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Abstract This study addresses the practical tracking problem for a class of multi-input multi-output

(MIMO) uncertain stochastic systems driven by colored noises via the active disturbance rejection control

approach. The extended state observer is designed to estimate in real time the unmeasurable states and the

stochastic total disturbance of each subsystem, including unknown coupling system dynamics between sub-

systems, colored noises, and uncertainty caused by partly unknown control parameters. Active disturbance

rejection controllers based on the timely estimation of the extended state observer and compensation are

then designed, guaranteeing the mean square practical convergence of the tracking errors. Some numerical

simulations are performed to validate the effectiveness of the proposed control strategy.

Keywords uncertain stochastic systems, active disturbance rejection control, extended state observer,

tracking, colored noise

Citation Lv C W, Ouyang Z Y, Wu Z H, et al. Practical tracking of MIMO uncertain stochastic systems driven

by colored noises via active disturbance rejection control. Sci China Inf Sci, 2022, 65(6): 162208, https://doi.org/

10.1007/s11432-020-3146-y

1 Introduction

Coping with disturbances and uncertainties is a distinct paradigm in control theory since the emergence of
the modern control theory in the later years of the 1950s, as cited in the study of [1], who stated that the
control operation “must not be influenced by internal and external disturbances” [1, p.228]. Many control
approaches have been developed since the 1970s to deal with disturbances and uncertainties. Among
many others, stochastic control [2–4] and robust control [5–7] are two important disturbance attenuation
methods. The former is often made available for attenuating stochastic noises with known statistical
characteristics, while the latter can be applied in attenuating more general disturbances assumed to be
energy bounded. However, note that most of the robust control approaches are in view of the worst-case
scenario that makes the control design comparatively conservative.

Inspired by the powerful proportional-integral-derivative (PID) error-driven thought rather than the
model-based thought, an almost model-free anti-disturbance control technology known as active distur-
bance rejection control (ADRC), was proposed by Han [8] in the later 1980s. Compared with disturbance
attenuation methods like stochastic control and robust control, ADRC is an active anti-disturbance con-
trol, albeit not a passive one, which addresses disturbance rejection for systems with disturbances and
uncertainties. This innovative ideology arises from the estimation/cancelation strategy of ADRC by using
an extended state observer (ESO), which is its key part. In the ADRC framework, internal unmodeled
system dynamics and unknown external disturbances that affect system performance are lumped together
to be a time signal, called total disturbance. Using the measurement output of a plant, the ESO is de-
signed for the real-time estimation of the unmeasurable states and the total disturbance. Once the total
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disturbance is estimated in real time, the ADRC controller is designed based on the timely estimation
of the ESO and compensation to acquire the desired performance of closed-loop systems. This estima-
tion/compensation characteristic of ADRC makes it capable of eliminating the total disturbance in real
time. The control energy can then be substantially saved in engineering applications [9].

On the one hand, the past two decades have seen the effectiveness and the practicality of ADRC in many
engineering applications, such as the energy storage system [10], permanent magnet synchronous motor
[11], gasoline engines [12], power plant [13], and raceway photobioreactor [14], among others. On the other
hand, the past decade has observed many studies on the theoretical foundation of ADRC for stabilization,
tracking, performance analysis of uncertain systems, and so on (see, for example, [15–25]). However, the
disturbances considered in these studies all had no random characteristic. Disturbances in the form of
stochastic noises are inescapable in both nature and man-made systems and often have negative effects on
the system performance. Therefore, an interesting and important problem naturally arises. What kinds
of stochastic noises can be estimated and rejected by ADRC? This topic is quite different from those
discussed in most of the available studies on the disturbance attenuation for stochastic systems driven by
white noise like [2,3,7,26–28], where the white noise is the generalized derivative of the Brownian motion
(see, for example, [29, p.51, Theorem 3.14]), and the plant is modeled by Itô-type stochastic systems.
The Brownian motion is unbounded in the sense of almost everywhere or moment; thus, the estimation
and cancelation strategy of ADRC leaves out the widely considered white noise in control theory. In
view of the abovementioned consideration, ADRC has been applied in the output-feedback stabilization
of single-input single-output and multi-input multi-output (MIMO) uncertain stochastic systems driven
by bounded stochastic noises in [30, 31], where the noises are regarded as part of the stochastic total
disturbances to be estimated and canceled by ADRC.

As mentioned, stochastic disturbances in the control theory are often modeled by white noise that is
a stationary stochastic process with zero mean and constant spectral density. Nevertheless, white noise
does not always describe well the stochastic disturbances in practice because its δ-function correlation
is an idealization of the correlations of real processes which often have finite, or even long, correlation
time [32]. A more practical characterization could be given by an exponentially correlated process, known
as the colored noise or Ornstein-Uhlenbeck process [32,33]. We develop herein ADRC for a class of MIMO
uncertain stochastic systems with the estimation and cancelation of realistic colored noises.

The main contributions and the novelty of this study are summed up as follows: (a) disturbances
in the form of colored noises are first coped with in terms of estimation and disturbance rejection by
ADRC; (b) the stochastic uncertainties are in a large scale, including unknown coupling system dynamics
between subsystems, colored noises, and uncertainty caused by partly unknown control parameters; and
(c) the designed ADRC controllers of a very simple structure guarantee a satisfactory practical tracking
performance and an approximate decoupling of MIMO uncertain stochastic systems driven by colored
noises.

We proceed as follows: Section 2 formulates the problem, Section 3 presents the main framework of the
ADRC controller design and the main result, Section 4 provides the proof of the main result, Section 5
discusses the numerical simulations, and Section 6 concludes the paper.

