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Abstract Machine learning-based network intrusion detection systems (ML-NIDS) are extensively used

for network security against unknown attacks. Existing intrusion detection systems can effectively defend

traditional network attacks, however, they face AI based threats. The current known AI attacks cannot

balance the escape rate and attack effectiveness. In addition, the time cost of existing AI attacks is very

high. In this paper, we propose a backdoor attack called VulnerGAN, which features high concealment,

high aggressiveness, and high timeliness. The backdoor can make the specific attack traffic bypass the

detection of ML-NIDS without affecting the performance of ML-NIDS in identifying other attack traffic.

VulnerGAN uses generative adversarial networks (GAN) to calculate poisoning and adversarial samples based

on machine learning model vulnerabilities. It can make traditional network attack traffic escape black-box

online ML-NIDS. At the same time, model extraction and fuzzing test are used to enhance the convergence

of VulnerGAN. Compared with the state-of-the-art algorithms, the VulnerGAN backdoor attack increases

33.28% in concealment, 18.48% in aggressiveness, and 46.32% in timeliness.
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1 Introduction

1.1 Background

With the development of artificial intelligence technology, the defense methods of Internet devices have
been upgraded in recent years [1]. Network intrusion detection systems based on machine learning
algorithms (ML-NIDS) have emerged [2], which can automatically analyze network traffic and effectively
identify abnormal conditions by learning malicious and benign traffic features. ML-NIDS can monitor
network traffic to detect anomalous activities and prevent illegal requests for network resources. However,
machine learning enhances the recognition ability of NIDS but increases the attack surface of NIDS in
AI security. The primary AI based threats of ML-NIDS are data poisoning and adversarial samples.

Data poisoning. Data poisoning is an attack that affects model training by inducing machine learning
algorithms to learn wrong knowledge during the model training stage [3]. The attacker interferes with
the learning process of the model by adding fake malicious data to the training data, causing the model
classification boundary to deviate from the actual sample distribution. Figure 1(a) is an example of a
machine learning model that deforms the decision boundary due to poisoning attacks. The attacker puts
poisoning samples into training data and skews the model’s decision boundary, which results in the model
recognizes the samples in the malicious area as benign samples.
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Figure 1 (Color online) Examples of AI attacks. (a) Data poisoning attacks; (b) adversarial sample attacks.

Adversarial sample. The adversarial sample is an attack that utilizes machine learning algorithm
defects to affect model predictions in the model prediction stage [4]. By adding a small number of
interferences to the test sample, the attacker can make the classifier misclassify without changing the
target machine learning system. Figure 1(b) is an example of a machine learning model making a wrong
decision due to adversarial attacks. The attacker adds interference to a specific malicious sample so that
the malicious sample can be identified as a benign sample without losing the original traffic function.

1.2 Motivations and challenges

Since ML-NIDS is usually deployed in a vulnerable and open network environment, its machine learning
system is exposed to attackers. However, AI security problems in online ML-NIDS have not been thor-
oughly studied. Existing studies [5,6] only measure ML-NIDS performance from the traditional network
security perspective but lack consideration of its risks from adversarial machine learning. On the one
hand, the training data of ML-NIDS come from network traffic data with unknown sources [7], which is
vulnerable to data poisoning attacks. On the other hand, an attacker can generate targeted adversarial
samples based on the application program interface (API) exposed by ML-NIDS, resulting in machine
learning algorithms that cannot effectively identify malicious traffic.

As shown in Figure 2, traditional network attack methods are no longer valid for a host or server under
the protection of ML-NIDS [8]. Emerging AI attackers need to consider bypassing ML-NIDS detection
or paralyzing ML-NIDS. However, the existing attacks against ML-NIDS have insignificant effects. Using
poisoning or adversarial attacks alone may not pose a severe security threat to the network system because
the former does not achieve an effective network attack, and the latter still has a high probability of being
identified by ML-NIDS. There is still no attack method that can achieve a high attack success rate while
ensuring concealment. The time cost of generating poisoning and adversarial samples is still very high.
In order to construct a more effective attack on ML-NIDS, there are three major challenges.

Concealment challenge. Concealment is the basis of AI attacks. An attack that ML-NIDS can
detect is meaningless. Most of the existing studies [9–11] are dedicated to improving the escape rate
of adversarial samples, but there is still much room for improvement in the evasive effectiveness of AI
attacks against black-box ML-NIDS. How to further improve the concealment of AI attacks is a significant
challenge.

Aggressiveness challenge. Aggressiveness is the purpose of AI attacks. However, many stud-
ies [12,13] have ignored the original attack function because of excessive attention to the concealment of
adversarial samples. These researches lead to the fact that although the converted adversarial samples
can bypass the detection of ML-NIDS, they also wholly lose the features of the original sample. How to
improve concealment while ensuring aggressiveness is a significant challenge.

Timeliness challenge. Few studies have focused on the timeliness of AI attacks. However, in real
attack scenarios, the speed of poisoning or adversarial sample generation plays a decisive role, especially
for online ML-NIDS. The time cost of existing methods in generating adversarial samples is still very
high [14]. How to increase the speed of sample generation while ensuring concealment and aggressiveness
is a significant challenge.
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Figure 2 (Color online) The difference between traditional attacks and AI attacks against a host or server under the protection

of ML-NIDS.

1.3 Contributions

In this paper, we propose a backdoor attack called VulnerGAN, which uses generative adversarial networks
(GANs) to calculate poisoning and adversarial samples based on machine learning model vulnerabilities.
It can make traditional network attack traffic escape black-box online ML-NIDS and enter the target
host or server. The main contributions of this study are as follows.

(1) Targeting concealment challenge, we propose a new backdoor attack combining data poisoning and
adversarial samples. The backdoor can make the specific attack traffic bypass the detection of ML-NIDS
without affecting the performance of ML-NIDS in identifying other attacks traffic.

