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Dear editor,

Quantum communication and quantum computation, whose

essence is using quantum mechanics to control the quan-

tum state, are the cutting-edge technologies for informa-

tion security and efficient computing. Quantum state es-

timation (QSE) is considered as a fundamental problem in

high-precision quantum state feedback control, and the es-

timation accuracy significantly affects subsequent applica-

tions [1]. As proposed by Zhang et al. [2], this problem can

be equivalently regarded as a convex optimization problem

with the physical constraints of positive semidefinite and

unit-trace Hermitian, and the disturbance of quantum sys-

tem can be divided into two cases as measurement noise and

system disturbance. Ignoring any of them, the estimated

state will deviate from the true quantum state [3], which

inspired us to do further research.

In this study, we propose an online quantum state filter

(OQSF) to solve the problem of online quantum state es-

timation with both sparse disturbance and Gaussian noise.

To the best of our knowledge, this is the first time that two

types of disturbances are considered simultaneously in the

online quantum state estimation problem.

Problem statement. Considering an n-qubit quantum

system, we can design the measurement operator Ak and the

measurement record sequence bk at the k-th sampling [4] ac-

cording to the output y, where bk is contaminated by Gaus-

sian measurement noise e and sparse state disturbance S.

To estimate the quantum state ρ̂k at the current sampling

k is the aim of OQSF. First, the quadratic ellipsoidal norm

is defined as ‖x‖2G = x†Gx, where x ∈ Cm×1 is the target

column vector and G ∈ Cm×m is a symmetric positive ma-

trix, which can be freely selected as a weight matrix. With

prior knowledge that ρk is complex and satisfies the con-

straints of positive semidefinite and unit-trace Hermitian, e

obeys Gaussian distribution and S is sparse. Therefore, the

OQSF problem at the k-th (k = 1, 2, . . . , N) sampling can be

converted into the following convex optimization problem:

min
ρ̂,Ŝ,ê

‖vec(ρ̂, ρ̂k−1)‖ωI1
+ IC(ρ̂) + θ

∥
∥Ŝ

∥
∥
1
+ ‖ê‖γI2 ,

s.t. Ak vec(ρ̂+ Ŝ) + ê = bk,
(1)

where ω>0, θ>0 and γ>0 are the regularization parameters,

‖vec(ρ̂, ρ̂k−1)‖ωI1 and ‖ê‖γI2 are the quadratic ellipsoidal

norms. ωI1 and γI2 are the weight matrices of the ellip-

soidal norms. I1 and I2 represent the identity matrices with

dimension min(k, l). Convex set C :=ρ ∈ Cd×d|ρ̂† = ρ̂, ρ̂ �
0, tr(ρ) = 1 represents the quantum state constraint; when

ρ̂ ∈ C, the indicator function IC = 0, otherwise IC = ∞.

Online quantum state filter. The online alternating direc-

tion multiplier (OADM) method is introuduced to derive the

online quantum state filter. The OADM framework decom-

poses the problem into two optimization subproblems, then

minimizes the augmented Lagrangian function correspond-

ing to the original variables, and finally updates Lagrangian

multipliers through dual gradient ascent to solve the global

optimization problem. Although Eq. (1) contains three op-

timization variables, it can still be preliminarily decomposed

by OADM. The augmented Lagrangian function of (1) is

Lα := ‖vec(ρ̂, ρ̂k−1)‖ωI1
+ α

2
‖Ak vec(ρ̂+ Ŝ) + ê− bk‖

−〈λ,Ak vec(ρ̂ + Ŝ) + ê− bk〉+ θ‖Ŝ‖1 + ‖ê‖γI2 ,
(2)

where α > 0 is a positive penalty parameter; λ is a Lagrange

multiplier and a real vector. During the optimization pro-

cess, we ensure that ρ belongs to the quantum constraint

set C at every moment. Thus, Ak vec(ρ) is real and so is

Ak vec(ρ+ S)− bk .
At this point, by OADM, we decompose the problem (1)

into
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(ρ̂k, Ŝk) = argmin
ρ̂,Ŝ

{

θ‖Ŝ‖1 + IC(ρ̂) + ‖ vec(ρ̂ − ρ̂k−1)‖
2

ωI1

+
α

2

∥

∥

∥

∥

Ak vec(ρ̂ + Ŝ) + êk−1 − bk −
λk−1

α

∥

∥

∥

∥

2

2

}

,

(3a)

êk = argmin
ê

{

α

2

∥

∥

∥

∥

∥

Ak vec(ρ̂ + Ŝ) + ê− bk −
λk−1

α

∥

∥

∥

∥

∥

2

2

+ ‖e‖2

γI2

}

,

(3b)

λk = λk−1 − α(Ak vec(ρ̂ + Ŝ) + êk − b̂k). (3c)

Subproblem 1. For the subproblem (3a) with dual vari-

ables ρ̂ and Ŝ, firstly ignore the indicator function IC(ρ̂)
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and then replace the constant (bk + λk−1/α− êk−1) with u

in (3a). The unconstrained form of (3a) can be obtained:

(ρ̃k, Ŝk) = argmin
ρ̂,Ŝ

{

θ‖Ŝ‖1 + ‖ vec(ρ̂ − ρ̂k−1)‖2ωI1

+α
2

∥
∥
∥Ak vec(ρ̂+ Ŝ) − u

∥
∥
∥
2

2

}

,

(4)

where ρ̃ denotes the unconstrained density matrix.

