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Abstract Nanomaterials have been considered as promising materials to construct highly sensitive and

miniaturized gas sensors due to their high ratio of surface to volume, but almost all of the reported nanoma-

terials based resistive gas sensors are difficult to use in the practical system mainly owing to the long recovery

time and non-equilibrium state at room temperature. Here, we demonstrate a gate assistant technology to

realize the rapid recovery to an equilibrium state in semiconducting carbon nanotube (CNT) thin-film gas

sensors and promote the CNT-based gas sensors to reach the practical application level. Specifically, we

construct highly uniform gas sensors based on semiconducting solution-derived CNT film and accelerate the

gas molecules desorption by applying a voltage on the back gate (substrate), which is named gate-assistant

recovery technology. By combining the gate-assistant recovery technology and a modified concentration cal-

culation method, highly reproducible detection systems have been realized by using a custom-built printed

circuit board (PCB) based data acquisition circuits to execute a real-time rapid detection of H2 in the air

at room temperature, and especially exhibits a record response time of 9 s and recovery time of 50 s un-

der a resolution of 10 ppm, which outperformed previous low dimensional nanomaterials based portable H2

detection systems. The gate-assistant rapid recovery and related concentration calculation technologies are

helpful to promote the nanomaterials-based gas sensors to practical application for highly sensitive online

gas detection.
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1 Introduction

Modern gas sensors with high sensitivity, low power consumption, and a high level of integration are
essential for safety and quality monitoring in various industrial processes [1–3]. Current mainstream
commercial gas sensors based on resistive metal oxide semiconductors (MOS), which are in bulk and
operated at a temperature higher than 200◦C, are not favored in advanced gas sensing technology [4].
Recently, extensive investigations have been made on the use of atomically thin materials (ATMs) or
named nanomaterials, including nanowires, nanotubes, and two-dimensional materials, to construct gas
sensors with high sensitivity and high selectivity at room temperature, which provides a new opportunity
to tackle those challenges of conventional gas sensors [5, 6]. Unfortunately, these ATMs gas sensors are
usually far away from practical applications since they always suffer several critical defects, including poor
reproduction and uniformity. The wafer-scale and uniform materials preparation and device fabrication,
which are of great significance for the practical application, are still big challenges for most emerging ATMs
sensors. More importantly, high affinity to the gas molecules in these ATMs leads to high sensitivity
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and rapid response on the one hand, but also results in long recovery time even to several hours at
low operation temperature [7–9]. Furthermore, the combination of high affinity and large absorption
capacitance due to the high surface-to-volume ratio of ATMs will bring a non-equilibrium response in
practical time scale [10], and finally prevent the use of resistance response to evaluate the concentration
in practical gas sensor systems [11, 12].

Carbon nanotube (CNT) has been considered as one of the promising ATMs for constructing highly
sensitive chemical and bio-sensors owing to its unique structure, excellent electrical properties, and high
stability [13,14]. CNT gas sensors with a batch fabrication ability in wafer-scale have been demonstrated
for the room temperature detection of ppb level H2 by utilizing high semiconducting purity solution-
derived CNT films [15]. However, similar to other ATMs-based gas sensors, the reported CNT gas sensors
still suffer from those challenges of long recovery time and non-equilibrium response. Some methods
including UV light or on-chip heaters have been developed to accelerate the sensor recovery process, but
these methods significantly increase the design/fabrication complexity and power consumption of the
sensors [16,17]. Therefore, it is necessary to develop a complete but simple scheme to promote the CNT
gas sensors practically employed in the continuous online monitoring with fast recovery rate, appropriate
concentration evaluation method, and wafer-scale batch fabrication ability.

In this work, we try to solute the major obstacles of ATM-based sensors and promote the CNT-based
gas sensors to the practical application level. Specifically, we develop a gate assistant technology as well as
improved data processing method to realize the rapid recovery in the CNT gas sensors, and the recovery
time is as short as 50 s, which is more than an order of magnitude faster than natural recovery. Based on
the highly uniform sensors fabricated on solution-derived semiconducting CNT network and decorated
nanoparticles (NPs), highly reproducible detection systems have been realized by using custom-built
printed circuit board (PCB)-based data acquisition circuits to execute a real-time rapid detection of H2

in the air at room temperature. The gate-assistant rapid recovery and related concentration calculation
technology are helping to promote the nanomaterials-based gas sensors to practical application for highly
sensitive online gas detection.