(2) Targeting aggressiveness challenge, we propose two generative adversarial networks named
VulnerGAN-A and VulnerGAN-B that can converge against specific attacks. They can utilize machine
learning model vulnerabilities to calculate poisoning and adversarial samples for specific attack traffic.

(3) Targeting timeliness challenge, we use model extraction and fuzzing test to enhance the convergence
speed of VulnerGAN. Model extraction also avoids attacker frequent access to the target ML-NIDS.
Through a series of experiments, the most suitable extraction algorithm for traffic recognition is selected.

The attack method proposed in this paper is tested on ML-NIDSs using different algorithms and
CSE-CIC-IDS 2017 dataset. The experimental results have demonstrated that the VulnerGAN backdoor
attack has improved concealment, aggressiveness, and timeliness compared with the existing methods.

(1) In concealment tests, VulnerGAN can convert various attacks traffic into poisoning and adversarial
samples with better evasive effectiveness. Compared with the random mutation algorithm [9,10] and the
BiGAN algorithm [11], the escape rate of various attacks increases by 33.28% on average.

(2) In aggressiveness tests, VulnerGAN can reduce the accuracy of ML-NIDSs using various algo-
rithms. Compared with the Hydra & Neptune algorithm [12] and the GAN-adversarial algorithm [13],
the accuracy of various machine learning models reduces by 18.48% on average.

(3) In timeliness tests, VulnerGAN has a faster rate of poisoning and adversarial sample generation.
Compared with the GAN & particle swarm optimization (PSO) algorithm [14], the sample generation
speed increases by 46.32% on average.

In addition, VulnerGAN uses model extraction and fuzzing test techniques. Even if the attacker only
uses VulnerGAN-B algorithms (a part of VulnerGAN) to implement adversarial attacks without poisoning
attacks, its effect is superior to existing methods in all aspects. We provide VulnerGAN source code for
download1).

2 Related work

Since Szegedy et al. [15] discovered adversarial samples of artificial neural networks, more and more stud-
ies [16,17] have shown that machine learning models may be attacked during their training or prediction
stages. The attack on the machine learning models can be divided into poisoning attacks and adversarial
attacks according to the execution time [18]. The former occurs during the training phase of the model.
The attacker injects maliciously poisoning samples into the training samples at this stage, causing the
model decision boundary to shift. The latter occurs during the model prediction phase. The attacker

1) The source code for VulnerGAN is available for download at https://github.com/liuguangrui-hit/VulnerGAN-py.

https://github.com/liuguangrui-hit/VulnerGAN-py
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does not need to change the target machine learning system but constructs specific samples to avoid
being recognized by the model.

2.1 Data poisoning attacks

According to the model information that the attacker can detect, data poisoning attacks can be divided
into white-box poisoning attacks and black-box poisoning attacks.

White-box poisoning attack. The poisoning attacker in the white-box environment knows all the
model information, including the training dataset, model network architecture, and model parameters.
Chung and Mok [19] studied the poisoning technology on IDS and realized allergic attacks against rule-
based IDS. They made allergic nodes mistakenly believe that specific network nodes have been infected
and then identify the traffic passing through these nodes as abnormal traffic. Nelson and Joseph [20]
conducted a poisoning test on ML-IDS and concluded that the attacker needs exponential data to poison
and destroy the model. Nevertheless, this conclusion is based on the assumption that the model’s re-
training window is infinite, which is not realistic in the actual process. A more realistic assumption was
proposed by Rubinstein et al. [21]. They tried to adjust the non-stationarity of the data and poisoned the
model by pre-injecting useless data into the training set, causing the classifier not to detect DoS attacks.
Kloft and Laskov [22] poisoned IDS using the central clustering algorithm, but their algorithm needs to
control 35% of the training sample data to perform effective attacks on IDS.

Black-box poisoning attack. Black-box attacks have more limitations and less model information
than white-box attacks. An attacker usually needs to convert black-box environment to white-box envi-
ronment before carrying out an effective attack. Li et al. [23] restricted the knowledge of the attacker.
By obtaining part of the information from the training dataset, the gray-box attack on ML-NIDS was re-
alized. They used a boundary pattern detecting algorithm to generate poisoning samples and introduced
the processing batch to solve the limited number of generated samples. Li et al. [24] further improved
the SMOTE algorithm. New poisoning sample data are adaptively generated according to the labeled
data, which successfully reduces the target system’s performance.

2.2 Adversarial sample attacks

According to the model information that the attacker can detect, adversarial sample attacks can be
divided into white-box adversarial attacks and black-box adversarial attacks.

White-box adversarial attack. The white-box adversarial attack is an early research method of
adversarial attack, which assumes that the attacker fully understands the internal parameters of the target
model. Yuan [25] first proposed calculating adversarial samples for ML-NIDS, which is a standard FGSM
algorithm. On this basis, Clements et al. [26] used various optimization algorithms to test ML-NIDS,
such as the fast gradient sign method (FGSM), Jacobian-based saliency map attack (JSMA), Carlini
and Wagner attack (C&W), and elastic net method (ENM). They calculated the impact of various
adversarial samples on the ML-NIDS. Alhajjar et al. [27] proposed a method for generating adversarial
samples using the heuristic algorithm and tested them on two public datasets NSL-KDD and UNSW-
NB15. The adversarial samples generated by PSO and genetic algorithm (GA) have a higher bypass rate
than optimization algorithms.