All terms about ρ̂ in (4) are differentiable. By using the

first-order optimal condition and partitioned matrix inver-

sion lemma, we can get the solution as

vec(ρ̃k) = vec(ρ̂k−1) +K(z −Ak vec(Ŝ)), (5)

where K = A†
k
( 2ω

α
+A†

k
Ak)

−1, z = u−Ak vec(ρ̂k−1).

Substituting (5) into (4), we will get the optimization

problem only with S:

min
Ŝ

{‖z −Ak vec(Ŝ)‖2R + θ‖Ŝ‖1}, (6)

where R = α(I3 −AkK)†(I3 −Ak) + ωK†K.

In problem (6), the ellipsoidal norm ‖·‖R is continuously

differentiable, but the l1 norm ‖ · ‖1 is not differentiable.

Let f(Ŝ) = ‖z−Ak vec(Ŝ)‖2R, g(Ŝ) = θ‖Ŝ‖1. It is obviously

the problem that can be solved by iterative soft threshold

algorithm (ISTA). We can get the calculation of sparse dis-

turbance S at the k-th sampling:

Ŝk = Mβk−1θ
(dk), (7)

where Mβk−1θ
(dk) is the soft threshold operator,

Mβk−1θ
(dk) = sgn(dk) × max(dk − ωk−1, 0). dk is the

gradient of smoothing term f(Ŝ) at the k-th sampling.

According to (7), calculate the estimated value of sparse

disturbance Ŝk at time k and substitute it into (5) to obtain

the unconstrained estimated value density matrix ρ̃k:

vec(ρ̃k) = vec(ρ̂k−1) +K(z −Ak vec(Ŝk)). (8)

Now, considering the indicator function IC(ρ̂) previously

ignored, the estimated value ρ̂k that satisfies the physical

constraints can be obtained by solving the following semidef-

inite programming (SDP) problem:

ρ̂k = argmin
ρ̂

‖vec (ρ̂− ρ̃k)‖F ,

s.t. ρ̂ � 0, tr(ρ̂) = 1, ρ̂† = ρ̂,
(9)

where ‖ · ‖F represents Frobenius norm.

Note that the SDP problem (9) has an optimal solu-

tion [5], which can be obtained by solving Karush-Kuhn-

Tucker (KKT) conditions. So far, we have obtained the

estimation of ρ̂k and Ŝk.

Subproblem 2. Eq. (3b) is an unconstrained quadratic

problem. The update formula of ek can be obtained directly

through the first-order optimal condition as

êk =
α

2γ + α

(

bk +
λk−1

α
−Ak vec(ρ̂)k + Ŝk

)

. (10)

Experiments. For an n-qubit quantum system, the initial

state density matrix is chosen as ρn
1
= ρ1 ⊗ · · · ⊗ ρ1

︸ ︷︷ ︸

n

where

ρ1 = [0.5, (1 − i)/(
√
8); (1 + i)/(

√
8), 0.5]. Gaussian noise is

generated by the MATLAB command randn(n, 1) at each

sampling, which is amplified by a selected constant mul-

tiple to obtain a desired signal-to-noise ratio (SNR), and

SNR = 40 dB. The sparse disturbance matrix S ∈ Rd×d,

whose value meets the Gaussian distribution N(0, ‖ρ‖F /20),

has d2/10 nonzero entries, and the positions of nonzero el-

ements are randomly distributed in the true density ma-

trix. For the performance of an estimated ρk , we adopt

the normalized distance D(ρ̂k, ρk) between the estimated

ρ̂k and the true density matrix ρk , which is defined as

D(ρ̂k, ρk) = ‖ρ̂k − ρk‖2F /‖ρk‖2F .

To verify the superior performance, we compare the pro-

posed OQSF with the existing algorithms ALR-MEG, OPG-

ADMM and QSE-OADM, in terms of the normalized dis-

tance D(ρ̂k , ρk) between the estimate ρ̂k and the true den-

sity matrix ρk. In order to reflect the accuracy difference

between the four algorithms more clearly, we set the or-

dinate representing the estimation accuracy to logarithmic

form.
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Figure 1 (Color online) Normalized distance changes with

sampling times for 4 qubits.

Figure 1 depicts the normalized distance D(ρ̂k , ρk) of four

algorithms with respect to sampling times for a 4-qubit sys-

tem. We can see that at the 100th sampling, the perfor-

mance D(ρ̂k , ρk) of ALR-MEG, OPG-ADMM, QSE-OADM

and OQSF is 0.16, 0.17, 5.3 × 10−2 and 6.2 × 10−3, re-

spectively, which shows that under the same sampling, the

estimation accuracy of OQSF based on the normalized dis-

tance is about an order of magnitude higher than that of

QSE-OADM, which has the second highest accuracy. Fur-

thermore, we calculate the running time required by the

four algorithms to reach the performance indicators: 0.063

s in ALR-MEG, 0.3116 s in OPG-ADMM, 0.073 s in QSE-

OADM and 0.043 s in OQSF. Our proposed OQSF can ob-

tain the state estimation under the target accuracy with the

least running time.

Conclusion. An OQSF was proposed in this study, which

online estimated the density matrix in the time-varying

quantum system with Gaussian measurement noise and

sparse state disturbance. The experimental results showed

the superiority of OQSF as an online state estimation algo-

rithm for multi-qubit quantum systems, which is ready to

realize the high-precision quantum estimated state feedback

control in actual quantum device systems.
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