The following notations are used all throughout the paper. R
n: n-dimensional Euclidean space; EX :

mathematical expectation of a random variable X ; XT: transpose for vector or matrix X ; |X |: absolute
value of a scalar X ; ‖X‖: 2-norm (or Euclidean norm) of a vector X or induced 2-norm of a matrix
X ; In: n-dimensional identity matrix; λmin(X) and λmax(X): minimum and maximum eigenvalues of a
positive definite matrix X , respectively.

2 Problem formation

The plant considered in this paper is the partial exact feedback linearizable MIMO system [34] with
unknown coupling system dynamics and colored noises as follows:















dxi(t) = Ani
xi(t)dt+Bni



fi(t, x(t)) +
m
∑

j=1

pijwj(t) +
m
∑

j=1

qijuj(t)



 dt,

yi(t) = Cni
xi(t), i = 1, 2, . . . ,m,

(1)
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where x = (xT
1 , . . . , x

T
m)T ∈ R

n with xi ∈ R
ni and n = n1 + · · · + nm, u = (u1, . . . , um)T ∈ R

m,
and y = (y1, . . . , ym)T ∈ R

m are the state, control input, and output of the system, respectively; the
functions fi(·) : [0,∞) × R

n → R satisfying the following Assumption 1 are unknown; the constants
qij (i, j = 1, 2, . . . ,m) are the control coefficients which are not completely known with nominal values
q∗ij adequately close to qij . The system matrices in (1) are specified as

Ani
=

(

0 Ini−1

0 0

)

ni×ni

, Bni
= (0, . . . , 0, 1)Tni×1, Cni

= (1, 0, . . . , 0)1×ni
. (2)

pij (i, j = 1, 2, . . . ,m) are parameters that could be unknown, and wj(t) (j = 1, 2, . . . ,m) are colored
noises whose mathematical descriptions are specified in (3).

Let (Ω,F ,F, P ) be a complete filtered probability space with a filtration F = {Ft}t>0 on which m

mutually independent one-dimensional standard Wiener processes Wj(t) (j = 1, 2, . . . ,m) are defined.
Mathematically, the colored noises wj(t) (j = 1, 2, . . . ,m) are the solutions to the Itô-type stochastic
differential equations (see, for example, [32, p.426], [35, p.101]):

dwj(t) = −αjwj(t)dt+ αj

√

2βjdWj(t), (3)

where αj > 0 and βj > 0 are constants representing the correlation time and the noise intensity, re-
spectively, and the initial values wj(0) ∈ L2(Ω;R) are independent of Wj(t). From the point of physic
meaning, the parameters αj represent the bandwidth of the noise, βj are their spectral height, and the
correlation functions of the processes wj(t) are the more realistic exponential functions but not the δ-ones
(see, for example, [32]). It should be noted that αj , βj could be unknown parameters throughout this
paper.

It follows from Itô isometry that

sup
t>0

E|wj(t)|
2 6 E|wj(0)|

2 + αjβj , γj . (4)

The boundedness of the colored noises in the second moment is a key reason why the colored noises can
be estimated and rejected by the ADRC approach.

Let vi(t) (i = 1, 2, . . . ,m) be given reference signals which are supposed to be (ni+1)-order continuously
differentiable. The control objective in this paper is to design ADRC controllers such that for any initial
states, the output yi(t) of each subsystem tracks vi(t) in practically mean square sense, and at the same

time xij(t) tracks v
(j−1)
i (t) in practically mean square sense for all j = 2, . . . , ni.

3 ADRC controller design and the main result

The unknown system dynamics and external disturbances affecting performance of each subsystem are
regarded as the stochastic total disturbance or extended state from the “time scale” to be estimated by
ESO, no matter what the mathematical expressions of the system dynamics and external disturbances
are. For each 1 6 i 6 m, the stochastic total disturbance (extended state) of i-subsystem is as follows:

xi(ni+1)(t) , fi(t, x(t)) +

m
∑

j=1

pijwj(t) +

m
∑

j=1

(qij − q∗ij)uj(t), (5)

which contains unknown coupling system dynamics between subsystems, colored noises, and uncertainty
caused by the deviation of control parameters from their nominal values. So it can be seen that the
stochastic total disturbance is with stochastic uncertainty in large scale.

In order to estimate in real time the unmeasurable states and stochastic total disturbance of each
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subsystem, a set of ESOs are designed by using the inputs and outputs of system (1) as follows:



















































dx̂i1(t) = [x̂i2(t) + ai1r(yi(t)− x̂i1(t))]dt,

dx̂i2(t) = [x̂i3(t) + ai2r
2(yi(t)− x̂i1(t))]dt,

...

dx̂ini
(t) =



x̂i(ni+1)(t) + aini
rni (yi(t)− x̂i1(t)) +

m
∑

j=1

q∗ijuj(t)



 dt,

dx̂i(ni+1)(t) = ai(ni+1)r
ni+1(yi(t)− x̂i1(t))dt, 1 6 i 6 m,

(6)

where x̂ij(t) (j = 1, 2, . . . , ni) are the estimates of the states xij(t), x̂i(ni+1)(t) is the estimate of the
stochastic total disturbance xi(ni+1)(t) of i-subsystem, r > 0 is the gain parameter to be tuned, and
aij (j = 1, 2, . . . , ni + 1) are designed parameters such that the following matrices are Hurwitz:

Ei =















−ai1 1 0 · · · 0

· · · · · · · · · · · · · · ·

−aini
0 0

. . . 1

−ai(ni+1) 0 0 · · · 0















(ni+1)×(ni+1)

. (7)

Compared with the traditional state observer design, an augmented state variable x̂i(ni+1)(t) is added
in each ESO for real-time estimation of the stochastic total disturbance xi(ni+1)(t) of i-subsystem.

