOS

VM

VM

VM
Ubuntu

VM
Tenant

nework n
VM

VM
Win2008

VM

...

VM
Ubuntu

VM
CentOS

VM

VM
CentOS

Without

deception

VM

With

deception
VM
Ubuntu

VM
Win2003

VM VM

VM
Ubuntu

VM
Win2008

VM

VM
CentOS

VM

VM
CentOS

Reconnaissance

attacker

Reconnaissance

result

...

Ubuntu

Win2003

Win2008

CentOS

VM
Ubuntu

VM
Win2008

VM
Win2003

VM
CentOS

O
D

O
A

sec vul dec

Figure 1 (Color online) Obscured architecture of a multi-tenant cloud platform, where malicious users could conduct reconnais-

sance on penetrating into benign tenant networks. The red arrow points to the case where no decoy is placed and the attack

could gain the real OS and number of VM. The dashed arrow presents a decoy-placed occasion. X ∈ {vul, sec, dec} are depicted

by solid line and black letters, solid line and red letters, and dashed line and green letters, respectively. Examples of different

OS configurations are presented in black, blue, burgundy, and purple, respectively. For example, in tenant network 1, if without

deception, the attacker could acquire that the production hosts are 7 CentOS VMs and 4 Win2003 VMs. However, the attacker

does not know that there are three vulnerable hosts with CentOS and Win2003. With deception, the attacker might find out 6

CentOS VMs, 4 Win2003 VMs, 2 Win2008 VMs, and 2 Ubuntu VMs.

Because the information refers to common vulnerabilities associated with the OS configuration for
VMs, the entities measured by Ed are OS vulnerabilities. As the decoy hosts are seamlessly merged
with production nodes from the observer’s view (e.g., adversaries or legitimate users), the vulnerabilities
include both real and deceptive configurations.

3.2 Threat model and defense objectives

Although tenant networks are isolated on a cloud platform, malicious users could conduct lateral move-
ment by side-channel attacks, co-resident attacks or VM escape. Once penetrated into a benign tenant
network, the attacker utilizes network scanning tools to collect the information of active hosts. Af-
terwards, based on the reconnaissance results, the attacker could weaponize for the maximum attack
benefits. A typical threat scenario is depicted in Figure 1.

Attack capability. We assume that the attacker is a malicious user in the cloud platform. It attempts
to penetrate into the target tenant network and is capable of performing reconnaissance using scanning
tools. The attacker aims to collect the information of infrastructure in the tenant network, especially OS
vulnerabilities. Moreover, the attacker’s capability is limited. First, we assume that the attacker does not
acknowledge the security configuration in the network; that is, it cannot locate and identify vulnerable
and decoy hosts. Second, the attacker is a rational entity. It attempts to maximize probing benefits while
minimizing attack costs.

Attack strategy. Choosing to weaponize on specific OSs is considered an attacker’s strategy [39].
The attacker attempts to earn the highest reward (e.g., exploiting the most common vulnerabilities), and
it chooses the OS configuration of a host with equal probability to weaponize. This is because it could
not recognize the exact OS distribution of vulnerable hosts, but it would not pass valuable information.
Accordingly, we define the attack strategy and costs as follows.

Definition 3 (Attack cost CA). Let OA = {osa|osa ∈ ON} denote a subset of OS configurations
formulating the attack strategy. We define the attacker’s cost by the possible utility that he could gain
in vulnerable hosts GA, and lose in decoy hosts LA, such that

Li H R, et al. Sci China Inf Sci July 2022 Vol. 65 170305:7

GA =
U|i=i,X=vul

U|i=OA,X=vul
,

LA =
U|i=i,X=dec

U|i=OA,X=dec
,

CA = LA − GA.

(3)

The utility function U defined in 1 measures the possible impacts if the attacker weaponizes based
on a specified OS, i.e., the severeness of damage it could cause to the target environment by common
vulnerabilities between this OS and the other working nodes. Because our work is designed to provide
seamless decoy hosts, the attacker’s determination on the target OS will be accordingly influenced. That
is, the attacker will be likely to prepare the following tactics for non-existing common vulnerabilities
(derived from decoy hosts). This situation is regarded as a waste of attack resources, denoted by the loss
of the attacker, LA. Contrarily, the situation that the attacker exploits real common vulnerabilities will
be regarded as the gain of attacker, denoted by GA. Therefore, the defense goal to maximize the attack
cost could be formulated into maximizing the minus between the gain and loss.

For simplification, we only consider the utility of decoy hosts as the attacker’s loss and neglect the
reconnaissance costs because both scanning vulnerable hosts and decoys are inevitable costs for recon-
naissance attacks. The decoy hosts are a defense resource labeled as OD, and LA also represents the
defender’s benefit.

Figure 1 depicts an example of the threat scenario. In tenant network 1, without defensive deception,
the attacker could acquire that production hosts are 7 CentOS VMs and 4 Win2003 VMs. However, the
attacker does not know that there are three vulnerable hosts with CentOS and Win2003. With deception,
the attacker might find out 6 CentOS VMs, 4 Win2003 VMs, 2 Win2008 VMs, and 2 Ubuntu VMs. For
the former case, the attacker may choose to exploit the vulnerabilities of CentOS as its attack strategy
OA. Once weaponized based on the CentOS, most production hosts are at risk, especially the vulnerable
hosts. However, for the latter case where reconnaissance results are manipulated by the decoy hosts, the
attacker will be distracted in the strategy-making. It will be likely to prepare for exploiting on decoy
hosts without gains, thus allowing the defender to waste attack efforts.

Defense strategy. The defender’s goal is to obfuscate the attacker’s reconnaissance and increase at-
tack costs by strategically configuring decoys. We formulate the defender’s strategy as installing different
OSs on decoy nodes and assigning these nodes with an unused IP address. To implement such a strategy,
the defender could utilize a system daemon to generate and support virtual decoy hosts [36]. Therefore,
it will not dramatically occupy valuable cloud computing resources. Let OD denote a set of available OS
configurations for decoy hosts and P (OD) denote the defender’s strategy, referring to the distribution of
different OSs in OD, such that

P (OD) = {p(osd)|osd ∈ OD, OD ⊂ ON}

s.t. p(osd) ∈ [0, 1),

d
∑

p(osd) = 1.

(4)

In (4), the maximum probability of a single-decoy OS is less than 1 to avoid all decoy hosts with the
same configuration. The defense objective is to optimize the strategy to maximize the deception entropy
Ed in (2), and attack cost CA in (3).

4 Framework overview

To obfuscate the reconnaissance attack in cloud tenant network and increase the attacker’s cost, we
propose a configuring digital decoy to conceal system assets deceptively. Our work includes a fine-
grained deception strategy, presenting the version and amount of OSs to be configured for decoys. To
fully achieve the comprehensive defense goal, we trained a DRL agent to interact with the cloud and
generated optimal decision strategies.