Black-box adversarial attack. The black-box adversarial attack assumes that the attacker only
knows the model’s output but does not understand the internal architecture of the model. Rigaki [28]
generated adversarial samples against black-box ML-NIDS through GAN. They used Facebook chat
traffic to train a GAN and converted the traffic passing through the attacker’s server into adversarial
samples. Charlier [29] proposed a network framework called SynGAN, which can modify malicious traffic
samples into adversarial samples. Pan et al. [30] converted malicious traffic into images and then used
pattern recognition technology to generate adversarial samples. Although their algorithm guarantees the
executable of the sample, the evasion rate on ML-NIDS is poor. Han et al. [14] proposed a method of
adversarial sample generation using the PSO algorithm and GAN. The adversarial samples generated by
this framework can simultaneously ensure aggressiveness and concealment, but the generation time of
adversarial samples is very long.
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2.3 Insufficiency of existing studies

In summary, since backdoor attacks [31] on ML-NIDS have not been effectively studied, the existing
attack methods still have plenty of room for improvement in concealment, aggressiveness, and timeliness.
There is still no attack method that can achieve a high attack success rate while ensuring concealment. If
only using the poisoning attack, although high concealment can be obtained, it does not have an actual
attack effect on network equipment. If only using the adversarial attack, although high aggressiveness
can be guaranteed, it also has a high probability of being recognized by ML-NIDS. In addition, the time
cost of generating poisoning and adversarial samples is still very high.

Due to the above-mentioned multiple limitations, the current ML-NIDS rarely considers the security
of adversarial attacks when designing and using it. However, we propose a new backdoor attack that
combines data poisoning and adversarial samples, which features high concealment, aggressiveness, and
timeliness. It can rapidly generate many actual network attacks without triggering ML-NIDS alerts,
posing a severe security threat.

3 Problem formulation

3.1 Threat model

This subsection makes assumptions about the execution conditions of the attack method proposed in this
paper.

Victim profile. The target of our work is the black-box online ML-NIDS. Compared with offline
machine learning, online machine learning methods emphasize the real-time of the learning process. Each
round of training will update the model parameters based on real-time data. With the emergence of new
attacks, ML-NIDS needs to use a large amount of data to train and adjust parameters. In the actual
network space, network data flows arrive in chronological order. Various attacks require the detection
system to have the ability to adjust the non-stationarity of data in real-time. For online ML-NIDS, it is
not appropriate to store all data in the model [22]. In addition, the machine learning model in ML-NIDS
has the concept drift phenomenon [32], and some statistical features of network traffic will change in
unforeseeable ways over time. At this time, the old samples will no longer be suitable for the new traffic
classification requirements and even reduce the model’s prediction accuracy. Therefore, the machine
learning model in ML-NIDS is usually trained by online learning [33].

Attacker profile. We design a black-box attack against online ML-NIDS. The attacker does not
need to know the internal information of the model, such as the training data, model algorithm, network
architecture, or model parameters. However, the attacker needs to understand how the model collects
training samples. They can also input test traffic to ML-NIDS for getting feedback. Online ML-NIDS
generally obtains training samples regularly (such as 20:00 every day) or during peak network traffic
periods (such as various holidays) [34], so this assumption has a practical significance. Generally, an
attacker can collect data in the network or sniff relevant information about the target host. Then, it can
construct and send data to the target host but not modify the data stored in the ML-NIDS [35].

3.2 Design goals

In this paper, we propose a backdoor attack through vulnerability amplification against black-box online
ML-NIDSs. This method can make traditional network attack traffic escape the ML-NIDS and enter the
target host or server.

As shown in Figure 3(a), when ML-NIDS runs typically, it can effectively identify and prevent malicious
traffic from entering the host or server. As shown in Figure 3(b), suppose the attacker only uses the
adversarial samples generator (VulnerGAN-B) proposed in this paper to convert malicious traffic into
adversarial samples. In this case, some adversarial samples can escape the ML-NIDS interception and
enter the host or server, but it will trigger an alert. As shown in Figure 3(c), assume that the attacker
uses both the poisoning samples and the adversarial samples generators (VulnerGAN-A&B) proposed in
this paper. First, the malicious traffic is converted into corresponding poisoning samples and adversarial
samples. Then, put the poisoning samples into the online machine learning model to amplify the backdoor
vulnerabilities. Finally, all adversarial samples generated based on malicious traffic escape ML-NIDS and
enter the host or server without triggering an alert.
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Figure 3 (Color online) The running status of ML-NIDS during (a) typical progress, (b) adversarial attacks, and (c) backdoor

attacks.

Considering that the training process of some ML-NIDSs is relatively closed, we provide an attack
method that directly uses adversarial samples (without constructing a backdoor). This method does
not need to implement data poisoning attacks on the model to affect its training process. Due to the
introduction of prior knowledge, the average evasion rate of this method is still higher than existing
studies.

4 Algorithm design

In this section, for better readability, we first list the important notations of this paper in Table 1. Then,
we present the detailed components of VulnerGAN. Finally, we propose the complete backdoor attack
process against black-box online ML-NIDS.

4.1 Black-box model extraction

Model extraction aims to turn a black-box problem into a white-box problem. It can avoid frequent
access to the target ML-NIDS, simplify the target model architecture, and accelerate the convergence
speed of VulnerGAN. We apply the model extraction technology proposed by Tramér et al. [36] to the
field of traffic identification. The process of model extraction is shown in Figure 4.

(1) The attacker uses the traffic sample set Strain = {(x1, y1), (x2, y2), . . . , (xn, yn)} containing benign
samples and malicious samples into the target ML-NIDS model f : x −→ ŷ and records the model’s
predicted label for each sample ŷ1, ŷ2, . . . , ŷn with ŷn = f(xn).

(2) The attacker uses the features of the traffic samples, and their corresponding predicted labels to
form a shadow dataset S′

train.

(3) Use the shadow dataset S′
train to train the attacker’s machine learning model to construct the

shadow model f ′ : x −→ ŷ′. Make the input and output distribution of the shadow model similar to the
target ML-NIDS.