For 1 6 i 6 m, set

(vi1(t), vi2(t), . . . , vi(ni+2)(t)) =
(

vi(t), v̇i(t), . . . , v
(ni+1)
i (t)

)

. (8)

After ESOs (6) are designed, the ESO-based controllers are designed as follows:

ui(t) =

m
∑

l=1

q̂∗il







nl
∑

j=1

klj(x̂lj(t)− vlj(t)) − x̂l(nl+1)(t) + vl(nl+1)(t)







, 1 6 i 6 m, (9)

where q̂∗il are defined in (14) and the feedback gain parameters klj (l = 1, 2, . . . ,m, j = 1, 2, . . . , nl) are
chosen such that the following matrices are Hurwitz:

Fi =















0 1 0 · · · 0

· · · · · · · · · · · · · · ·

0 0 0
. . . 1

ki1 ki2 · · · ki(ni−1) kini















ni×ni

. (10)

The −x̂l(nl+1)(t) is a compensation term designed for real-time cancelation of the stochastic total distur-
bance.

In order to obtain the mean square practical convergence of the resulting closed-loop system composed
of (1), (6) and (9), the following Assumptions are required.

The following Assumption 1 is about the unknown functions fi(·) (i = 1, 2, . . . ,m).

Assumption 1. The unknown functions fi : [0,∞)×R
n → R (i = 1, . . . ,m) are continuously differen-

tiable with respect to their arguments. There exist known constants Dij > 0 (j = 1, 2, 3) such that for
all t > 0, x ∈ R

n, it holds that
∣

∣

∣

∣

∂fi(t, x)

∂t

∣

∣

∣

∣

6 Di1 +Di2‖x‖,

∥

∥

∥

∥

∂fi(t, x)

∂x

∥

∥

∥

∥

6 Di3, i = 1, 2, . . . ,m. (11)

Remark 1. Since the coupling system dynamic of each i-subsystem is regarded as the part of the
stochastic total disturbance to be estimated by ESO, it is reasonable to assume by (11) that its partial
derivatives (or “variations”) with respect to t and x are linear growth and bounded, respectively.
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The following Assumption 2 is about the reference signals and their derivatives.

Assumption 2. Suppose that there exist known positive constants Ni (i = 1, 2, . . . ,m) such that

sup
t>0

|vij(t)| 6 Ni, ∀j = 1, 2, . . . , ni + 2. (12)

Remark 2. In Assumptions 1 and 2, the upper bounds Dij (i = 1, 2, . . . ,m, j = 1, 2, 3) and Ni (i =
1, 2, . . . ,m) are assumed to be known, which is theoretically for the purpose of guaranteeing that the
lower bound r∗ of the tuning gain parameter r specified in the following (31) is known. It should be
noted that these bounds can be relaxed to be unknown in practical applications by some experience in
tuning gain parameter.

Let matrices Ui and Qi be the unique positive definite matrix solutions of the Lyapunov equations:

UiEi + ET
i Ui = −Ini+1 and QiFi + FT

i Qi = −Ini
, (13)

respectively.
The following Assumption 3 is mainly about the deviation level of nominal values q∗ij from the unknown

control coefficients qij , which should be not so large as assumed in (15).

Assumption 3. The matrix with the nominal values q∗ij (i, j = 1, 2, . . . ,m) as entries is invertible
whose inverse matrix is given by









q∗11 q∗12 · · · q∗1m
...

...
. . .

...

q∗m1 q∗m2 · · · q∗mm









−1

=









q̂∗11 q̂∗12 · · · q̂∗1m
...

...
. . .

...

q̂∗m1 q̂∗m2 · · · q̂∗mm









, (14)

and the deviations of nominal values q∗ij from the unknown control coefficients qij satisfy

ξ , 1−

m
∑

i,j,l=1

2λmax(Ui)|(qij − q∗ij)q̂
∗
jlal(nl+1)| > 0, (15)

where ξ is known and Ui are specified in (13).
The main result on mean square practical convergence of the resulting closed-loop system composed

of (1), (6) and (9) is summarized in the succeeding Theorem 1, which includes the mean square practical
convergence of the estimation errors of unmeasurable states and stochastic total disturbance of each
subsystem and mean square practical convergence of the tracking errors.

Theorem 1. Suppose that Assumptions 1–3 hold. Then, the closed-loop of system (1) under ESOs (6)
based controllers (9) has the unique global solutions and the mean square practical convergence in the
sense that there are a known constant r∗ > 0 (specified in (31)) and a constant tr , 2r̺ + 1 with any
r > r∗ and any given ̺ > 0, such that for any initial values x(0) ∈ R

n, x̂(0) ∈ R
n+m, and for all t > tr,

it holds that

E|xij(t)− x̂ij(t)|
2 6

Υ

r2ni+3−2j
, 1 6 i 6 m, 1 6 j 6 ni + 1, (16)

E|xij(t)− vij(t)|
2 6

Υ

r
, 1 6 i 6 m, 1 6 j 6 ni, (17)

where Υ > 0 is a constant independent of the gain constant r and specified in (50).

Remark 3. It should be pointed out that the mean square practical convergence of the output tracking
errors is included as

E|yi(t)− vi(t)|
2 6

Υ

r
, 1 6 i 6 m, (18)

and the stabilization problem at the origin in practically mean square sense is a special case by letting
vi(t) ≡ 0 for all t > 0 and i = 1, 2, . . . ,m. By adjusting the gain parameter r, the estimation errors (16)
and tracking errors (17) could be arbitrarily small for sufficiently large t > tr, where the convergence
practicality is embodied by the fact that the estimation and tracking accuracy and tr are dependent on
the tuning gain parameter r.
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Remark 4. The stochastic total disturbance xi(ni+1)(t) of each i-subsystem is estimated in real time by
ESOs (6) and is approximatively canceled by the compensation term of the ADRC controllers (9). In what
follows, it can be seen that the ̟i-subsystem of the equivalent closed-loop system (25) is approximately
decoupled, which reveals a natural decoupling function of ADRC.