2 Results and discussion

Back-gated thin-film-transistors (TFTs) were first fabricated based on highly uniform solution-derived
CNT networks with high semiconducting purity through a well-developed micro-fabrication process [15,
18,19] (or see the fabrication details in Supporting information). Figures 1(a) and (b), respectively, show
the UV-vis-NIR absorption and Raman spectroscopy of the CNT solutions. The invisible first metallic
excitonic transitions peak (M11 between 600 and 800 nm in Figure 1(a)) and sharp S22 peak (820
–1350 nm) for CNT indicate an ultra-high semiconducting purity. The narrow RBM peak at 152 cm−1

in sorted CNT solution (Figure 1(b)) indicates a narrow diameter distribution around 1.6 nm according
to the experimental relationship of ω = 248/d (nm). The fabricated sensors and their structural diagram
are respectively shown in Figures 1(c) and (d). Statistical transfer curves of multiple pristine CNT
TFTs (using Si substrate as a gate) shown in Figure 1(e) indicate an excellent electronic uniformity,
which provides a good foundation to the uniform gas sensor platform. Three kinds of sensing materials,
including 0.3 nm Pd/1 nm Au, 1 nm Sn (oxidized at 250◦C for 30 min to form SnO2), and 1 nm
Pd, are deposited on the channels of different TFTs for the selective detection of H2S, NO2, and H2,
respectively [20–22]. Pt micro-heaters (Figure 1(c)) are also integrated with the gas sensor arrays on
the same chip to study the heating assistance recovery effect. The scanning electron microscope (SEM)
images in Figure 1(f) show that all the three sensing materials are well-dispersed as decoration NPs on the
surface of the uniform network CNT film. The Raman spectrums before and after each sensing material
modification were shown in Figure S1. To check the effect of different sensing NPs decoration, transfer
characteristics of the CNT-TFTs measured before and after NPs decoration are shown in Figure 1(g).
The decoration of semiconducting NPs such as SnO2 leads to just a threshold voltage shift of CNT TFTs
owing to the doping effect. However, the decoration of metallic NPs such as Pd or Pd/Au results in
severe degradation on the current on/off ratio owing to the strong screening effect.

Transient responses of the functionalized CNT-TFTs for sensing H2, H2S, and NO2 were characterized
at room temperature in the air (see the detailed in Supporting information) as shown in Figure 2,
in which each gas sensor was tested at two recovery conditions, i.e., a natural recovery and a gate
assistant recovery by applying a gate voltage. Sensors were exposed to high-purity nitrogen before
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Figure 1 (Color online) Characteristics of CNT materials and structure and preliminary characteristics of CNT-TFT sensors.

(a) Absorption spectrum and (b) Raman spectrum of the CNT solutions. (c) Optical microscope image of a multi-decorated CNT-

TFT sensor array. (d) Cross-sectional schematic of a CNT-TFT sensor. (e) Statistical transfer curves of 17 CNT-TFTs at Vds =

−1 V using the substrate as a back gate. (f) SEM diagrams of CNT channels decorated without/with different sensing materials.

Scale bar: 100 nm. (g) Ids–Vgs curves of four devices measured with Vds = −1 V in air. Vgs is swept from −60 to +60 V, then

back to −60 V in a step of ±2 V.