Rextract(f, f
′) = 1−

∑

x∈Stest

d(f(x), f ′(x))

|Stest|
, (1)
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Table 1 Important notations

Symbol Definition

f : x −→ ŷ The mapping of the machine learning model in target ML-NISD

f ′ : x −→ ŷ′ The mapping of the shadow model generated by extracting f

Strain = (x,y) The traffic sample dataset for training the model in target ML-NIDS

S′

train = (x,y′) The shadow dataset for training the shadow model

Stest = (xt,yt) The test dataset for calculating Rextract of f ′

Svul = (xv,yv) The vulnerability dataset of the target ML-NIDS obtained by fuzzing tests

Smal = (xm,ym) The malicious traffic dataset that needs to be transformed into adversarial samples

x, xt, xm, xv The feature vector of Strain, Stest, Svul, and Smal

y, y′, xt, xm, xv The label vector of Strain, S
′

train, Stest, Svul, and Smal

Rextract(f, f
′) The extraction rate of f ′

d(f(x), f ′(x)) The hamming distance between the predicted labels of f and f ′

n The number of flow-based traffic samples

z The random noise vector conforming to normal distribution

G The mapping of discriminator in VulnerGAN

D The mapping of generator in VulnerGAN

w The parameter vector of VulnerGAN’s discriminator

θ The parameter vector of VulnerGAN’s generator

Model training

Model prediction

Traffic

samples

ML-NIDS Predicted label

Features Label

Shadow

datasets

Model training

Model prediction

Shadow model

Figure 4 (Color online) Model extraction to build shadow models.

d(f(x), f ′(x)) =

n∑

i=1

f(xi)⊕ f ′(xi). (2)

In order to evaluate the extraction effect of the shadow model, Eq. (1) defines the extraction rate
Rextract to describe the gap between the shadow model and the target model. The extraction effect of
the shadow model is proportional to the extraction rate. Input the test set Stest into the target model
f and the shadow model f ′, and record the two models’ predicted labels f(x) and f ′(x). The distance
between the predicted labels of different models reflects the extraction effect, where the distance d is the
Hamming distance (2).
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4.2 Fuzzing test

The fuzzing test is designed to obtain vulnerabilities of the target model and help calculate poisoning
and adversarial samples. Generally, online machine learning models can be deployed when they reach
acceptable prediction accuracy. They cannot get all training samples at one time, nor can they have an
infinite training time [37]. So even if the model is not attacked, there will be a small number of prediction
errors [38]. In order to obtain these vulnerabilities of the model in identifying each type of malicious
traffic, the attacker needs to fuzz test the target ML-NIDS. The process of the fuzzing test is shown in
Figure 5.

(1) The malicious traffic in the dataset is divided into several categories according to the attack type,
such as PortScan, Web-attacks, Bruteforce, Botnet, DoS, and DDoS.

(2) The attacker detects malicious traffic samples belonging to different attacks through ML-NIDS and
records the predicted labels.

(3) Add the samples whose predicted label do not match the actual label to the vulnerability set
V = {(xv, yv) | xv ∈ Strain ∧ yv 6= f(xv)}, where yv is the label of xv in set Strain.

This process can effectively speed up the convergence of VulnerGAN. However, the generation algorithm
does not depend on the set of Svul, which means the poisoning and adversarial samples can be calculated
even if there are no vulnerabilities. The algorithm also supports adding more attack types.

4.3 Generation algorithm for poisoning and adversarial samples

4.3.1 VulnerGAN-A and VulnerGAN-B network architecture

Goodfellow et al. [39] first proposed the GAN in 2014, which can learn the potential distribution of
actual data based on training samples to generate adversarial samples. The GAN is widely used in
cybersecurity [40]. In this paper, we propose two improved GAN models: VulnerGAN-A and VulnerGAN-
B. VulnerGAN-A generates poisoning samples to expand model vulnerabilities and construct specific
attack backdoors. VulnerGAN-B generates adversarial samples to bypass model detection and implement
effective cyber-attacks.

Unlike classic GAN, VulnerGAN-A&B improves the convergence speed of the model and the quality
of adversarial samples by introducing prior knowledge. VulnerGAN’s training focuses on specific types
of malicious traffic because the target model’s structure is simplified through the shadow model f ′.
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Figure 6 (Color online) (a) VulnerGAN-A generates poisoning samples; (b) VulnerGAN-B generates adversarial samples.

VulnerGAN does not need to perform a large-scale search for adversarial examples because the feature
distribution of samples is initialized by Svul.

Specifically, VulnerGAN-A uses the model vulnerability databases obtained from the fuzzing test to
generate poisoning samples similar to the target model vulnerability in the training sample space. Poison-
ing samples have high concealment. Inputting them into the model training phase can cause the model
to learn wrong information and generate specific attack backdoors. VulnerGAN-B uses the existing at-
tack backdoors to generate adversarial samples in the prediction sample space that can pass through the
backdoor to bypass model detection. The adversarial samples are highly aggressive and can attack the
target host or server without being perceived by the ML-NIDS. The architecture of VulnerGAN-A and
VulnerGAN-B is shown in Figures 6(a) and (b). They have a similar structure, including generator G,
discriminator D, and the shadow model f ′ based on the target ML-NIDS. The optimization objective of
the adversarial process is as follows:

min
G

max
D

V (D,G) = Exv∼pxv (xv) [logD(xv)] + E(xm,z)∼p(xm,z)(xm,z) [log(1 −D(G(xm + z)))] . (3)

xv and xm are the features of the vulnerability samples and the attacker’s malicious samples. pxv
(xv)

is the distribution of xv. p(xm,z)(xm, z) is the joint distribution of xm and noise z. G(xm + z) is a
poisoning or adversarial sample generated by generator G. The generator G in VulnerGAN is trained
based on model vulnerabilities, and its goal is to generate poisoning or adversarial samples similar to
the vulnerabilities. The discriminator D in VulnerGAN is dedicated to distinguishing the vulnerable
samples and the poisoning/adversarial samples generated by the generator G. The following describes
the training processes of generator G and discriminator D.