4 Proof of the main result

Proof of Theorem 1. For 1 6 i 6 m, set

ηij(t) = rni+1−j [xij(t)− x̂ij(t)], 1 6 j 6 ni + 1,

̟ij(t) = xij(t)− vij(t), 1 6 j 6 ni,

ηi = (ηi1, . . . , ηi(ni+1))
T, ̟i = (̟i1, . . . , ̟ini

)T,

Θi =



xi2, . . . , xi(ni−1),

ni
∑

j=1

kij(x̂ij − vij) + xi(ni+1) − x̂i(ni+1) + vi(ni+1)





T

,

Θ = (ΘT
1 , . . . ,Θ

T
m)T.

(19)

We choose r > 1. Find the derivative with respect to the time variable t along the closed-loop of
system (1) under ESOs (6) based controllers (9). It is obtained that

dfi(t, x(t))

dt
=

∂fi(t, x(t))

∂t
+

(

∂fi(t, x(t))

∂x

)T

Θ(t) , ∆i1(t). (20)

By Assumptions 1 and 2, it can be easily concluded that there exist known positive constants δi1, δi2, δi3
independent of r such that

|∆i1(t)| 6 δi1 + δi2‖η(t)‖ + δi3‖̟(t)‖, ∀t > 0. (21)

In addition,

d

dt

m
∑

j=1

(qij − q∗ij)uj(t)

=
d

dt

m
∑

j,l=1

(qij − q∗ij)q̂
∗
jl

{

nl
∑

s=1

kls(x̂ls(t)− vls(t))− x̂l(nl+1)(t) + vl(nl+1)(t)

}

=

m
∑

j,l=1

(qij − q∗ij)q̂
∗
jl

{

nl−1
∑

s=1

kls[x̂l(s+1)(t) + alsr
s(yl(t)− x̂l1(t))− vl(s+1)(t)]

}

+

m
∑

j,l=1

(qij − q∗ij)q̂
∗
jl

{

klnl

(

x̂l(nl+1)(t) + alnl
rnl(yl(t)− x̂l1(t)) +

m
∑

s=1

q∗lsus(t)− vl(nl+1)(t)

)}

+

m
∑

j,l=1

(qij − q∗ij)q̂
∗
jl

{

−al(nl+1)r
nl+1(yl(t)− x̂l1(t)) + v̇l(nl+1)(t)

}

, ∆i2(t). (22)

By Assumption 2, a direct computation shows that there exist known positive constants δi4, δi5, δi6
independent of r such that

|∆i2(t)| 6 δi4 + δi5‖η(t)‖+ δi6‖̟(t)‖+ rΛi‖η(t)‖, ∀t > 0, (23)

where

Λi =

m
∑

j,l=1

|(qij − q∗ij)q̂
∗
jlal(nl+1)|. (24)
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After making some direct deductions, it can be obtained further that the closed-loop system composed
of system (1), ESOs (6), controllers (9) and the reference signals is equivalent to the one as follows:































































d̟i(t) = Ani
̟i(t)dt+Bni





ni
∑

j=1

kij̟ij(t)−

ni
∑

j=1

kij

rni+1−j
ηij(t) + ηi(ni+1)(t)



 dt,

dηi(t) = rAni+1ηi(t)dt− r









ai1ηi1(t)

· · ·

ai(ni+1)ηi1(t)









dt+Bni+1



∆i1(t) + ∆i2(t)−

m
∑

j=1

pijαjwj(t)



 dt

+Bni+1

m
∑

j=1

pijαj

√

2βjdWj(t), 1 6 i 6 m,

(25)

where the ̟i-subsystem and ηi-subsystem represent the dynamic model of the tracking error and the
estimation error, respectively.

For 1 6 i 6 m, we define the Lyapunov functions Vi1 : Rni → R by Vi1(̟i) = ̟T
i Qi̟i for ̟i ∈ R

ni

and Vi2 : Rni+1 → R by Vi2(ηi) = ηT
i Uiηi for ηi ∈ R

ni+1. Define the positive definite function V :
R

2n1+···+2nm+m → R by

V (̟, η) = V1(̟1, . . . , ̟m) + V2(η1, . . . , ηm) =

m
∑

i=1

[Vi1(̟i) + Vi2(ηi)]. (26)

Next, the proof is proceeded in three steps as follows.
Step 1. The existence of the unique global solutions ̟(t), η(t) to system (25) and their mean square

practical boundedness are proved.
By (3), wj(t) (j = 1, 2, . . . ,m) can be regarded as augmented state variables of (25). It follows

directly from the existence-and-unique theorem for Itô-type stochastic systems (see, for example, [35,
p.58,Theorem 3.6]) that there exist unique global solutions ̟(t), η(t), wj(t) (j = 1, 2, . . . ,m) to the
equivalent closed-loop system (25).