Figure 2 presents the overview of our framework. First, the utility function U is updated based on
real-time configurations (i.e., the number of active working nodes and OS vulnerabilities). The utility

Li H R, et al. Sci China Inf Sci July 2022 Vol. 65 170305:8

DRL

Utility

function

Attack

strategy

Defense

strategy

Tenant networks

Tenant networks

VM VM

VM
Win2003

VM
Win2003

VM VM

VM
CentOS

VM

VM

VM

VM
Win2008

VM

VM
CentOS

VM

VM
UbuntuWin2003

U

P(O
D
)

O
A

Figure 2 (Color online) Components of the framework.

function U and attack strategy are sent to the input neurons to train the DRL agent. The attack
strategy is generated following [33]. Afterward, through the calculation of the neural network, the DRL
agent generates a list of probability distributions as actions. The finite set of actions formulates the
defense strategy. Meanwhile, ED and CA are calculated in accordance with U . They are used as rewards
for evolving the DRL agent. Back and forth, the DRL agent learns to operate under different tenant
networks and attack strategies. Lastly, the defense strategy is formatted and sent to the tenant network
as scripts to configure decoys on working nodes for defense.

5 Details of the defense framework

In this section, we present the design details of the proposed defensive deception framework, which mainly
contains two algorithms: (1) update of the utility function U and (2) DRL algorithm.

5.1 Update of the utility function

A primary component of the framework is the utility function U . U transfers OS vulnerabilities and
security settings to the impacts on the target environment. Such an impact varies from K categories and
X security settings. Subsequently, the attack cost CA is calculated according to (3). Let Nvul, Nsec, Ndec

denote the amount of hosts under the security settings. The configuration information of the tenant
network is transferred into Ω = {Hi,X

n |i = 1, 2, . . . ,m}, where z is the unused IP address in a tenant
network. The calculation and update of the utility function are presented in Algorithm 1.

Line 1 initializes GA, LA, and CA. Line 2 initializes utility weights wK for OS vulnerabilities in each
category. Line 3 initializes transition list entities. Lines 4–7 calculate the types of OSs for decoy hosts
after installing the defense strategy P (OD). Lines 8 and 9 extract decoy and vulnerable configuration to
dconf and vconf, respectively. Afterward, lines 10–15 and 16–21 update the attack gain GA and loss LA,
respectively. We divide both GA and LA with the ideal value of maximum utility for normalization.

5.2 Algorithm framework of DRL

We leverage DRL to generate an optimal deception strategy. The types and amounts of OS configurations
are optimally decided. In the DRL framework, the agent interacts with a dynamic environment (i.e., the
different vulnerability conditions in tenant networks). Through the interaction, it evolves to output
optimal decisions under a typical RL framework. The DNN eventually maps the threat model to a series
of fine-grained deception configurations.

The DRL agent observes a state st of the tenant network at each step t. Then, the agent generates an
action at based on a policy π. The agent’s action at changes the environment and gets a reward rt. That
is, the agent changes the configuration and placement of decoys, and examines how the reconnaissance
will be obfuscated. Based on rt, the agent updates its policy. In the RL framework, the learning objective
is to maximize the cumulative reward over a trajectory τ = (s0, a0, s1, a1, . . .):

R(τ) =
∞
∑

t=0

γtrt, (5)

Li H R, et al. Sci China Inf Sci July 2022 Vol. 65 170305:9

Algorithm 1 Update of the utility function U

Input: host amount Nvul, Nsec, Ndec, tenant network configuration Ω, attack strategy osx, defense strategy P (OD), vulnerability

categories K, and common vulnerability table CommV ;

Output: attack gain GA, attack loss LA, and attack cost CA;

1: Initialize GA ⇐ 0, LA ⇐ 0, CA ⇐ 0;

2: Initialize wK = {s : 4, k : 3, a : 2, d : 1};

3: Initialize list NOD
, lmax, loss, gmax, gain;

4: while p(osi) in P (OD) do

5: tmp = round(p(osi) · Ndec);

6: NOD
.append(tmp);

7: end while

8: dconf = dict(zip(OD,NOD
));

9: vconf = Counter(list(Ω[0:Nvul]));

10: while os in vconf do

11: temp = vconf[os] ·
∑K wK · CommV [osx][os];

12: tmax = vconf[os] ·
∑K wK · CommV [os][os];

13: gain.append(temp);

14: gmax.append(tmax);

15: end while

16: while os in dconf do

17: temp = dconf[os] ·
∑K wK · CommV [osx][os];

18: tmax = dconf[os] ·
∑K wK · CommV [os][os];

19: gain.append(temp);

20: gmax.append(tmax);

21: end while

22: GA⇐
gain
gmax ;

23: LA⇐
loss
lmax ;

24: CA ⇐ LA − GA.

where γ is the discount factor. The DRL agent maximizes R(τ) by evolving its policy based on a value
function V π(s). It evaluates the quality of the current policy for the environment starting from state s,
such that

V π(s) = E
τ∼π

[R(τ)|s0 = s]. (6)

Traditionally, the RL learning algorithm involves a lookup table to search for optimal policies. However,
for problems with a continuous or overly large state space, the lookup table will be infeasible in the solution
and storage. Therefore, Mnih et al. [34] proposed the use of DNN to approximate value functions. Here,
the agent’s objective is to optimize the parameterized policy πθ and value function V π(s). The defense
framework updates parameters with the actor-critic (AC)-style proximal policy optimization algorithm.
The AC architecture includes two neural networks, namely, the actor network and the critic network. θ
and φ denote the parameters for the actor and critic networks, respectively. The actor network interacts
with the dynamic environment and updates the policy to generate optimal actions. Meanwhile the critic
network adjusts value function to evaluate actions (i.e., the generated deception strategy).

In the defensive deception framework for the cloud, the dynamic environment is the tenant network.
Hence, the state of the environment indicates the configuration information of a set of target tenant
networks. Taking massive configuration information as the input data, the DRL agent generates corre-
sponding actions. The output action formulates the deception defense strategy. It includes the probability
distribution over available OSs for decoy hosts. Hence, the employed DRL algorithm should be able to
handle a large input space and continuous action space. Therefore, we involved the PPO [40] in our
framework because it has a good data efficiency and robustness and is compatible with continuous data
spaces.

To train the DRL agent, we use multilayer perceptron (MLP), a class of feedforward neural networks,
for both the actor and critic networks. Both networks share the same MLP structure, which has two
hidden layers and each layer has 64 units. The input layer takes the state st composed of configuration
details Ωt as the input data. Meanwhile, Ωt is sent to the utility function for reward calculation rt. The
activation function for hidden layers is the tanh function, mapping weighted inputs to outputs for each
unit. In employing the DRL agent to generate optimal defense actions for the cloud tenant network, the
efficiency of sampling data and learning progress are two main considerations. To promote the efficiency
of sampling, the actor network utilizes the probability ratio rt(θ) to fit the deviation between an old
policy and an updated one. To improve the learning efficiency, the critic network leverages generalized
advantage estimate (GAE) to generate an advantage surrogate based on the current value function Vφk

.