4.3.2 VulnerGAN-A and VulnerGAN-B training processes

Discriminator. The network architecture of the discriminator D is shown in Figure 7(a), which at-
tempts to distinguish between the vulnerable samples and the poisoning/adversarial samples generated
by generator G. The network’s input is an n-dimensional features vector, including the features of the
vulnerability samples or the poisoning/adversarial samples, plus a label reflecting whether the source is
from the vulnerability database. The network’s output is the predicted label of the input sample. The
loss function of the discriminator D is as follows:

LossD = −Exv∼pxv (xv) [logD(xv)]− E(xm,z)∼p(xm,z)(xm,z) [log(1−D(G(xm + z)))] . (4)

Eq. (4) expresses the difference between the distribution ofD’s prediction result for poisoning/adversarial
samples and the distribution of samples generated by G. For a particular poisoning/adversarial sample
(generator G is fixed), the smaller the value of the LossD, the stronger the predictive ability of D.

Generator. The network architecture of generator G is shown in Figure 7(b), which generates poi-
soning/adversarial samples with a similar distribution of vulnerabilities. The network’s input is the sum
of n-dimensional malicious traffic features vector and n-dimensional random noise. The network’s output
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Figure 7 (a) VulnerGAN’s discriminator architecture; (b) VulnerGAN’s generator architecture.

is the n-dimensional features vector of the poisoning/adversarial samples. The loss function of generator
G is as follows:

LossG = E(xm,z)∼p(xm,z)(xm,z) [log(1 −D(G(xm + z)))] . (5)

Eq. (5) expresses the ability of the poisoning/adversarial sample generated by G to deceive D. When
the discriminator D is fixed, the smaller the value of the LossG, the better the quality of the poi-
soning/adversarial samples generated by G. The generator G is trained with ResNet [41], which can
effectively solve the problem of gradient explosion and disappearance.

Algorithms 1 and 2 respectively show the training processes of VulnerGAN-A’s poisoning sample
generation algorithm and VulnerGAN-B’s adversarial sample generation algorithm:

• Step1. When G is fixed, training D to better distinguish xv and G(xm + z).
• Step2. When D is fixed, training G to generate G(xm + z) that is closer to xm.
• Step3. The G(xm+z) generated in the process is used to supplement the traffic sample and generate

more vulnerable samples xv.
Repeat the above steps to alternate training G and D so that VulnerGAN can generate poisoning and

adversarial samples similar to the target model’s vulnerabilities.
The differences between VulnerGAN-A and VulnerGAN-B are as follows:
• VulnerGAN-A is used to generate poisoning samples. Each round of the generator’s output will

pick out the best poisoning samples based on concealment to help GAN converge to high-covert samples.
The sample concealment is proportional to the probability that the shadow model identifies the poisoning
sample as a benign sample.

• VulnerGAN-B is used to generate adversarial examples. Each round of the generator’s output will
pick out the best adversarial samples based on aggressiveness to help GAN converge to high-aggressive
samples. The sample aggressiveness is proportional to the Euclidean distance between the features vector
of the adversarial sample and the corresponding malicious sample.

4.4 VulnerGAN backdoor attack process and principle

Figure 8 shows the complete VulnerGAN backdoor attack process against black-box online ML-NIDS.
• Step1. Collect the background traffic in the network and combine the attacker’s malicious traffic to

form a traffic sample set Strain.
• Step2. Pass the traffic sample set Strain through the target ML-NIDS and obtain its return label to

construct a shadow dataset S′
train.

• Step3. According to the return labels of ML-NIDS to the malicious traffic in Strain, the vulnerabilities
of the model are exploited to form a vulnerability database Svul.



Liu G R, et al. Sci China Inf Sci July 2022 Vol. 65 170303:11

Algorithm 1 The training process of VulnerGAN-A

Input: Vulnerability features xv , malicious samples features xm, discriminator parameters w0, generator parameters θ0.

Output: Discriminator parameters w, generator parameters θ.

1: while θ not converging do

2: Sample a minibatch of malicious traffic xm;

3: Generate poisoning examples G(xm + z) from the generator G for xm;

4: Select poisoning examples G(xm + z) based on concealment;

5: Sample a minibatch of vulnerability samples xv;

6: Label G(xm + z) and xv using the detector D to update G;

7: Label G(xm + z) and xm using the shadow model S to update xv ;

8: Update the detector’s weights w by descending along the gradient ∇wLD;

9: Update the generator’s weights θ by descending along the gradient ∇θLG;

10: end while

Algorithm 2 The training process of VulnerGAN-B

Input: Vulnerability features xv , malicious samples features xm, discriminator parameters w0, generator parameters θ0.

Output: Discriminator parameters w, generator parameters θ.

1: while θ not converging do

2: Sample a minibatch of malicious traffic xm;

3: Generate advesarial examples G(xm + z) from the generator G for xm;

4: Select adversarial examples G(xm + z) based on aggressiveness;

5: Sample a minibatch of vulnerability samples xv;

6: Label G(xm + z) and xv using the detector D to update G;

7: Label G(xm + z) and xm using the shadow model S to update xv;

8: Update the detector’s weights w by descending along the gradient ∇wLD;

9: Update the generator’s weights θ by descending along the gradient ∇θLG;

10: end while

• Step4. Use shadow dataset S′
train to train shadow model f ′ for specific attack types and load shadow

model S and vulnerability database Svul into VulnerGAN.

• Step5. Use VulnerGAN-A and VulnerGAN-B to convert attack traffic into poisoning samples and
adversarial samples.

• Step6. Put the poisoning samples into the running online ML-NIDS to interfere with the training
process and form a specific attack backdoor.

• Step7. Upload the adversarial samples to invade the target host or server through a backdoor attack
without ML-NIDS senses.

Figure 9(a) shows the distribution of benign traffic and malicious traffic in a sample space to analyze the
principle of backdoor attack from topology in the sample space. At this stage, there is still vulnerability
in the model that allows it to identify some malicious samples as benign samples. An attacker can obtain
the vulnerabilities set of the model through fuzzing tests. Then, VulnerGAN can be used to attack the
target ML-NIDS. As shown in Figure 9(b), VulnerGAN-A generates poisoning samples whose feature
distribution conforms to the vulnerability samples. As shown in Figure 9(c), VulnerGAN-B is used to
make the features of the malicious samples close to the vulnerability samples’ features distribution. By
putting the poisoning samples into the target ML-NIDS and retraining the model, the changes of the
model classification boundary affected by the poisoning attack are shown in Figure 9(d). The backdoor
can be generated by enlarging the model vulnerabilities to make it easier for adversarial samples escaping
model recognition. Finally, the adversarial samples transformed by malicious traffic carry actual attack
behaviors and enter the target host or server without triggering ML-NIDS alerts.