measurements at each concentration to establish a baseline signal. The response of a sensor was defined
as S = (R − R0)/R0 = ∆R/R0, where R0 and R are the channel resistance before and after the target
gas injection, respectively. The recovery time is simply defined as the time for the current resistance to
recover to the original baseline of R0. Figure 2(a) illustrates the response of a typical CNT-TFT sensor
modified with 1 nm Pd to detect H2 with a concentration range from 20 to 100 ppm and recovered
naturally at room temperature. The response (S) begins to increase with the injection of H2, and also
begins to decline when H2 flow was turned off as shown in Figure 2(a). The maximum response reaches
up to 140% even for 20 ppm H2, which indicates the high sensitivity. We also measured the selectivity
of the Pd modified CNT film-based sensor to H2, H2S, and NO2 as shown in Figure S2. However, the
recovery time is longer than 300 s at natural recovery conditions and increases with the H2 concentration.
Especially after detecting 100 ppm H2, the recovery time increases to 650 s, and such a long recovery time
must severely hamper the real-time detection applications. The long recovery time of the gas sensors
at room temperature is mainly owing to that the available thermal energy is usually much lower than
the activation energy required in the desorption of hydrogen atoms in the NPs. When a gate assistant
recovery condition is applied, i.e., a voltage of 60 V is applied on the back gate at the beginning of
the recovery period, the response S shows fast recovery to the baseline in 50 s after the H2 response as
indicated by Figure 2(b). Moreover, we can use the same recovery time and voltage for the gas detection
of different concentrations, which improves the simplicity in practical application. The three-terminal
operation (using a back gate) for CNT-TFT-based gas sensors is attractive since it provides more flexible
methods to manipulate the sensing performance with the gate voltage [23–25]. However, it still lacks the
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Figure 2 (Color online) Experimental characterizations of the transient response of the multi-functionalized CNT-TFT-based gas

sensors under different recovery conditions. (a) The response of 1 nm Pd NPs-modified CNT-TFT device to different concentrations

of H2 gas at room temperature, and the device recovery time is up to 650 s after responding with 100 ppm H2. (b) The response

and recovery process of H2 gas of different concentrations with gate assistant recovery and the recovery time is 50 s (Vgs = +60 V,

Vds = −1 V). (c) Rapid recovery test of H2S gas at different concentrations with gate assistant recovery using CNT-TFT device

modified with Pd 0.3 nm and Au 1 nm. The recovery time is 60 s (Vgs = +60 V, Vds = −1 V). The response of the device to

100 ppb H2S is 13%. (d) Rapid recovery test of NO2 gas at different concentrations with gate assistant recovery using CNT-TFT

device modified with SnO2. The recovery time is 60 s (Vgs = −60 V, Vds = −1 V).

study of applying the gate to realize fast recovery for the CNT-based gas sensors.

Response and recovery measurements were also performed in NO2 and H2S sensing and the results
are shown in Figures 2(c) and (d). Pd0.3nm/Au1nm NPs are used to decorate CNT-TFT gas sensors for
the H2S detection due to the strong and selective bonding energy of Au-S, and the sensors exhibit the
detection limit lower than 100 ppb. However, with natural recovery in air, recovery time is as long as 720 s
at 3 ppm. Under a gate assistant recovery condition, the recovery time declines to around 60 s for different
concentrations H2S by applying a back-gate voltage of +60 V. The sensitive and selective detection of
NO2 is achieved by SnO2 decorated CNT-TFT sensors as shown in Figure 2(d). Different from electron
donor molecules such as H2 and H2S, a negative gate voltage of −60 V was needed for the rapid recovery
of the electron acceptor gas molecules such as NO2 with a recovery time of 60 s. Benefited from the
network morphology and ultra-thin semiconducting channel, the assistant gate voltage can provide an
electric field to the NPs on the CNT film channel and then accelerates the desorption of target gas atoms
or molecules by lowering the activation energy. Other methods such as heating-assistant recovery are
widely used to accelerate desorption of gas atoms in gas sensing, but the gate assistant recovery method is
more effective and more energy-saving (see the detailed comparison in Figure S3). Furthermore, the gate
assistant recovery is a universal method for different gases to achieve rapid recovery of CNT-TFT-based
gas sensors due to the thin body of the channel, either the CNT channel with or without hysteresis [26].

A common problem in nanomaterial sensors is the difficulty to establish an equilibrium state (or reach
a plateau) in practical time scale since the current of the sensor is constantly changing until the sensor
fails [10, 27, 28], which is also observed in all the three target gases sensing measurements using the
modified CNT sensors. Through using the gate assistant technology, we can realize programmable CNT-
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Figure 3 (Color online) Programmable control of the sensor response and H2 testing in the actual environment. (a) The current

changes of different concentrations of H2 when the device is active (Vgs = 0 V) and sleep (Vgs = +60 V). (b) The corresponding

response of (a). (c) The response of CNT-TFT modified with 1 nm Pd NPs to 30 H2 concentration gradients (10–300 ppm, with

10 ppm intervals). (d) The relationship between final response values during active mode and H2 concentration. The liner fitting

(blue solid curve) has shown a good linear fitting coefficient of R
2 0.995.