Li H R, et al. Sci China Inf Sci July 2022 Vol. 65 170305:10

OS configuration

for decoy hosts

Utility

function

Configuration

details

Cloud

tenant networks

State Reward

Critic network

Actor network

MLP network
2 hidden layers of 64 units

Action

VM VM

VM
CentOS

VM VM

VM
Win2003

VM

VM VM

VM
CentOS

VM

VM
Ubuntu

VM

VM
Ubuntu

s
t

r
t

Ω
t

a
t

Win2003

U P
O
D

Figure 3 (Color online) Training architecture of the proposed framework.

Table 2 The setting of parameters for the DRL agent

γ λ ǫ Learning rate Batch size

Value 0.99 0.95 0.2 0.0003 64

The objective function is formulated as follows:

L(θ) = Êt[rt(θ)Ât], (7)

where rt(θ) = πθ(a|s)
πθold(a|s)

and Ât is an estimator of the advantage function at time-step t. θold denotes

the vector of policy parameters before the update and Êt indicates the expectation [40]. To control the
learning rate for the policy, a hyperparameter ǫ is introduced to clip the stepsize:

LCLIP(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ǫ, 1 + ǫ)Â)], (8)

where clip(rt(θ), 1 − ǫ, 1 + ǫ) modifies the surrogate objective by clipping rt(θ). The minimum between
the clipped and unclipped objectives is taken as a lower bound of the final objective. This condition
avoids local optima or prolonging the training time. For the optimization algorithm, the actor network
adjusts and updates based on the Adam algorithm, and the critic network is optimized with mini-batch
gradient descent. The MLP network and the training structure used in this DRL framework are shown
in Figure 3.

The pseudocode of the DRL algorithm used in this work is shown in Algorithm 2. Line 1 parameterized
and initialized the policy and value function. In line 3, the algorithm generates the defense strategy
P (OD)t to configure decoy hosts based on the policy πk. Lines 4 and 5 compute rewards and advantage
estimates for the agent when interacting with the network with configuration Ωt by the policy πk. Line
6 updates the policy with the parameter θ, where θk+1 = argmaxθ Es,a∼πθk

[LCLIP(θk)]. To avoid the
overly aggressive or passive updates of the old policy, the hyperparameter ǫ is set as 0.2. Line 7 updates
the value function for the critic network.

The main parameters used in training the defense DRL agent include the discount factor γ for the
accumulated reward R(τ), the GAE parameter λ, the parameter for the clipping range ǫ, the earning
rate, and the batch size. The detailed settings of each parameter are presented in Table 2.

Li H R, et al. Sci China Inf Sci July 2022 Vol. 65 170305:11

Algorithm 2 DRL algorithm of the framework

Input: tenant network configuration Ωt = st, attack strategy ostx;

Output: defense strategy P (OD)t = at, neural network parameters of DRL θ, φ;

1: Initialize parameters θ0 and φ0 for the policy and value function, respectively;

2: while k = 0, 1, 2, . . . , n do

3: Collect a set of trajectories Dk = {st, at} by running policy πk = π(θk) to configure the tenant network;

4: Compute rewards-to-go R̂t;

5: Compute advantage estimates Ât based on the current value function Vφk
;

6: Update the policy by maximizing the clipped objective based on ADAM:

θk+1 = argmax
θ

1

|Dk|T

∑

τ∈D

T∑

t=0

min(rt(θ)Ât, clip(rt(θ), 1 − ǫ, 1 + ǫ)Â);

7: Fit value function with the mini-batch gradient descent:

φk+1 = argmin
φ

1

|Dk|T

∑

τ∈D

T∑

t=0

(Vφ(st) − R̂t)
2.

8: end while

5.3 Implementation details of DRL interfaces

According to Algorithm 2, the main interfaces between the DRL agent and cloud tenant network are the
state, action, and reward. We present the detailed design of the customized DRL interfaces as follows.

State. The state information is the input of the neural networks. In the proposed framework, the
environment to interact with the DRL agent is the cloud tenant network. The state is presented by the OS
configuration of each node in the cloud at each orchestration period, denoted by Ωt. The security status
of working nodes is divided into vulnerable, secure, and decoy, denoted by X ∈ {vul, sec, dec}. Hereby, let
st = Ωt = {Hi,X

n |i = 1, 2, . . . ,m} denote the state, where st is a vector indicating the OS configuration
and security status for each host in the tenant network. To guarantee the scalability of the DRL agent
to the changing size of tenant network, the length of st is formatted after the largest address space
the defense framework could support. For small-size networks, let the zero-vector denote inactive nodes
without any loss of the state space. Therefore, let Z denote the maximum address space, and z denote
the number of unused addresses. The dimension of the state is defined as dim(st) = (Z − z) · dim(Ωt).

Action. The action is the output of neural networks. In the proposed framework, each action for a state
is a list of probability distribution overOD, denoting the proportion of specific types of OSs for decoy hosts.
We formulate the action according to (4) as at = [a1t , a

2
t , . . . , a

d
t], where adt = p(osd) ∈ [0, 1),

∑

d a
d
t = 1,

refers to the to-be-deployed proportion of each osd in the defense resource.

Reward. The reward provides a signal to evaluate the agent’s decision, which often reflects the training
goal. We formulate the training goal with the defender’s intention. That is, reconnaissance is obfuscated
by concealing real assets and increasing the attack cost. The DRL agent is expected to generate optimal
decisions on OS configurations for decoy nodes to reach this goal. Therefore, let rt = Ed +CA denote the
reward function at t-step, where both Ed and CA are normalized forms.

5.4 Feasibility analysis

In the feasibility analysis, we present a more detailed rationale to show how existing techniques collaborate
with the proposed defense framework. The practicability of our work is enabled by the availability of
multiple OSs, profound studies on formulating decoy entities, and the automatic orchestration technology.

First, the readily available OSs set a foundation for creating enticing deceptive defense resources (i.e.,
OS installed on decoy hosts presenting deceptive fingerprints and vulnerabilities from production hosts).
On the one hand, they could be directly installed on a decoy host, presenting a high-interactive decoy.
On the other hand, their configuration details could be extracted and projected by low-interactive virtual
decoy hosts created by deception tools.

Second, formulating decoy entities such as virtual decoy hosts could be supported by existing tools, such
as Honeyd. It creates virtual decoy hosts on limited nodes in the target tenant network, and projects
virtual hosts with customizable OS configurations for user-required network addresses. This method
facilitates the practical implementation of the proposed framework in two aspects. (1) The customizable
decoys could receive an optimal deception strategy and execute configurations accordingly through certain

Li H R, et al. Sci China Inf Sci July 2022 Vol. 65 170305:12

interfaces. This setting is particularly significant for defense resource allocation in the cloud. Because
manual settings and updates are inefficient in time and personnel. (2) Decoy OS configuration could
be projected with virtual hosts on a limited number of nodes. This method strikes a balance between
defense operation and resource saving. As reconnaissance attacks mainly focus on information collection,
the adversary will have limited interactions with the target environment to stay stealthy. Providing
deceptive OS configurations with low-interactive decoys is considered a reasonable approach to both
achieve deception goals and optimize the defense budget for the cloud.