5 Experiments and evaluation

These experiments test the effect of VulnerGAN on a variety of machine learning algorithms. Compared
with existing studies, this new backdoor attack has better concealment, aggressiveness, and timeliness
performance.

5.1 Experimental environment

This subsection introduces the selection and processing of the dataset, the internal structure of the
target ML-NIDS, and the hardware and software environment of the experiments. The experimental
environment is shown in Table 2.
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Figure 9 (Color online) VulnerGAN backdoor attack process and principle. (a) The distribution of benign traffic and malicious

traffic in a sample space; (b) poisoning samples whose feature distribution conforms to the vulnerability samples; (c) adversarial

samples which close to the vulnerability samples’ features distribution; (d) result of the backdoor attack through vulnerability

amplification against online ML-NIDS.

Dataset description. These experiments use the CSE-CIC-IDS 2017 on AWS dataset (CICIDS
2017) [42], including benign and typical attack traffic. It is a collaborative project between the Com-
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Table 2 Experimental environment

Environment Parameter

Operating system Ubuntu 18.04.5, 64 bit

Graphics processing unit GeForce RTX 3080

Central processing uni Intel Xeon Silver 4210R

Programming language Python 3.8

Dataset CSE-CIC-IDS 2017 on AWS

Benign set data volume 2284702 samples

Malicious set data volume 538839 samples

Table 3 Statistics of query dataset

Queries Training set Test set Malicious set

PortScan 571698 381132 158805

Web-attacks 7852 5234 2181

Bruteforce 49798 33199 13833

Botnet 25362 16908 7045

DoS 824216 549477 228949

DDoS 460893 307262 128026

Total 1939819 1293212 538839

munications Security Establishment (CSE) and the Canadian Institute for Cybersecurity (CIC). The
dataset has about 2.83 million traffic samples, of which attack traffic accounts for 19.7% and covers the
main attack indicated in the McAfee Labs threats report 2021 [43], including PortScan, Web-attacks,
Bruteforce, Botnet, DoS, and DDoS. Each sample in the dataset has 78 features and a label.

Data preprocessing. In Experiment 1, the benign and malicious samples are uniformly and randomly
distributed to the source model training set, source model test set, and shadow model test set according
to the ratio of 10:1:10. In Experiments 2–4, the CICIDS 2017 dataset is divided into six attack types:
PortScan, Web-attacks, Bruteforce, Botnet, DoS, and DDoS. At the same time, various attack traffic
in the training set is separately extracted as a malicious sample dataset for fuzzing tests. The ratio of
malicious to benign samples in the ML-NIDS training set is 1:5, and malicious samples in the training
set are 60% of all the malicious samples. Statistics of query datasets are shown in Table 3.

Target ML-NIDS. We select five machine learning models commonly used in online learning: multi-
layer perception (MLP), deep neural network (DNN), recurrent neural network (RNN), long-short term
memory (LSTM), and gated recurrent unit (GRU). All models are designed as online ML-NIDS based on
a backpropagation algorithm. The models can identify various types of attacks in the prediction phase
by learning known malicious traffic in the training phase. The neural network architecture makes the
models have a strong feature abstraction ability suitable for large-scale datasets.

5.2 Performance metrics

In addition to the model extraction rate defined in Subsection 4.1, accuracy rate (ACC), false-negative
rate (FNR), and false-positive rate (FPR) are also the leading performance indicators of ML-NIDS. In this
paper, we use these metrics to evaluate the performance of ML-NIDS under various attacks. Eqs. (6)–(8)
give the specific calculation method of each metric.

ACC =
TF+ TN

TP + TN+ FN+ FP
, (6)

FNR =
FN

TP + FN
, (7)

FPR =
FP

TN + FP
. (8)

True-positive (TP) is the number of malicious samples correctly identified by the model. True-negative
(TN) is the number of benign samples correctly identified by the model. False-positive (FP) is the number
of benign samples incorrectly identified by the model. False-negative (FN) is the number of malicious
samples incorrectly identified by the model.



Liu G R, et al. Sci China Inf Sci July 2022 Vol. 65 170303:14

S
h
ad

o
w

 m
o
d
el

 m
ac

h
in

e 
le

ar
n
in

g
 a

lg
o
ri

th
m

MLP

DNN

RNN

LSTM

GRU

Source model machine learning algorithm

MLP DNN RNN LSTM GRU AVG

93.29 90.09 91.53 90.24 93.39 91.71

98.70 96.41 97.56 96.99 99.08 97.75

94.4298.2992.5694.0092.0195.25

96.62

92.75

91.92

89.21 92.07

94.94 92.64

90.01

98.27

95.65

94.88

91.94

Figure 10 (Color online) Extraction rate of shadow models.

Table 4 Accuracy rate of source machine learning models

Source model Accuracy rate on test set (%) Accuracy rate on malicious set (%)

MLP 96.65 83.91

DNN 93.78 85.41

RNN 97.71 90.00

LSTM 97.59 92.66

GRU 97.06 90.58

5.3 Experiment results and analyses

5.3.1 Experiment 1: model extraction and selection of the best shadow model

Experiment 1 aims to select the most suitable algorithm for extracting machine learning models in traffic
analysis. By making MLP, DNN, RNN, LSTM, and GRU models mutually extract, we test the extraction
effect of each shadow model on other models.

