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Self-organized shape formation can be observed in many nat-

ural processes [1, 2], involving crystallization, multi-cellular

organism formation, and social insects collaboration. In

these natural processes, complex structures emerge from de-

centralized collaboration among individuals. This kind of

phenomenon motivates two research problems: what is the

mechanism of self-organized shape formation, and how to

construct artificial systems of self-organized shape forma-

tion. Solutions to the two problems could facilitate the ap-

plication of self-organized shape formation in many poten-

tial domains, such as smart warehouses [3] and intelligent

transportation [4]. Specifically, self-organized shape forma-

tion can be applied to bike-sharing systems in the intelligent

transportation domain to guide the movement directions of

multiple uses when the parking space is scarce.

In recent years, many attempts have been made to ad-

dress the two problems mentioned above. Rubenstein et

al. [5] proposed a method to support shape formation with

thousands of agents based on the strategy of edge-following,

which manifests low efficiency due to the low parallelism

among agents. Yu et al. [6] proposed a centralized method

for shape formation based on task assignment and path

planning, which suffers from poor scalability concerning the

number of involved agents due to the high computational

cost. Chiang et al. [7] proposed a shape formation method

based on the concept of artificial potential fields (APF),

which exhibits poor stability due to the high risk of an

agent’s falling in local minima. To our best knowledge, there

still lacks an efficient, scalable, and stable mechanism of self-

organized shape formation in existing research and practice.

In this article, we demonstrate an approach to massive

self-organized shape formation in grid environments. The

essence of this approach is a continuously executing loop of

information exploration, integration, and feedback among

agents in a collective, following a constructive model for col-

lective intelligence [8]. In particular, an artificial light field

(ALF) is introduced and superimposed on the grid environ-

ment, serving as a carrier for information integration and

feedback. As a result, a mutual feedback process emerges

between the ALF and the agent collective: the current po-

sitions of all agents in the grid environment determine the

current state of the ALF, which in turn drives agents to

change their current positions.

Figure 1 gives an overview of this approach, which con-

sists of five components: a grid environment, a target shape,

an agent collective, an artificial light field, and a lightweight

coordinator. In the shape formation process, each agent in-

teracts with the coordinator through an iterative process. At

the beginning of each iteration, each agent in the collective

sends its current position to the coordinator; after receiv-

ing all agents’ positions, the coordinator broadcasts system

state to all agents. Then, each agent sequentially carries out

three actions (local ALF calculation, priority queue gener-

ation, and conflict resolution) to obtain its next position.

After that, each agent moves to its next position, informs

the coordinator of this movement, and enters the next it-

eration. This iterative process terminates when the target

shape is formed.
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Figure 1 (Color online) An iterative process for ALF-based

massive self-organized shape formation.
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We briefly describe the three kinds of agent action afore-

mentioned as follows:

(1) Local ALF calculation. This step is responsible

for calculating the local ALF of each agent, i.e., the light

intensities in its surrounding 8 grids as well as its cur-

rent position after receiving the current system state from

the coordinator. Inspired by phototaxis observed in many

species (i.e., organisms’ movement towards or away from

light sources) [9], we define two kinds of light: at any time,

each agent out of the shape releases red light, and each unoc-

cupied target grid releases blue light. The ALF at any time

is defined as a pair of functions: the first function maps

each grid to the intensity of red light at the grid, and the

second to the intensity of blue light. The intensity of the

light is attenuated with propagation distance. The intensity

of red/blue light at a grid is the sum of all red/blue light’s

intensities propagated to the grid.

(2) Priority queue generation. Given an agent at an iter-

ation, its priority queue of next positions is a permutation

of this agent’s local 9 grids, generated based on its local

ALF. The strategy for generating an agent’s priority queue

depends on the agent’s state. When an agent is outside the

target shape, its priority queue will be constructed following

the strategy of directing agents outside the target shape to

move towards the shape. When an agent is already inside

the target shape, its priority queue will be constructed fol-

lowing two strategies: the first strategy motivates an agent

to keep moving towards those unoccupied positions in the

center of the target shape after the agent has entered the

shape, and the second one motivates an agent to leave pe-

ripheral positions of the target shape.

(3) Conflict resolution. After obtaining its priority queue,

an agent will request the coordinator to check positions in

the priority queue sequentially until finding a conflict-free

next position. Specifically, each grid in the environment is

treated as a mutex lock, and a try lock mechanism is used

to check whether a requested position is available. If the

position is unavailable, the mechanism will check the next

one in its priority queue immediately, avoiding the possi-

ble dead-lock in a wait until lock mechanism. This iterative

negotiation will terminate until finding a conflict-free next

position. In the extreme case when the priority queue be-

comes empty and the negotiation has not terminated, the

agent will stay still at this time step.

Note that system states can also be shared among agents

through broadcasting or cloud/edge nodes in the cloud-edge

computing environment instead of the central coordinator,

which can mitigate the coordinator’s possible single-point

failure problem.

In our experiments, this approach exhibits high effi-

ciency, scalability, and stability. (1) In an extreme case

involving 5469 agents in 135×135 grid environment, this

approach forms the target shape accurately with only

119 steps/256.6 s on average. (2) Compared with the state-

of-the-art centralized distance-optimal algorithm, this ap-

proach exhibits an n
3 to n

2log(n) decrease in the absolute

completion time of the shape formation tasks with regard to

task scale n, and can be easily accelerated via paralleliza-

tion. (3) The standard deviations of the shape completion

degree, the number of iterations to complete a target shape,

and the physical time to complete a target shape of this

approach are 0.00034, 0.04410, and 0.00033, respectively.
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