Third, with the development of virtualization technology and the prevalence of the cloud, a large
number of automatic VM management tools have been built to facilitate resilient orchestration. With
automatic management tools (e.g., Vagrant), the running status could be accessed through interfaces.
This method facilitates the calculation of the input state data and reward function.

6 Simulation and evaluation

This section presents simulations and evaluations of the proposed framework. The effectiveness of defen-
sive deception was evaluated and analyzed with the deception entropy Ed and attack cost CA, including
the attack gain GA and loss LA.

6.1 Simulation setup

First, we introduce the simulation setup. The OSN includes the following OSs: OpenBSD, NetBSD,
FreeBSD, OpenSolaris, Solaris, Debian, Ubuntu, RedHat, Win2000, Win2003, and Win2008. Their
common vulnerability information, the CommV table, was extracted from [3]. The insight of the setup for
OSN will be reasoned from the following perspectives. (1) The popularity of OSs in production scenarios.
According to W3Techs’ latest survey on the dominance of OSs for websites, Unix and Windows were
used by 79% and 21.2% of all the surveyed websites, respectively. And there are less than 0.1% of
websites that use macOS. As Linux is known as a Unix-like open-source OS, the survey’s statistics on
Unix include the utilization of Linux OS. According to the survey, among the two most popular series
of OSs, Ubuntu, Debian, CentOS, and RedHat are the top four applied Linux OSs, and the rest of Unix
includes Solaris and BSD OSs. We constructed OSN considering the popularity of the widely-applied OSs
in generalizing the proposed framework for potential changes in the configurations of the tenant network.
(2) The vulnerable state and common vulnerabilities statistics of OSs. The proposed defense framework
aims at misguiding attackers with decoy configuration, and preventing them from inferring exploitable
common vulnerabilities from reconnaissance. OSs with several common vulnerabilities should be paid
equal attention.

We simulated 12000 Class-C cloud tenant network configuration samples to evaluate our framework.
To ensure the believability of deception, we keep 10% of the address spaces unused. For the X setting,
we set the number of vulnerable hosts vul, randomized from 16 to 64 in each simulated sample. Then,
the sum of sec and vul is the remaining 90% of the address space minus the number of decoys. The DRL
agent was implemented in Python 3.7 based on Tensorflow 1.14.

Second, the metrics we adopt to evaluate the effectiveness of the defensive deception framework are as
follows.

(1) The deception entropy Ed. According to Definition 2, Ed evaluates the concealment of system assets
by decoy entities in the target network. The concealment degree reflects the effectiveness of defensive
deception confusing the attacker at reconnaissance.

(2) Attack cost CA. By placing decoy hosts, the attacker will collect unidentifiable false information
and influence his following weatherization. Hence, we used CA to evaluate the increase in attack costs by
introducing defensive deception. To better compare CA with different tenant network configurations, we
used the normalized metric CA|norm = 1

exp−CA +1
.

(3) The joint-defense goal. To evaluate the achievement of the comprehensive defense goal, we integrate
Ed and CA to formulate a scalar, namely, the joint-defense goal, joint-defense goal = Ed|+CA, where both
terms are normalized.

As surveyed in [8], the fine-grained placement strategy for decoys was understudied, hindering the
feasibility of defensive deception in the real-world. To the best of our knowledge, we are the first to
study a concrete placement and configuration strategy at the host level for decoys in the cloud. Hence,
we compared our framework with a random strategy in reference to [41], and then we compare the

Li H R, et al. Sci China Inf Sci July 2022 Vol. 65 170305:13

Table 3 The average decision-making time for each compared strategy

Size of the Decoy DRL Game theory CONCEAL

defense resource proportion strategy (s) strategy [19] (s) strategy [15] (s)

0.15 0.785 13.4 238

OD = 6 0.30 0.783 18.7 397

0.60 0.779 27.9 570

0.15 0.788 35.4 483

OD = 11 0.30 0.783 49.7 831

0.60 0.787 67.3 1005

computing time with a game theory solution [19], and an SMT solution [15]. Furthermore, we compared
the scalability with important studies in related field [42, 43].

Lastly, we introduce a set of variants in the simulation to evaluate the performance of defensive decep-
tion, including the following.

(1) Proportion of decoy hosts. According to [33], the amount of honeypots will have different impacts
on attack costs. The proportion of decoy hosts refers to its amount out of the available address space.
In this study, we evaluated the performance of defensive deception on inflection points studied in [33].
Accordingly, we simulated on 15%, 30%, and 60% of decoy hosts.

(2) OS diversity for decoy hosts |OD|. According to [3, 15, 19], the diversity of OSs adds to the
obfuscation of reconnaissance attacks. We simulated on different sizes of OD to evaluate the effectiveness
of defensive deception. In the simulation, |OD| is equal to |ON|/2 and |OD|. In particular, when |OD| =
|ON|/2, the subset of OD contains 6 OSs with the highest vulnerabilities. Defensive deception aims to
present maximum falsified information to obfuscate the reconnaissance results.

6.2 Simulation results

Performance of the DRL agent. As aforementioned, we trained a DRL to generate the fine-grained
deception strategy for decoys. The deception strategy decides the concrete amount and types to configure
OSs for decoy nodes. The ultimate defense goal of this work is to obfuscate reconnaissance attacks using
the following actions: (1) maximizing the concealment of system assets and (2) increasing the attack
cost. The DRL agent aims to maximize the deception entropy Ed and the attack cost CA. Based on the
simulation setup, we trained the DRL agent for the single defense goal, Ed or CA, and the joint-defense
goal. The training performance is plotted in Figure 4.

Figure 4 shows that the algorithm is well convergent for all cases. However, a small |OD| converges
early, especially between Figures 4(a) and (b). This is because of the limitation of the DRL algorithm,
where a small action space will have good efficiency. Moreover, the DRL agent performs better in the
joint-defense goal than CA and Ed. We analyzed that the joint-defense goal has a trade-off between CA

and Ed, which encourages the policy searching for the DRL agent to accelerate the convergence. Moreover,
the findings prove the effectiveness of the DRL algorithm in generating optimal decisions for complicated
configuration conditions of the cloud.

For the performance of the computation time and scalability, we compared the average strategy-
generation-time for each cloud tenant network in Tables 3 and 4, respectively. In reference to Table 3,
the decision-making time climbs with the increase of the size of defense resource and decoy proportion.
Especially, the increase in OD has a large impact for solutions proposed by [15, 19]. We reason that
both solutions generate an optimal strategy by searching the entire strategy space each time. For a
larger state and action space, the computational complexity is correspondingly growing. Moreover, the
long time required in solving a large action space is due to many searching rounds under the same state
space. Meanwhile for the DRL agent, it takes less than 1 s to output an optimal strategy after the
training process. This method greatly improves the feasibility to handle massive cloud tenant network
configurations for the cloud platform. However, if the overall defense goals of the cloud platform are
altered, then the DRL agent should be re-trained with an updated reward function. The training of
another DRL agent will introduce extra model-training time, but we do not discuss it here as the proposed
framework is under a fixed defense goal.