TFT gas sensors to realize the control of the absorption and desorption of gas molecules by simply applying
different back-gate voltages and refreshing the gas sensors periodically, thus avoiding the sensor failure.
As shown in Figure 3(a), after the initialization stage in the air, H2 with different concentrations carried
by synthetic air were continuously injected into the test chamber to simulate the real-time monitoring
of H2 gas leakage. Under a gate bias of Vgs = 0 V, the sensor will be turned into the active mode and
the continuous flow of H2 will cause sustaining decline of the current. When a Vgs = +60 V is applied,
the sensor was immediately turned into the sleep mode with an ultra-low standby current. The sensor at
sleep mode is not responsive to H2, and then can be well restored to the baseline with another zero-gate
bias and ready for the next round of testing. With pulsed gate voltage applied as shown in the lower inset
in Figure 3(b), the H2 sensor was set alternately in the state of active or sleep with 300 s interval with
four different H2 concentrations. If there is a base concentration of target gas, the gas sensor will not
output the sensing signal until they are under active mode. The gate-assistant programmable CNT-TFT
gas sensors scheme will effectively lower the complexity of the subsequent control circuit in practical
applications. It is worth mentioning that the voltage applied on the assistant gate is as high as tens
of volts owing to the thick SiO2 layer (500 nm) used in this work. However, it is possible to lower the
assistant gate voltage to a few volts by using a local bottom gate with a thin insulator layer in the sensors.

The other key problem that originated from the non-equilibrium response in nanomaterials-based sen-
sors is from accurately and rapidly evaluating the gas concentration in real-time [28,29]. In a continuous
monitoring case, the relative resistance change in the equilibrium state is widely used to evaluate the gas
concentration in practical for the conventional resistive gas sensors. However, the concentration evalua-
tion is impractical for the real-time continuous gas monitoring in nanomaterials-based gas in which the
equilibrium state is hard to achieve [30–32]. In the gate assistant gas sensor, the concentration of the
target gas can be retrieved according to the response speed (the slope in response-time representation) in
the active mode. Figure 3(c) shows the dynamic test of the 1 nm Pd NPs modified CNT-TFT sensors to
a series concentration of H2 from 10 to 300 ppm with 10 ppm steps. In this process, the CNT gas sensor
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Figure 4 (Color online) Design of potable gas detection system and the H2 detection in the actual environment. (a) Circuit

schematic diagram of target gas detection system. (b) The relative change of RC oscillation period (∆T ) detected by the H2 sensor

system when 30 different concentrations of H2 (0–300 ppm, step: 10 ppm) are successively injected, where ∆T is the difference

between the RC oscillation period change before and after H2 is injected. Assistant-gate recovery method is used with a recovery

time of 50 s and recovery gate voltage Vgs = +60 V. (c) The calibration curve is performed by repeating the experiment three times

(the oscillation period changes corresponding to 30 H2 concentrations: 0–300 ppm, 10 ppm a step) and then taking the average

value of the maximum slope. (d) The H2 sensor detection system detects and displays H2 with a resolution of 10 ppm.

is refreshed by the assistant gate and the relative response is strictly distinctive for each H2 concentra-
tion with a resolution of 10 ppm. The relationship between different H2 concentrations and their final
response during the active mode is illustrated in Figure 3(d), which indicates that the linear correlativity
between the response and H2 concentration is very prominent with a liner coefficient R2 of 0.995. The
linear relationship will simplify the quantification of the concentration and cut down a lot of complex
mathematical processing in real-time gas concentration monitoring applications.