Apply Itô’s formula to V (̟(t), η(t)) with respect to t along system (25) to obtain that

dV (̟(t), η(t))

=
m
∑

i=1

{

ni−1
∑

j=1

∂Vi1(̟i(t))

∂̟ij
̟i(j+1)(t)dt+

∂Vi1(̟i(t))

∂̟ini

{

ni
∑

j=1

kij̟ij(t)−

ni
∑

j=1

kij

rni+1−j
ηij(t)

+ηi(ni+1)(t)

}

dt+ r

{

ni
∑

j=1

∂Vi2(ηi(t))

∂ηij
[ηi(j+1)(t)− aijηi1(t)]−

∂Vi2(ηi(t))

∂ηi(ni+1)
ai(ni+1)ηi1(t)

}

dt

+
∂Vi2(ηi(t))

∂ηi(ni+1)

{

∆i1(t) + ∆i2(t)−

m
∑

j=1

pijαjwj(t)

}

dt+
∂2Vi2(ηi(t))

∂η2
i(ni+1)

m
∑

j=1

p2
ijα

2
jβjdt

+
∂Vi2(ηi(t))

∂ηi(ni+1)

m
∑

j=1

pijαj

√

2βjdWj(t)

}

. (27)

It follows from (21), (23), (25), (27) and Young’s inequality that

dV (̟(t), η(t))

6
m
∑

i=1

{

− ‖̟i(t)‖
2 +

1

r
‖̟i(t)‖

2 +
1

r
λ2

max(Qi)





ni
∑

j=1

kij





2

‖ηi(t)‖
2 + µi‖̟i(t)‖

2

+
λ2

max(Qi)

4µi
‖ηi(t)‖

2 − r‖ηi(t)‖
2 + 2λmax(Ui)‖ηi(t)‖ ·

{

δi1 + δi2‖η(t)‖+ δi3‖̟(t)‖

+δi4 + δi5‖η(t)‖ + δi6‖̟(t)‖+ rΛi‖η(t)‖ +

m
∑

j=1

|pijαjwj(t)|

}

+ 2λmax(Ui)

m
∑

j=1

p2
ijα

2
jβj

}

dt
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+
m
∑

i=1

∂Vi2(ηi(t))

∂ηi(ni+1)

m
∑

j=1

pijαj

√

2βjdWj(t)

6
m
∑

i=1

{

− ‖̟i(t)‖
2 +

1

r
‖̟i(t)‖

2 +
1

r
λ2

max(Qi)





ni
∑

j=1

kij





2

‖ηi(t)‖
2 + µi‖̟i(t)‖

2

+
λ2

max(Qi)

4µi
‖ηi(t)‖

2 − r‖ηi(t)‖
2 + ‖ηi(t)‖

2 + λ2
max(Ui)δ

2
i1 + 2λmax(Ui)δi2‖η(t)‖

2

+µi‖̟(t)‖2 +
λ2

max(Ui)δ
2
i3

µi
‖ηi(t)‖

2 + ‖ηi(t)‖
2 + λ2

max(Ui)δ
2
i4 + 2λmax(Ui)δi5‖η(t)‖

2

+µi‖̟(t)‖2 +
λ2

max(Ui)δ
2
i6

µi
‖ηi(t)‖

2 + 2rλmax(Ui)Λi‖η(t)‖
2 + ‖ηi(t)‖

2 + λ2
max(Ui)





m
∑

j=1

|pijαjwj(t)|





2

+2λmax(Ui)

m
∑

j=1

p2
ijα

2
jβj

}

dt+

m
∑

i=1

∂Vi2(ηi(t))

∂ηi(ni+1)

m
∑

j=1

pijαj

√

2βjdWj(t), (28)

where µi (i = 1, 2, . . . ,m) are some positive constants to be specified in (29).
Choose µi > 0 (i = 1, 2, . . . ,m) and sufficiently large r1 > 0 to guarantee that

θ0 , 1−
1

r1
−

(

max
16i6m

µi + 2

m
∑

i=1

µi

)

> 0,

ξr1

2
−

{

1

r1
max

16i6m

(

λ2
max(Qi)

(

ni
∑

j=1

kij

)2)

+ max
16i6m

(

λ2
max(Qi)

4µi

)

+ 3

+

m
∑

i=1

2λmax(Ui)(δi2 + δi5) + max
16i6m

λ2
max(Ui)δ

2
i3

µi
+ max

16i6m

(

λ2
max(Ui)δ

2
i6

µi

)

}

> 0, (29)

where ξ is specified in (15). Set

θ1 =
m
∑

i=1

λ2
max(Ui)δ

2
i1 +

m
∑

i=1

λ2
max(Ui)δ

2
i4 +

m
∑

i=1

2λmax(Ui)
m
∑

j=1

p2
ijα

2
jβj ,

θ2 =
θ0

max16i6m λmax(Qi)
.

(30)

Let

r > r∗ , max

{

1, r1,
2θ0 max16i6m(λmax(Ui))

ξmax16i6m(λmax(Qi))

}

. (31)

It follows that

dV (̟(t), η(t)) 6 −θ0‖̟(t)‖2dt−
ξr

2
‖η(t)‖2dt+

m
∑

i=1

λ2
max(Ui)





m
∑

j=1

|pijαjwj(t)|





2

dt

+θ1dt+
m
∑

i=1

∂Vi2(ηi(t))

∂ηi(ni+1)

m
∑

j=1

pijαj

√

2βjdWj(t)

6 −θ2V (̟(t), η(t))dt +
m
∑

i=1

λ2
max(Ui)





m
∑

j=1

|pijαjwj(t)|





2

dt+ θ1dt

+
m
∑

i=1

∂Vi2(ηi(t))

∂ηi(ni+1)

m
∑

j=1

αj

√

2βjdWj(t), (32)

and then

V (̟(t), η(t)) 6 e−θ2tV (̟(0), η(0)) +m

m
∑

i=1

λ2
max(Ui) max

16j6m
|pijαj |

2

∫ t

0

e−θ2(t−s)
m
∑

j=1

|wj(s)|
2ds
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+

∫ t

0

e−θ2(t−s)θ1ds+

∫ t

0

e−θ2(t−s)
m
∑

i=1

∂Vi2(ηi(s))