The comparison on scalability is presented in Table 4. Our work focuses on deceiving common vul-
nerabilities for the OS. The results show that it performs well for large sizes of deception resources and
cloud networks. However, we have a narrower coverage of vulnerabilities comparing with [42, 43]. The

Li H R, et al. Sci China Inf Sci July 2022 Vol. 65 170305:14
co

st
,
D

is
co

u
n
te

d
 r

ew
ar

d
s
R

(τ
)

35

30

25

20

15

10

5

Training steps

|O
D
|=6,

decoy proportion = 0.15

|O
D
|=6,

decoy proportion = 0.30

|O
D
|=6,

decoy proportion = 0.60

0 100000 200000 300000 400000

(a)

ε
d
,
D

is
co

u
n
te

d
 r

ew
ar

d
s
R

(τ
)

Training steps

|O
D
|=6,

decoy proportion = 0.15

|O
D
|=6,

decoy proportion = 0.30

|O
D
|=6,

decoy proportion = 0.60

0 50000 100000 150000 200000 250000 300000

300

250

200

150

100

50

(c)

D
is

co
u
n
te

d
 r

ew
ar

d
s
R

(τ
)

|O
D
|=6,

decoy proportion = 0.15

|O
D
|=6,

decoy proportion = 0.30

|O
D
|=6,

decoy proportion = 0.60

Training steps

0 50000 100000 150000 200000 250000 300000

100

80

60

40

20

(e)

co
st

,
D

is
co

u
n
te

d
 r

ew
ar

d
s
R

(τ
)

35

30

25

20

15

10

5

|O
D
|=11,

decoy proportion = 0.15

|O
D
|=11,

decoy proportion = 0.30

|O
D
|=11,

decoy proportion = 0.60

Training steps

0 100000 200000 300000 400000

(b)

|O
D
|=11,

decoy proportion = 0.15

|O
D
|=11,

decoy proportion = 0.30

|O
D
|=11,

decoy proportion = 0.60

Training steps

0 50000 100000 150000 200000 250000 300000

ε
d
,
D

is
co

u
n
te

d
 r

ew
ar

d
s
R

(τ
)

300

250

200

150

100

50

(d)

|O
D
|=11,

decoy proportion = 0.15

|O
D
|=11,

decoy proportion = 0.30

|O
D
|=11,

decoy proportion = 0.60

Training steps

0 50000 100000 150000 200000 250000 300000

D
is

co
u
n
te

d
 r

ew
ar

d
s
R

(τ
) 100

120

80

60

40

20

(f)

Figure 4 (Color online) Training performance of the DRL agent. (a) and (b) plotting the training progress for DRL agent to

increase the attack cost CA; (c) and (d) training defense goal as Ed; (e) and (f) plotting the performance of the DRL agent under

the joint-defense goal.

Table 4 The scalability of the proposed strategy and existing studies

The scalability entity Coverage of vulnerabilities Deception instances Number of hosts

MTD strategy [43] Software vulnerabilities Not addressed 254

Cyber deception game [42] Software vulnerabilities 2–10 20

CONCEAL strategy [15] Not addressed 6 254

Game theory strategy [19] OS common vulnerabilities 6 100

This work OS common vulnerabilities 6–11 254

main considerations are the significance of the OS for the cloud infrastructure, and possibly destructive
damages for simultaneous exploits on the common vulnerabilities of OSs among working nodes. Even
though covering a wide range of vulnerabilities will have a different context with deceiving OS-associated
common vulnerabilities, protecting multiple service instances running in the cloud network from recon-
naissance is equally urgent. Therefore, we would like to conduct a further study on the strategy for
multidimensional decoy configurations in the future.

Deception entropy Ed. This metric evaluates the concealment of system assets and the degree of
obfuscation introduced by decoys. We compared the performance of our work and [41] on Ed. Figures 5(a)
and (b) illustrate the performance of Ed under different defense resource |OD|. First, the results exhibit
that the DRL-based strategy proposed by this framework has an advantageous and stable performance in

Li H R, et al. Sci China Inf Sci July 2022 Vol. 65 170305:15

3.2

3.0

2.8

2.6

2.4

2.2

D
ec

ep
ti

o
n
 e

n
tr

o
p
y
 ε

d
,
|O
D
|=

6

3.2

3.0

2.8

2.6

2.4

2.2D
ec

ep
ti

o
n
 e

n
tr

o
p
y
 ε

d
,
|O
D
|=

1
1

0.15 0.30 0.60 0.30 0.600.15 0.15 0.30 0.60 0.30 0.600.15

DRL strategy Random strategy [41] DRL strategy Random strategy [41]

Proportion of decoy hosts Proportion of decoy hosts

(a) (b)

Figure 5 (Color online) Results of the deception entropy Ed. (a) and (b) compare each scheme’s performance on Ed under

different sizes of defense resource |OD|.

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

A
tt

ac
k
 c

o
st

0.15 0.30 0.60

Proportion of decoy hosts

Deceptive strategy, |O
D
|=6

Random strategy, |O
D
|=6

Deceptive strategy, |O
D
|=11

Random strategy, |O
D
|=11

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Jo
in

t-
d
ef

en
se

 g
o
al

0.15 0.30 0.60

Proportion of decoy hosts

Deceptive strategy, |O
D
|=6

Random strategy, |O
D
|=6

Deceptive strategy, |O
D
|=11

Random strategy, |O
D
|=11

Figure 6 (Color online) The results on attack cost CA. Figure 7 (Color online) The results of joint-defense goal.

Ed. This finding indicates its capability in concealing system assets to obfuscate malicious reconnaissance.
In detail, the DRL strategy leads an advantage from 0.89% to 8.02% when |OD| = 6 and 5.36% to 20.58%
when |OD| = 11. Furthermore, Ed generally climbs (1) the proportion of decoy hosts and (2) the diversity
of decoy OS, |OD|. These results imply that the diversity of falsified vulnerabilities is significant in
concealing real system information instead of randomly presenting many deceptive vulnerabilities.

Moreover, when the decoy hosts dominate an unused address space, i.e., proportion = 0.6, the diversity
of defense resources and strategic placement becomes essential. First, Figure 5(a) shows that Ed drops
when proportion = 0.6, |OD| = 6. This is because the diversity of the defense resource is less than
that of real system assets, |OD| = 11, which consequently provides less optimal concealment for system
information. Contrarily, in Figure 5(b) when proportion = 0.6, |OD| = |ON| = 11, the DRL strategy
has an obvious advantage and stability on improving Ed. Second, the performance of both strategies
when proportion = 0.6, |OD| = |ON| = 11 particularly highlights the significance of the precise deception
strategy for the threat scenario. We deduce that the optimal performance of the DRL-based deception
strategy is credited to the following. (1) The DRL agent’s interaction with target tenant network allows
the DRL agent to better understand certain threat scenarios and search for optimal configurations;
(2) the approximation of the DNN guarantees the efficiency in handling the high-dimensional input data
and the granular optimal deception decisions.