Results. Figure 10 shows the extraction rate Rextract of each shadow model. The DNN shadow model
has the highest extraction rate for all other models, with an average extraction rate of 97.75%. The
LSTM and RNN shadow models also have strong extraction performance, with their average extraction
rates reaching 94.88% and 94.42%, respectively. Table 4 compares the performance of various machine
learning algorithms on traffic recognition. RNN-NIDS performed best on the test set, with an accuracy
rate of 97.71%. LSTM-NIDS performed best on the malicious set, with an accuracy rate of 92.66%.

Analysis. The DNN shadow model has the best model extraction performance. Because DNN does
not specialize its structure for uniqueness problems, other neural networks are subsets of fully connected
DNN. The DNN model can simulate other network structures by adjusting the parameters. The ML-NIDS
constructed by LSTM and RNN has a strong ability in traffic recognition because they can effectively
learn the sequential features of traffic samples. Limited by the black-box attack assumption, the attacker
is unclear about the machine learning algorithm used in ML-NIDS. Since DNN has the best extraction
effect on other machine learning models, it constructs shadow models in subsequent experiments.

5.3.2 Experiment 2: fuzzing test and model vulnerability databases construction

Experiment 2 aims to test the vulnerabilities of the target ML-NIDS for various attacks. The model’s
predicted labels for malicious samples are recorded by inputting test samples into the source model.
Malicious samples that cannot be accurately identified will form the model vulnerability databases.

Results. The ability of different models to identify various attacks and the size of each vulnerability
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Table 5 Accuracy rate on malicious set and vulnerability set size of different models

Source model
PortScan Web-attack Bruteforce Botnet DoS DDoS

ACC (%) V size ACC (%) V size ACC (%) V size ACC (%) V size ACC (%) V size ACC (%) V size

MLP 87.75 19454 83.12 368 88.26 1624 80.83 375 81.74 41816 81.76 23348

DNN 93.35 10556 83.39 362 88.52 1588 84.00 313 80.99 43524 82.18 22816

RNN 99.64 570 83.62 357 88.45 1597 77.91 432 96.16 8785 94.23 7389

LSTM 99.65 554 91.74 180 88.27 1622 83.08 331 95.27 10827 97.96 2608

GRU 99.05 1515 83.58 358 88.56 1582 79.19 407 96.24 8607 96.84 4045

database are shown in Table 5. Most machine learning algorithms (except MLP) have more than 90%
accuracy when recognizing PortScan samples. However, all models have low recognition performance for
Botnet, and their accuracy rates are less than 84%. Due to the small number of Botnet samples in the
CICIDS2017 dataset, the size of the Botnet attack vulnerability database is not large.

Analysis. The features of PortScan attacks are apparent, and they can be easily identified even
by rule-based NIDS. Therefore, all five ML-NIDSs in the experiments identify PortScan attacks with
high accuracy. However, the methods of Botnet attacks are more complicated, and the purpose of these
attacks are different, so it is difficult to identify them. Although some vulnerability databases are small,
the generation algorithm of VulnerGAN does not depend on the set of Svul, which means the poisoning
and adversarial samples can be calculated even if there are no vulnerabilities. The shadow models
constructed in Experiment 1 and the vulnerability databases collected in Experiment 2 will be carried
into VulnerGAN to generate poisoning and adversarial samples in Experiments 3 and 4.

5.3.3 Experiment 3: comparisons of backdoor attacks and adversarial attacks

Experiment 3 aims to test the impact of the specific backdoor caused by data poisoning on the attack
success rate. We record the effects of different machine learning models and various network attacks
on the original malicious samples, adversarial samples (generated by VulnerGAN-B), and VulnerGAN
backdoors (implemented by VulnerGAN-A&B).

Results. Figure 11 shows the escape rates of original, adversarial, and backdoor samples from various
attacks on different models. In all cases, the effects of backdoor attacks are better than adversarial attacks.
From the perspective of ML-NIDS, the interference of VulnerGAN backdoor to LSTM-NIDS is the most
obvious, and the attacks escape rate is increased from 30%–70% to 90%–100%. From the perspective
of cyber-attacks, the backdoor has significantly improved Bruteforce and Botnet attacks effect, and the
attacks escape rate has increased from 70%–80% to 90%–100%.

Analysis. Experiment results show that if the attacker only uses VulnerGAN-B to convert malicious
traffic into adversarial samples, some of them can escape the ML-NIDS interception, but 10%–20% of the
attack traffic will still be recognized. If the attacker uses VulnerGAN-A and VulnerGAN-B simultaneously,
almost all adversarial samples can enter the host or server without triggering ML-NIDS alerts. Although
the adversarial samples generated by VulnerGAN-B have a high evasion rate, there is still room for
improvement in specific attacks (such as Botnet) or models (such as LSTM). Backdoor attacks can
effectively improve the shortcomings of adversarial attacks in the above aspects. An attacker should try
his best to increase the evasion rate because once an attack on ML-NIDS triggers an alert, it means that
all previous efforts have been lost.

5.3.4 Experiment 4: comparisons with related works

Experiment 4 aims at comparing VulnerGAN with existing attack methods in terms of concealment,
aggressiveness, and timeliness.

Results-1 (concealment tests). In terms of concealment, we compared the difference in evasive
effectiveness between VulnerGAN algorithm, random mutation algorithm [9,10], and the state-of-the-art
BiGAN algorithm [11] in Figure 12(a). In the case of only using VulnerGAN-B, our algorithm has 24.15%
(PortScan), 12.33% (Web-attacks), 46.95% (Bruteforce), −27.70% (Botnet), 35.65% (DoS), and 29.81%
(DDoS) improvements on different attacks. In the case of using the complete VulnerGAN framework, the
evasion rate has further increased, with 24.16% (PortScan), 19.45% (Web-attacks), 67.70% (Bruteforce),
1.78% (Botnet), 38.85% (DoS), and 47.75% (DDoS) improvements in different attacks.
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Figure 11 (Color online) The escape rate (in %) of original attacks, adversarial attacks (VulnerGAN-B), and backdoor attacks

(VulnerGAN-A&B).