∂ηi(ni+1)

m
∑

j=1

αj

√

2βjdWj(s). (33)

A direct computation shows that

V (̟(0), η(0)) =

m
∑

i=1

[Vi1(̟i(0)) + Vi2(ηi(0))] 6

m
∑

i=1

[λmax(Qi)‖̟i(0)‖
2 + λmax(Ui)‖ηi(0)‖

2]

6
m
∑

i=1



λmax(Qi)

ni
∑

j=1

|xij(0)− vij(0)|
2 + λmax(Ui)

ni+1
∑

j=1

r2ni+2−2j |xij(0)− x̂ij(0)|
2



 . (34)

Choose a ̺ > 0 and define

Υ1 = sup
r∈[r∗,∞)

e−θ2r
̺

m
∑

i=1

[

λmax(Qi)

ni
∑

j=1

|xij(0)− vij(0)|
2

+λmax(Ui)

ni+1
∑

j=1

r2ni+2−2j |xij(0)− x̂ij(0)|
2

]

. (35)

Hence for any r > r∗ and all t > r̺,

e−θ2tV (̟(0), η(0)) 6 e−θ2r
̺

V (̟(0), η(0)) 6 Υ1. (36)

As mentioned above, wj(t) (j = 1, 2, . . . ,m) can be considered as augmented state variables of
system (25). Thus, it can be seen that the drift and the diffusion terms of system (25) satisfy lin-
ear growth condition. So, it can be easily concluded (see, for example, [35, p.51, Lemma 3.2]) that

E
∫ t

0
(e−θ2(t−s)

∑m
i=1

∂Vi2(ηi(s))
∂ηi(ni+1)

∑m
j=1 αj

√

2βj)
2ds < ∞ for any t > 0. That is,

∫ t

0

e−θ2(t−s)
m
∑

i=1

∂Vi2(ηi(s))

∂ηi(ni+1)

m
∑

j=1

αj

√

2βjdWj(s)

is a martingale for any t > 0, not just a local martingale. Then, by taking mathematical expectation on
both sides of (33), it is obtained that for any r > r∗,

EV (̟(t), η(t)) 6 Υ1 +
m

θ2

m
∑

i=1

λ2
max(Ui) max

16j6m
|pijαj |

2
m
∑

j=1

γj +
θ1

θ2
, Υ2, ∀t > r̺. (37)

This completes the proof of Step 1.
Step 2. The existence of the unique global solutions x(t), x̂(t) to the closed-loop system composed of

(1), (6) and (9) and the mean square practical convergence of ESOs (6) are proved.
The existence of the unique global solutions x(t), x̂(t) to the closed-loop system composed of (1), (6)

and (9) follows directly from the one of ̟(t), η(t) to the equivalent system (25) concluded in Step 1.
Similar to (28), by (29) and Young’s inequality, we apply Itô’s formula again to V2(η(t)) with respect

to t along ηi-subsystem of (25) to obtain that

dV2(η(t)) 6
m
∑

i=1

{

− r‖ηi(t)‖
2 + 2λmax(Ui)‖ηi(t)‖ ·

[

δi1 + δi2‖η(t)‖+ δi3‖̟(t)‖ + δi4

+δi5‖η(t)‖+ δi6‖̟(t)‖+ rΛi‖η(t)‖+

m
∑

j=1

|pijαjwj(t)|

]

+ 2λmax(Ui)

m
∑

j=1

p2
ijα

2
jβj

}

dt

+

m
∑

i=1

∂Vi2(ηi(t))

∂ηi(ni+1)

m
∑

j=1

αj

√

2βjdWj(t)

6
m
∑

i=1

{

− r‖ηi(t)‖
2 + ‖ηi(t)‖

2 + λ2
max(Ui)δ

2
i1 + 2λmax(Ui)δi2‖η(t)‖

2 + µi‖̟(t)‖2
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+
λ2

max(Ui)δ
2
i3

µi
‖ηi(t)‖

2 + ‖ηi(t)‖
2 + λ2

max(Ui)δ
2
i4 + 2λmax(Ui)δi5‖η(t)‖

2 + µi‖̟(t)‖2

+
λ2

max(Ui)δ
2
i6

µi
‖ηi(t)‖

2 + 2rλmax(Ui)Λi‖η(t)‖
2 + ‖ηi(t)‖

2 + λ2
max(Ui)





m
∑

j=1

|pijαjwj(t)|





2

+2λmax(Ui)

m
∑

j=1

p2
ijα

2
jβj

}

dt+

m
∑

i=1

∂Vi2(ηi(t))

∂ηi(ni+1)

m
∑

j=1

αj

√

2βjdWj(t)

6 −
ξr

2max16i6m λmax(Ui)
V2(η(t))dt +m

m
∑

i=1

λ2
max(Ui) max

16j6m
|pijαj |

2
m
∑

j=1

|wj(t)|
2dt+ θ1dt

+2

m
∑

i=1

µi‖̟(t)‖2dt+

m
∑

i=1

∂Vi2(ηi(t))

∂ηi(ni+1)

m
∑

j=1

αj

√

2βjdWj(t), (38)

where θ1 is specified in (30).
Set

θ3 =
ξ

2max16i6m λmax(Ui)
. (39)

Thus, it follows from (38) that

V2(η(t)) 6 e−θ3r(t−r̺)V2(η(r
̺)) +m

m
∑

i=1

λ2
max(Ui) max

16j6m
|pijαj |

2

∫ t

r̺
e−θ3r(t−s)

m
∑

j=1

|wj(s)|
2ds

+

∫ t

r̺
e−θ3r(t−s)θ1ds+

∫ t

r̺
e−θ3r(t−s)2

m
∑

i=1

µi‖̟(s)‖2ds

+

∫ t

r̺
e−θ3r(t−s)

m
∑

i=1

∂Vi2(ηi(s))