Normalized attack cost CA. It evaluates the additional cost on attack resources by presenting
decoys in the tenant network. The simulation results of CA are shown in Figure 6. Each bar presents the
mean and variance value of the normalized CA. Our work increased attack cost from 38.33% to 40.40% as
compared to the strategy proposed by [41], i.e., from 26.51% to 28.84%. Evidently, this work is effective
in increasing the attack cost for both sizes of |OD|.

First, we analyzed that the trained DRL agent has a better understanding of tenant network configu-
ration after multiple rounds of interactions. Through this process, the DRL agent generated a suitable
configuration for decoys to increase the attack cost. Second, for the proportion of decoy hosts, as CA

was normalized by the maximum attack cost in each tenant network, the exact value of the attack cost
grew with the increasing amount of decoy hosts. This result proves that the number of decoy hosts is

Li H R, et al. Sci China Inf Sci July 2022 Vol. 65 170305:16

correlative to CA. Lastly, for the decoy OS diversity, the amount of exploitable vulnerabilities is equally
important with the diversity to increase the attack cost. As in the simulation, when |OD| = 6, the av-
erage CA is no less than |OD| = 11. This is because the six OSs have the most vulnerabilities to falsify
attackers. Hence, when configuring OSs for decoy hosts, the number of vulnerabilities of a single OS and
the diversity of available OSs should be considered.

The joint-defense goal. The goal describes a comprehensive defense consideration other than the
single-defense goal. It evaluates the two dimensions of defensive deception: (1) the proactive concealment
of system assets and obfuscation of reconnaissance results and (2) presenting decoys to deceive the attacker
and waste attack resources. The joint-defense goal value is defined in Subsection 6.1. The attack cost
CA was derived from (3). Our proposal has a 7.87% average higher joint-defense goal value than the
compared work.

Figure 7 shows that the DRL strategy outweighs to fulfill the joint-defense goal. Particularly, when
the data space expands, the proportion of decoy hosts and |OD| also grows. This is because the DRL
agent is, in particular, proficient at processing complicated input data and generating optimal decisions.
In addition, the performance varies according to variants. With a higher proportion and a larger |OD|,
defensive deception is more effective. Moreover, the advantage of the DRL strategy is becoming evident
when placing more decoy hosts with more diverse defense resources (i.e., proportion = 0.6 and |OD| = 11).

6.3 Complexity analysis

Here, we present a comparative analysis of the complexity of deception strategy generation by the attack
graph-based model, game theoretic-based model, and the proposed work.

First, we analyze the potential complexity for the attack graph generation for the cloud tenant networks.
A fundamental phrase to build an attack graph is the construction of attack paths [14]. This phrase could
be divided into determination and pruning. The latter step is to avoid underlying state explosions in
building an attack graph, where massive paths might exceed computational capability. The primary
determination has certain impacts on the complexity of attack path pruning. However, the scalability
of an attack graph still remains a challenge for networks with increasing size, such as the cloud tenant
networks. The challenge is significant because the size not only refers to the number of network hosts
within the target environment but also the amount of installed software and associated vulnerabilities. For
the cloud tenant network, active working nodes may stay static in the configuration but will maintain a
relative scalability in the amount. However, service replicas will be highly dynamic in types and numbers,
based on either user requests or resource constraints. Consequently, the generation of an attack graph
will be limited, and the provision of near real-time security analysis will be less efficient in the cloud.
This will be very probable to degrade the efficiency of the following steps for implementing deception in
the cloud (i.e., solving the defense strategy).

Second, we reason the limitations of existing solutions to the deception strategy with game theory.
In the attack graph, calculating the centrality degree or associated shortest paths could formulate a
placement, nailing the network location for decoys. Despite the scalability issue, this solution might
fail to extract the adversarial interaction between the adversary and defender. This situation is very
likely to hinder a granular configuration for digital decoys to respond deceptively. Therefore, researchers
have employed game theory to solve deception strategy. Ever since John Nash’s publication proving that
all games have a mixed Nash equilibrium, researchers have sought solutions for computing mixed Nash
equilibria. Condon [13] proves that the complexity of a two-player stochastic game is in the class NP∩co-
NP. Daskalakis et al. [44] concluded that linear programming can formulate a mixed Nash equilibrium
for a zero-sum game, whereas complexity for general-sum games could be worst to exponential time. For
simplification, most of game theoretic models were formulated as a zero-sum game, but a gap to fully
represent threat scenarios also remains. Their study proposed a polynomial parity argument for directed
graphs (PPAD) to define NP and proved that finding ǫ-Nash is a PPAD-complete problem, if ǫ is inversely
proportional to an exponential function of the game size. Lipton et al. [45] formulated the running time

for a game with a few players (e.g., attacker and defender) as O(nlogn/ǫ2). However, for the cloud tenant
networks, multiple hosts, digital decoys, and their dynamic configurations formulate a particular large
policy space. This condition essentially increases the game size. Particularly, when the defender aims to
obtain an intelligent deceptive response with a dynamic game, mapping the high-dimensional state space
to the optimal deception strategy incurs a cost. For example, Horák et al. [32] placed honeypots with a
partially observable stochastic games-based deception strategy. However, this method is limited in terms

Li H R, et al. Sci China Inf Sci July 2022 Vol. 65 170305:17

of the scalability of configuration specifications for each node in the target system. When the number of
honeypots configured for each node exceeds 4 to 6, the calculation is prohibitively expensive. Generating
a deception strategy in this way will be very unlikely to adapt to the cloud tenant network because the
size of working nodes is scalable, and the orchestration period is restricted to deploying the deception
strategy.

The proposal of using the DNN as a function approximator for the RL is promising to map high-
dimensional input data to optimal actions. DRL provides a horizon to solve the decision problem with
a large space. Although the calculation of neural networks will be no less complicated, DRL takes
its advantage to release from the two perspectives. (1) The well-trained DRL model could be directly
implemented on the cloud. Existing cloud platforms, such as AWS, provide cloud users with well-trained
or customized ML models to cope with production issues. Likewise, well-trained DRL models could be
installed to solve security issues. Once training is finished, the packed model could generate an optimal
strategy within seconds, which is promising to meet with the efficiency requirements for the cloud.
(2) The computing tasks of neural networks could be offloaded to the GPU. Compared with the heuristic
algorithm working on the CPU, collaboration computing is essential to accelerate the training and reduce
the time complexity. Moreover, the time efficiency of the deception strategy will be more imperative
to the cloud tenant network other than the used platform or equipment. Thus, it is reasonable for the
defender to accelerate with the GPU.

6.4 Discussion

To summarize the simulation results, we would like to analyze the remaining challenges of the proposed
framework, and discuss possible future directions. We focus on expanding the coverage of vulnerabilities
and the generalization of the DRL agent.