Analysis-1 (concealment tests). Benefit from the fuzzing test, VulnerGAN has an excellent con-
vergence performance. Even if the attacker uses VulnerGAN-B alone, the adversarial samples have a high
escape rate on most attacks (except Botnet). Furthermore, if the attacker uses the complete VulnerGAN
framework, the backdoor makes all attacks reach the highest escape rate. Compared with the state-of-
the-art methods, the escape rate increases by 33.28% on average. The adversarial samples generated
by VulnerGAN-B for Botnet have a low evasion rate caused by Botnet traffic’s complex and changeable
purpose [44]. In contrast, the purpose of other malicious traffic is pronounced. The feature set of Botnet
traffic is divided into multiple small cluster groups in terms of the sample distribution [45]. To solve this
problem, on the one hand, when using VulnerGAN-B to calculate adversarial samples, the attacker should
train malicious traffic with similar goals uniformly. On the other hand, an attacker can use VulnerGAN-A
to poison model and aggregate multiple Botnet traffic sample clusters.

Results-2 (aggressiveness tests). In terms of aggressiveness, we compared the difference in model
accuracy between VulnerGAN algorithm, Hydra & Neptune algorithm [12], and the state-of-the-art GAN-
adversarial algorithm [13] in Figure 12(b). In the case of only using VulnerGAN-B, our algorithm reduces
the accuracy of ML-NIDSs using different algorithms by 5.84% (MLP), 11.26% (DNN), 11.71% (RNN),
7.22% (LSTM), and 17.13% (GRU). In the case of using the complete VulnerGAN framework, the per-
formance of ML-NIDSs using different algorithms is further reduced, and the accuracy rates respectively
reduce by 15.86% (MLP), 16.18% (DNN), 15.75% (RNN), 19.97% (LSTM), and 24.65% (GRU).

Analysis-2 (aggressiveness tests). Benefit from model extraction, VulnerGAN has a solid ability
to simulate different models. So even if the attacker uses VulnerGAN-B alone, the adversarial samples
can significantly reduce the model’s accuracy. Furthermore, if the attacker uses the complete VulnerGAN
framework, the poisoning and adversarial attacks will further reduce the accuracy of all models. Compared
with the state-of-the-art methods, the accuracy of ML-NIDS reduces by 18.48% on average.

Results-3 (timeliness tests). In terms of timeliness, we compared the difference in sample generation
speed between the VulnerGAN algorithm and the state-of-the-art GAN & PSO algorithm [14]. By testing
the time cost of the generation algorithm in converting all malicious samples in the Table 6, VulnerGAN’s
poisoning and adversarial sample generation speeds have been improved 1.78 s (PortScan), 3.74 s (Web-
attacks), 2.39 s (Bruteforce), 0.73 s (Botnet), 2.08 s (DoS), and 3.12 s (DDoS) on different attacks,
respectively.

Analysis-3 (timeliness tests). Benefit from the covert filter of VulnerGAN-A and the aggressive
filter of VulnerGAN-B, VulnerGAN has a fast convergence and generation speed. The speed of poisoning
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Figure 12 (Color online) (a) Evasion rate of different attacks on the ML-NIDS (concealment tests); (b) accuracy rate of different

models affected by attacks (aggressiveness tests).

Table 6 Time cost (s) of the generation algorithm in converting all malicious samples (timeliness tests)

Method PortScan Web-attacks Bruteforce Botnet DoS DDoS

GAN & PSO [14] 6.55 3.81 2.83 0.8 8.93 6.96

VulnerGAN 4.77 0.07 0.44 0.07 6.85 3.84

and adversarial samples generation for all types of attacks has been improved, especially on Web-attacks
and Botnet. Compared with the state-of-the-art methods, VulnerGAN increases the sample generation
speed by 46.32% on average.

Summary. The experimental results have demonstrated that VulnerGAN backdoor attack has im-
proved concealment, aggressiveness, and timeliness compared with the existing methods. In terms of con-
cealment, VulnerGAN can convert various attacks traffic into adversarial samples with the best evasive
effectiveness. Compared with the state-of-the-art methods, the escape rate of various attacks increases
by 33.28% on average. In terms of aggressiveness, VulnerGAN can reduce the accuracy of ML-NIDSs
using various algorithms. Compared with the state-of-the-art methods, the accuracy of various machine
learning models reduces by 18.48% on average. In terms of timeliness, VulnerGAN has the fastest rate of
poisoning and adversarial samples generation. Compared with the state-of-the-art methods, the sample
generation speed increases by 46.32% on average. In addition, VulnerGAN uses model extraction and
fuzzing test techniques. Even if the attacker only uses VulnerGAN-B to implement adversarial attacks
without poisoning attacks, its effect is superior to existing methods in all aspects.

6 Conclusion

In this paper, we introduce the research status of AI security in ML-NIDS, point out the security risks of
existing ML-NIDS, and summarize the deficiencies of existing attack methods in concealment, aggressive-
ness, and timeliness. Based on this, we propose a backdoor attack through vulnerability amplification
against black-box online ML-NIDSs. This method is based on two generative adversarial networks:
VulnerGAN-A and VulnerGAN-B. VulnerGAN combines poisoning attacks and adversarial attacks by
exploiting machine learning model vulnerability. The backdoor attack can make traditional network at-
tack traffic bypass ML-NIDS identification. VulnerGAN is tested on ML-NIDSs using different algorithms
and CSE-CIC-IDS 2017 dataset. Compared with the state-of-the-art algorithms, VulnerGAN backdoor
attack increases 33.28% in concealment, 18.48% in aggressiveness, and 46.32% in timeliness.

For future research, we will continue to study how to convert traffic data into poisoning traffic and
adversarial traffic in the practical network and achieve end-to-end transparent traffic conversion. Finally,
we hope that the producer and maintainer of ML-NIDS will pay more attention to adversarial attacks
through this work. It is necessary to add protection to the model and fully attack tests when designing
ML-NIDS. Otherwise, machine learning will increase the attack surface of the system.
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