∂ηi(ni+1)

m
∑

j=1

αj

√

2βjdWj(s), ∀t > r̺. (40)

Similar to the deduction in Step 1, it is easy to conclude that

∫ t

r̺
e−θ3r(t−s)

m
∑

i=1

∂Vi2(ηi(s))

∂ηi(ni+1)

m
∑

j=1

αj

√

2βjdWj(s)

is a martingale for any t > r̺. Therefore, by taking mathematical expectation on both sides of (40), it
follows from (37) that

EV2(η(t)) 6 e−θ3rEV2(η(r
̺)) +

m

rθ3

m
∑

i=1

λ2
max(Ui) max

16j6m
|pijαj |

2
m
∑

j=1

γj

+
θ1

rθ3
+

2
∑m

i=1 µiΥ2

rθ3 min16i6m λmin(Qi)
, ∀t > r̺ + 1. (41)

Let

Υ3 = sup
r∈[r∗,∞)

re−θ3rΥ2. (42)

Therefore, by (37), for any r > r∗ and all t > r̺ + 1, we have

EV2(η(t)) 6
Υ3

r
+

m

rθ3

m
∑

i=1

λ2
max(Ui) max

16j6m
|pijαj |

2
m
∑

j=1

γj

+
θ1

rθ3
+

2
∑m

i=1 µiΥ2

rθ3 min16i6m λmin(Qi)
,

Υ4

r
, (43)

and thus

E ‖ηi(t)‖
2
6 E ‖η(t)‖

2
6

EV2(η(t))

min16i6m{λmin(Ui)}
6

Υ4

rmin16i6m{λmin(Ui)}
. (44)
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For all 1 6 i 6 m, 1 6 j 6 ni + 1, it follows from (44) that

E[xij(t)− x̂ij(t)]
2 =

1

r2ni+2−2j
E |ηij(t)|

2
6

Υ4

r2ni+3−2j min16i6m{λmin(Ui)}
6

Υ

r2ni+3−2j
, (45)

where Υ > Υ4

min16i6m{λmin(Ui)}
is specified in (50). This completes the proof of Step 2.

Step 3. The mean square practical convergence of the tracking errors is proved.

Similar to (28), by (29) and Young’s inequality, find the derivative of V1(̟(t)) with respect to t along
̟i-subsystem of (25) to obtain that

dV1(̟(t))

6

m
∑

i=1

{

− ‖̟i(t)‖
2 +

1

r
‖̟i(t)‖

2 +
λ2

max(Qi)

r

(

ni
∑

j=1

kij

)2

‖ηi(t)‖
2 + µi‖̟i(t)‖

2 +
λ2

max(Qi)

4µi
‖ηi(t)‖

2

}

dt

6 −
θ0

max16i6m λmax(Qi)
V1(̟(t))dt + max

16i6m

(

1

r
λ2

max(Qi)

(

ni
∑

j=1

kij

)2

+
λ2

max(Qi)

4µi

)

‖η(t)‖2dt. (46)

Then, it follows from (37) and (44) that for all t > tr , 2r̺ + 1, we have

EV1(̟(t)) 6 e
−

θ0
max16i6m λmax(Qi)

(t−r̺−1)
EV1(̟(r̺ + 1))

+ max
16i6m







1

r
λ2

max(Qi)





ni
∑

j=1

kij





2

+
λ2

max(Qi)

4µi







∫ t

r̺+1

e
−

θ0
max16i6m λmax(Qi)

(t−s)
E‖η(s)‖2ds

6 e
−

θ0
max16i6m λmax(Qi)

(t−r̺−1)
Υ2 +

θ4

r
=

Υ5

r
, (47)

where

θ4 , max
16i6m







1

r∗
λ2

max(Qi)





ni
∑

j=1

kij





2

+
λ2

max(Qi)

4µi







Υ4 max16i6m λmax(Qi)

θ0 min16i6m λmin(Ui)
(48)

and

Υ5 , sup
r∈[r∗,∞)

re
−

θ0
max16i6m λmax(Qi)

r̺

Υ2 + θ4. (49)

Set

Υ = max

{

Υ4

min16i6m{λmin(Ui)}
,

Υ5

min16i6m λmin(Qi)

}

. (50)

Therefore, for any r > r∗, there exists an r-dependent constant tr , 2r̺ + 1, such that for all t > tr and
1 6 i 6 m, 1 6 j 6 ni + 1, we have

E|xij(t)− vij(t)|
2 6 E‖̟(t)‖2 6

Υ5

rmin16i6m λmin(Qi)
6

Υ

r
. (51)

This completes the proof of Step 3 and also Theorem 1.

5 Numerical simulations

In this section, some numerical simulations are performed to illustrate the effectiveness of the proposed
ADRC approach. Consider the following MIMO uncertain stochastic system driven by colored noises
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with unmodeled dynamics as follows:



























































dx11(t) = x12(t)dt,

dx12(t) =



f1(t, x(t)) +

2
∑

j=1

p1jwj(t) + u1(t) + u2(t)



dt,

dx21(t) = x22(t)dt,

dx22(t) =



f2(t, x(t)) +
2
∑

j=1

p2jwj(t) + u1(t)− u2(t)



dt,

y1(t) = x11(t), y2(t) = x21(t).