Primarily, for the joint consideration of vulnerabilities in applications and services, the proposed frame-
work mainly concentrates on the OS configuration for decoy hosts, while not presenting the deceptive
configuration for services or applications. Because there are multiple service instances running in the cloud
network, preventing attackers from reconnaissance on services and applications is equally urgent. It is
indeed necessary to have a further study on integrating the deception of OS and service configurations.

Furthermore, the proposed DRL agent is limited in generalization when confronted with changing
settings of the cloud (e.g., unknown environment parameters or undisclosed vulnerabilities). To generalize
the defensive deception framework, we intend to investigate in two directions: automatic RL and division
on a complicated problem. On the one hand, automatic RL is an emerging area because existing studies
discover the potential of RL in solving complicated problems merely in specific areas and are limited to
particular design choices [46]. This limits the full potential of applying RL in a wider range. Because
automatic ML has exhibited its potential to fit in changing design settings, it is very likely to yield such
an advantage with DRL. Therefore, a further investigation on automatic RL will be promising to address
the generalization of the DRL agent, particularly addressing different security issues by the changing of
the tenant network. On the other hand, we consider dividing a complicated issue into sub-scenarios as
another way to enhance the generalization. For example, the changes in the target environment may have
different impacts on the cloud tenant network. In this way, we could study the collaboration of multiple
agents into a defense framework. Each agent dynamically optimizes a perspective of the complicated issue
to reach a joint goal, which eventually enables the defense framework to fit into more general security
scenarios for the cloud.

7 Conclusion

Defensive deception is an emerging proactive mechanism to reverse the asymmetry between the attacker
and defender. We propose a defensive deception framework to counter reconnaissance attacks in the
cloud. A fine-grained deception strategy was mainly studied to adapt to a multi-tenant cloud and fulfill
a comprehensive defense goal.

First, we formulated the utility function U for the cloud to model the possible impacts of OS-associated
common vulnerabilities. This could generalize to multiple tenant networks and lay a foundation for
developing adaptive deception strategies. Second, to measure the achievement of the comprehensive
defense goal, we set a joint-defense goal. It evaluates the obfuscation of reconnaissance through the
concealment degree of system assets and quantifies the increase in the attack cost. Third, we customized

Li H R, et al. Sci China Inf Sci July 2022 Vol. 65 170305:18

a DRL agent to compute the optimal defense strategy. The fine-grained deception strategy points out
the detailed type and amount of OS for decoy hosts.

We conducted simulations to evaluate our proposal on 12000 simulated Class-c cloud tenant networks.
The results show that our work has a 7.87% mean improvement in realizing the joint-defense goal. For
the concealment of system assets, the defensive deception framework leads an advantage from 0.89% to
8.02% when |OD| = 6 and 5.36% to 20.58% when |OD| = 11. The framework increased the attack cost
from 38.33% to 40.40% on average with minor variance. In addition, the framework was simulated on
different proportions of decoys and dissimilar diversity on the defense resource |OD|. The results show
the following. (1) The concealment of system assets largely depends on the diversity of defense resources.
When decoys are deployed in a large number, a strategic configuration is especially essential to ensure
defense effectiveness. (2) The increase in attack cost has a positive correlation with both the proportion
of decoys and the diversity of defense resources. The simulation shows the effectiveness and stability
of our framework to counter reconnaissance attacks in the cloud. Moreover, this framework provides
a new insight to establish the deception strategy in the cloud. It also reflects the potential of solving
cybersecurity problems with emerging AI techniques.

Acknowledgements This work has been partly supported by National Key Research and Development Program of China (Grant

Nos. 2021YFB1006200, 2021YFB1006201) and National Natural Science Foundation of China (Grant Nos. 62072467, 62002383).

References

1 Hutchins E M, Cloppert M J, Amin R M, et al. Intelligence-driven computer network defense informed by analysis of adversary

campaigns and intrusion kill chains. Leading Issues Inform Warfare Secur Res, 2011, 1: 80

2 Compastié M, Badonnel R, Festor O, et al. From virtualization security issues to cloud protection opportunities: An in-depth

analysis of system virtualization models. Comput Secur, 2020, 97: 101905

3 Garcia M, Bessani A, Gashi I, et al. OS diversity for intrusion tolerance: myth or reality? In: Proceedings of 2011 IEEE/IFIP

41st International Conference on Dependable Systems and Networks (DSN), 2011. 383–394

4 Achleitner S, La Porta T F, McDaniel P, et al. Deceiving network reconnaissance using SDN-based virtual topologies. IEEE

Trans Netw Serv Manage, 2017, 14: 1098–1112

5 Carasik-Henmi A, Shinder T W, Amon C, et al. Chapter 4—Introduction to intrusion detection systems. In: The Best Damn

Firewall Book Period. Burlington: Syngress, 2003. 111–124

6 Virvilis N, Vanautgaerden B, Serrano O S. Changing the game: the art of deceiving sophisticated attackers. In: Proceedings

of the 6th International Conference On Cyber Conflict (CyCon 2014), 2014. 87–97

7 Fraunholz D, Anton S D, Lipps C, et al. Demystifying deception technology: a survey. 2018. ArXiv:1804.06196

8 Han X, Kheir N, Balzarotti D. Deception techniques in computer security. ACM Comput Surv, 2018, 51: 1–36

9 Lu Z, Wang C, Zhao S, et al. Cyber deception for computer and network security: survey and challenges. 2020.

ArXiv:2007.14497

10 Durkota K, Lisy V, Bosansky B, et al. Optimal network security hardening using attack graph games. In: Proceedings of the

24th International Conference on Artificial Intelligence, 2015. 526–532

11 Fraunholz D, Schotten H D. Defending web servers with feints, distraction and obfuscation. In: Proceedings of 2018 Interna-

tional Conference on Computing, Networking and Communications (ICNC), 2018. 21–25

12 Pawlick J, Colbert E, Zhu Q. A game-theoretic taxonomy and survey of defensive deception for cybersecurity and privacy.