To demonstrate the possibility of the practical application of our CNT TFT gas sensors, we built a
PCB based data acquisition system for the real-time detection of the H2 in the air at room temperature.
The H2 gas measurement system contains CNT-TFT sensors module, resistance-transfer-frequency (RTF)
circuit module, control module, ADC (analog-to-digital converter) module, FPGA (field-programmable
gate array) module, and screen display module, and the proposed circuit frame diagram is shown in
Figure 4(a). The RTF block consists of a comparator and an operational amplifier, which converts the
relative resistance change into relative RC oscillation period (T ) change where T ∝ R, as shown in Fig-
ure S4. The CNT-TFT gas sensors with RTF block were first characterized under different H2 concen-
trations (0–300 ppm, with 10 ppm steps) with an oscilloscope. Each concertation was followed by an
assistant gate recovery process to refresh the sensor sensing signal to the baseline. The relative oscil-
lation period change over time is shown in Figure 4(b). Three repeated tests were conducted to show
the repeatability and stability of our sensors as shown in Figures S5(a)–(c). The growth rate (slope) of
each concentration is calculated by the differential of each response curve and the maximum slope can
be reached in about 9 s as shown in Figures S6(a) and (b). Through three repeated tests, the average
value of the maximum slope corresponding to each H2 concentration is obtained as shown in Figure 4(c),
which exhibits good linearity and uniformity. With such an evaluation process, the real-time monitoring
of H2 concentration is achieved as shown in Figure S7. We can evaluate the H2 concentration accurately
in less than 10 s by using the real-time slope of the response curve without waiting for the equilibrium
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Table 1 Benchmark of H2 sensor detection systems based on different nanomaterialsa)

Channel material Resolution Response time Recovery time Test background Reference

Pt-decorated SnO2 nanotube 50 ppm 10 min 20 min RT, air [36]

Ni-Pd-decorated 3.5-nm-thin silicon 1% ∼2 s No recovery (slowly) RT, air [37]

Pt-coated ZnO nanorods 200 ppm ∼5 min 15 min RT, air [38]

WO3 and Pd bilayer 250 ppm ∼100 s 600 s 123◦C, air [39]

Pd/AlGaAs MOS HFET 15 ppm ∼1 h 3 h RT, air [40]

ZnO nanorods with Pd 10 ppm ∼5 min 15 min RT, air [41]

PdNi alloy thin films 10 ppm ∼10 min 75 min 50◦C N2 [42]

Pt-decorated rGO 1 ppm 12 s 60 s RT, vacuum [43]

Pd-decorated CNT thin film 10 ppm 9 s 50 s RT, air This work

a) RT: room temperature.

state as compared with the operation scheme in conventional resistive MOS sensors [33–35].
The period response data is then acquired by connecting the sensor/RTF module to an ADC and an

FPGA module to analyze automatically the relative period change and to determine the real-time con-
centration by comparing the real-time slope with the stored calibration slope curve. Figure 4(d) indicates
that our PCB based detection system can distinguish and display the H2 leakage at a concentration of
10 ppm, which is consistent with the result measured by the oscilloscope, and the detection accuracy can
reach 3.3% which is estimated as the ratio between resolution (10 ppm) and range (300 ppm). We then
use a CNT-TFT-based custom-built PCB gas sensing system to continuously monitoring 10–100 ppm H2

to confirm the reliability and repeatability of our sensing systems again as shown in Figure S8(a). With
a smaller test chamber or larger gas flow, the response time can be further improved. Our H2 system has
shown a good resolution, a fast response time of less than 10 s as well as the shortest recovery time of 50 s
at room temperature among the nanomaterials-based portable H2 sensing systems (see Table 1 [36–43]).
The CNT-TFT sensors with the assistant gate method can be used for real-time multi-point distribution
detection of trace-level explosive and toxic gases and demonstrates the practical application potential as
a portable gas sensor detection system.

3 Conclusion

In summary, we demonstrate a gate assistant technology to realize the rapid recovery to an equilibrium
state in semiconducting CNT TFT gas sensors and promote the CNT-based gas sensors to reach the
practical application level. Specifically, we construct highly uniform gas sensors based on semiconducting
solution-derived CNT film and accelerate the gas molecules desorption by applying a voltage on the back
gate. By combining the gate-assistant technology and an improved concentration calculation method,
highly reproducible detection systems have been realized by using custom-built PCB based data acquisi-
tion circuits to execute a real-time rapid detection of H2 in the air at room temperature, and especially
exhibits a record response time of 9 s and recovery time of 50 s under a resolution of 10 ppm, which
outperforms previous low dimensional nanomaterials based portable H2 detection systems. The gate-
assistant rapid recovery and related concentration calculation technologies are helpful to promote the
nanomaterials-based gas sensors to practical application for highly sensitive online gas detection.
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