(52)

It can be seen that system (52) is a special case of system (1), where m = 2, n1 = n2 = 2, n = n1 + n2 =
4, q11 = q12 = q21 = 1, q22 = −1, fi(·) (i = 1, 2) are unknown functions satisfying Assumption 1, and
pij (i, j = 1, 2) are uncertain parameters. The reference signals are specified as v1(t) = sin(2t + 3) and
v2(t) = 2 cos(t+ 2). The stochastic total disturbance (extended state) of each subsystem is defined as

x13(t) = f1(t, x(t)) +
2
∑

j=1

p1jwj(t), x23(t) = f2(t, x(t)) +
2
∑

j=1

p2jwj(t). (53)

Motivated from (6), we can design ESOs (54) for system (52) as follows:











































dx̂11(t) = [x̂12(t) + 3 · 100 · (y1(t)− x̂11(t))]dt,

dx̂12(t) = [x̂13(t) + 3 · 1002 · (y1(t)− x̂11(t)) + u1(t) + u2(t)]dt,

dx̂13(t) = 1003 · (y1(t)− x̂11(t))dt,

dx̂21(t) = [x̂22(t) + 3 · 100 · (y2(t)− x̂21(t))]dt,

dx̂22(t) = [x̂23(t) + 3 · 1002 · (y2(t)− x̂21(t)) + u1(t)− u2(t)]dt,

dx̂23(t) = 1003 · (y2(t)− x̂21(t))dt,

(54)

where the corresponding matrices in (7) are

E1 = E2 =









−3 1 0

−3 0 1

−1 0 0









, (55)

with eigenvalues identical to −1 and then are Hurwitz, and the gain is chosen as r = 100.
The ADRC controllers are designed as

u1(t) =
1

2
[−2(x̂11(t)− sin(2t+ 3))− 3(x̂12(t)− 2 cos(2t+ 3))− x̂13(t)− 4 sin(2t+ 3)]

+
1

2
[−3(x̂21(t)− 2 cos(t+ 2))− 4(x̂22(t) + 2 sin(t+ 2))− x̂23(t)− 2 cos(t+ 2)],

u2(t) =
1

2
[−2(x̂11(t)− sin(2t+ 3))− 3(x̂12(t)− 2 cos(2t+ 3))− x̂13(t)− 4 sin(2t+ 3)]

−
1

2
[−3(x̂21(t)− 2 cos(t+ 2))− 4(x̂22(t) + 2 sin(t+ 2))− x̂23(t)− 2 cos(t+ 2)],

(56)

where in this case the q̂∗il (i, l = 1, 2) in (9) is specified as q̂∗11 = q̂∗12 = q̂∗21 = 1
2 , q̂

∗
22 = − 1

2 , and the matrices
in (10)

F1 =

(

0 1

−2 −3

)

, F2 =

(

0 1

−3 −4

)

(57)

are Hurwitz. In Figures 1 and 2, the initial values are chosen as

w1(0) = 0, w2(0) = 0 (58)
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Figure 1 (Color online) The estimation and tracking effects with uncertain parameters given in (60) and (61).
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Figure 2 (Color online) The estimation and tracking effects with uncertain parameters given in (62) and (63).

and

x11(0) = x21(0) = 1, x12(0) = x22(0) = −1,

x̂11(0) = x̂12(0) = x̂21(0) = x̂22(0) = 0.
(59)

In Figure 1, the unknown system functions and uncertain parameters about colored noises are specified
as

f1(t, x(t)) = 2e−t + x11(t) + 2x21(t) + cos(x12(t) + x22(t)),

f2(t, x(t)) = e−t + x11(t) + 2x21(t) + 3x22(t) + sin(x12(t) + x21(t)),
(60)

and

α1 = β1 = 2, α2 = β2 = 3, p11 = p12 = 1, p21 = p22 = 2, (61)
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respectively.
It can be observed from Figure 1 that for the first subsystem of (52) the output y1(t) tracks the reference

signal v1(t) = sin(2t+3), the state x12(t) tracks the derivative of the reference signal v̇1(t) = 2 cos(2t+3),
and the state of ESO x̂1j(t) (j = 1, 2, 3) estimates x1j(t) (j = 1, 2, 3) very effectively. It can be also seen
from Figure 1 that for the second subsystem of (52) the tracking effects of the output y2(t) to the reference
signal v2(t) = 2 cos(t + 2), the state x22(t) to the derivative of the reference signal v̇2(t) = −2 sin(t + 2)
and the estimation effects of the state of ESO x̂2j(t) (j = 1, 2, 3) to x2j(t) (j = 1, 2, 3) are all very
satisfactory. In Figure 2, the unknown system functions and uncertain parameters about colored noises
are specified as

f1(t, x(t)) = 3e−t + 2x11(t) + 3x21(t) + 2 cos(x12(t) + x22(t)),

f2(t, x(t)) = 2e−t + 2x11(t) + 3x21(t) + 4x22(t) + 3 sin(x12(t) + x21(t))
(62)

and

α1 = 2, α2 = 3, β1 = β2 = 4, p11 = 2, p12 = 3, p21 = p22 = 4, (63)

respectively. Although the relevant parameters concerning the intensity of the stochastic total distur-
bance (53) are increased from (60) and (61) to (62) and (63), in Figure 2 the corresponding estimation
and tracking effects maintain very effective. This partly reflects the robust performance of the ADRC
controllers (56).

6 Concluding remarks

The ADRC approach was applied herein to the practical tracking problem for a class of MIMO uncertain
stochastic systems driven by colored noises. A set of extended state observers were designed for a
real-time estimation of the stochastic total disturbance of each subsystem, including unknown coupling
system dynamics, colored noises, and deviation uncertainty of control parameters from their nominal
values. ADRC controllers based on the estimation and compensation by using extended state observers
were then designed. The mean square practical convergence of the closed-loop, including the mean square
practical convergence of the output tracking errors, was obtained with a rigorous theoretical analysis.
Finally, some numerical simulations were performed to demonstrate the practicality of the proposed active
anti-disturbance control design strategy.
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