ACM Comput Surv, 2019, 52: 1–28

13 Condon A. The complexity of stochastic games. Inf Comput, 1992, 96: 203–224

14 Kaynar K. A taxonomy for attack graph generation and usage in network security. J Inf Secur Appl, 2016, 29: 27–56

15 Duan Q, Al-Shaer E, Islam M, et al. CONCEAL: a strategy composition for resilient cyber deception-framework, metrics and

deployment. In: Proceedings of IEEE Conference on Communications and Network Security (CNS), 2018. 1–9

16 Qu Y Y, Zhang J W, Li R D, et al. Generative adversarial networks enhanced location privacy in 5G networks. Sci China Inf

Sci, 2020, 63: 220303

17 Ning Z L, Sun S M, Wang X J, et al. Intelligent resource allocation in mobile blockchain for privacy and security transactions:

a deep reinforcement learning based approach. Sci China Inf Sci, 2021, 64: 162303

18 Roy S, Sharmin N, Acosta J C, et al. Survey and taxonomy of adversarial reconnaissance techniques. 2021. ArXiv:2105.04749

19 Wang Y, Guo Y, Guo Z, et al. CLOSURE: a cloud scientific workflow scheduling algorithm based on attack-defense game

model. Future Generation Comput Syst, 2020, 111: 460–474

20 Kandoussi E M, Hanini M, El Mir I, et al. Toward an integrated dynamic defense system for strategic detecting attacks in

cloud networks using stochastic game. Telecommun Syst, 2020, 73: 397–417

21 Zhan J, Fan X, Han J, et al. CIADL: cloud insider attack detector and locator on multi-tenant network isolation: an OpenStack

case study. J Ambient Intell Hum Comput, 2020, 11: 3473–3495

22 Cohen F. A note on the role of deception in information protection. Comput Secur, 1998, 17: 483–506

23 Spitzner L. The Honeynet Project: trapping the hackers. IEEE Secur Privacy, 2003, 1: 15–23

24 Petrunic A R. Honeytokens as active defense. In: Proceedings of the 38th International Convention on Information and

Communication Technology, Electronics and Microelectronics (MIPRO), 2015. 1313–1317

25 Araujo F, Hamlen K W, Biedermann S, et al. From patches to honey-patches. In: Proceedings of the 2014 ACM SIGSAC

Conference on Computer and Communications Security. New York: ACM, 2014. 942–953

26 Shu Z, Yan G. Ensuring deception consistency for FTP services hardened against advanced persistent threats. In: Proceedings

of the 5th ACM Workshop on Moving Target Defense. New York: ACM, 2018. 69–79

27 Rrushi J L. NIC displays to thwart malware attacks mounted from within the OS. Comput Secur, 2016, 61: 59–71

28 Kyriakou A, Sklavos N. Container-based honeypot deployment for the analysis of malicious activity. In: Proceedings of Global

Information Infrastructure and Networking Symposium, 2019

29 Rowe N C, Rrushi J. Introduction to Cyberdeception. Cham: Springer, 2016

https://doi.org/10.1016/j.cose.2020.101905
https://doi.org/10.1109/TNSM.2017.2724239
https://arxiv.org/abs/1804.06196
https://doi.org/10.1145/3214305
https://arxiv.org/abs/2007.14497
https://doi.org/10.1145/3337772
https://doi.org/10.1016/0890-5401(92)90048-K
https://doi.org/10.1016/j.jisa.2016.02.001
https://doi.org/10.1007/s11432-019-2834-x
https://doi.org/10.1007/s11432-020-3125-y
https://arxiv.org/abs/2105.04749
https://doi.org/10.1016/j.future.2019.11.003
https://doi.org/10.1007/s11235-019-00616-1
https://doi.org/10.1007/s12652-019-01471-3
https://doi.org/10.1016/S0167-4048(98)80071-0
https://doi.org/10.1109/MSECP.2003.1193207

Li H R, et al. Sci China Inf Sci July 2022 Vol. 65 170305:19

30 Zhu Q. Game theory for cyber deception: a tutorial. In: Proceedings of the 6th Annual Symposium on Hot Topics in the

Science of Security, 2019

31 Almohri H M J, Watson L T, Evans D. Misery digraphs: delaying intrusion attacks in obscure clouds. IEEE Trans Inform

Forensic Secur, 2018, 13: 1361–1375

32 Horák K, Bošanský B, Tomášek P, et al. Optimizing honeypot strategies against dynamic lateral movement using partially

observable stochastic games. Comput Secur, 2019, 87: 101579

33 Crouse M, Prosser B, Fulp E W. Probabilistic performance analysis of moving target and deception reconnaissance defenses.

In: Proceedings of the 2nd ACM Workshop on Moving Target Defense. New York: ACM, 2015. 21–29

34 Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning. Nature, 2015, 518:

529–533

35 Sethi K, Kumar R, Prajapati N, et al. Deep reinforcement learning based intrusion detection system for cloud infrastructure.

In: Proceedings of International Conference on Communication Systems & NETworkS (COMSNETS), 2020. 1–6

36 Provos N. Honeyd—a virtual honeypot daemon. In: Proceedings of the 10th DFN-CERT Workshop, Hamburg, 2003. 4

37 Cabral W, Valli C, Sikos L, et al. Review and analysis of cowrie artefacts and their potential to be used deceptively.

In: Proceedings of International Conference on Computational Science and Computational Intelligence (CSCI), 2019. 166–

171

38 Zhang M, Wang L, Jajodia S, et al. Network diversity: a security metric for evaluating the resilience of networks against

zero-day attacks. IEEE Trans Inform Forensic Secur, 2016, 11: 1071–1086

39 Guo M, Bhattacharya P. Diverse virtual replicas for improving intrusion tolerance in cloud. In: Proceedings of the 9th Annual

Cyber and Information Security Research Conference. New York: ACM Press, 2014. 41–44

40 Schulman J, Wolski F, Dhariwal P, et al. Proximal policy optimization algorithms. 2017. ArXiv:1707.06347

41 Gutierrez M, Kiekintveld C. Online learning methods for controlling dynamic cyber deception strategies. In: Adaptive

Autonomous Secure Cyber Systems. Cham: Springer, 2020. 231–251

42 Schlenker A, Thakoor O, Xu H, et al. Deceiving cyber adversaries: a game theoretic approach. In: Proceedings of International

Conference on Autonomous Agents and Multiagent Systems, 2018

43 Sengupta S, Chowdhary A, Huang D, et al. Moving target defense for the placement of intrusion detection systems in the

cloud. In: Proceedings of International Conference on Decision and Game Theory for Security, 2018. 326–345

44 Daskalakis C, Goldberg P W, Papadimitriou C H. The complexity of computing a Nash equilibrium. Commun ACM, 2009,

52: 89–97

45 Lipton R J, Markakis E, Mehta A. Playing large games using simple strategies. In: Proceedings of the 4th ACM Conference

on Electronic Commerce, 2003. 36–41

46 Chen J Y, Zhang Y, Wang X, et al. A survey of attack, defense and related security analysis for deep reinforcement learning.

Acta Autom Sin, 2022, 48: 1–19

https://doi.org/10.1109/TIFS.2017.2779436
https://doi.org/10.1016/j.cose.2019.101579
https://doi.org/10.1038/nature14236
https://doi.org/10.1109/TIFS.2016.2516916
https://arxiv.org/abs/1707.06347
https://doi.org/10.1145/1461928.1461951

	Introduction
	Background and motivation
	Reconnaissance attacks in the cloud tenant network
	Defensive deception for the cloud
	Limitations of existing studies
	Opportunities

	Problem formulation
	Preliminaries and metrics
	Threat model and defense objectives

	Framework overview
	Details of the defense framework
	Update of the utility function
	Algorithm framework of DRL
	Implementation details of DRL interfaces
	Feasibility analysis

	Simulation and evaluation
	Simulation setup
	Simulation results
	Complexity analysis
	Discussion

	Conclusion

