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Abstract This paper studies the consensus of switched multi-agent systems (MAS) with binary-valued

communications. Different from the existing studies on switched MAS considering precise observations,

each agent studied in this research only receives binary-valued information with stochastic noises from its

neighbors’ states. Further, unlike the existing studies on MAS with binary-valued information in a fixed

topology, in this paper, we consider the jointly connected undirected graphs, each of which switches with

non-zero probability. The consensus algorithm comprises of two stages: first, the connected agents employ a

recursive projection algorithm to estimate their neighbors’ states based on the binary-valued communications;

second, the control law of the connected agents is developed based on the estimations to upgrade their states.

It is proved that both the speed of the estimation convergence to the real states and the consensus speed

of the states can achieve O(1/t) when the iteration step is given a proper value. Furthermore, the results

indicate that the larger the value of the lowest probability that a graph emerges with, the more easily the

consensus could be achieved. Finally, a simulation is presented to demonstrate the theoretical analysis.
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1 Introduction

In the past decade, multi-agent systems (MAS) have been extensively studied in many studies given their
relevant applications, such as coordination behavior of blocks [1], sensor networks [2, 3], and underwater
vehicles [4]. Researchers have studied MAS from different perspectives, such as the type of measurements
(precise or set-valued) and type of agents’ topologies (fixed graphs or switched).

For fixed-graph topologies with precise measurements, several researchers have presented different
theoretical results. For example, Ref. [5] designed an average-control law to analyze the consensus of
agents for obtaining precise information of the neighbors’ states. Ref. [6] presented the necessary and
sufficient conditions of mean square average consensus with measurement noises. Ref. [7] proposed a
distributed approach for solving convex feasibility problem, and all the states of the agents can attain
a common asymptotic point if the associated directed graph is precisely connected using this proposed
method. Furthermore, under fixed heterogeneous networks, Ref. [8] solved the state consensus problems
of double-integrator MAS based on edge-event-triggered control. However, in many practical cases, the
outputs of a system cannot be determined precisely. For example, the binary-valued temperature sensor
can only determine whether the temperature exceeds a certain threshold or not. Such information is
defined as set-valued information [9]. Thus, many novel studies have been done in the field of set-
valued observations. For example, Ref. [10] has studied the problem of tracking control and parameter
identification with quantized ARMAX (the stochastic autoregressive moving-averagemodel with auxiliary
input) systems. In consideration of a fixed graph with set-valued information, a consensus algorithm with
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an empirical measuring method was proposed and some good results were obtained [11–13]. The recursive
projection identification (RPI) algorithm [14,15] was initially used to design the control law [16].

In actual complex networks, the topologies of the MAS are usually changing; on the contrary, many
external factors, such as communication cutoff, transmission delay, and lack of input, can result in the
variety of the topologies; thus, there is a need to investigate the switched MAS. For precise measurements,
the novel Krasovskii-LaSalle theorem for switched networks was proposed to study the consensus of
discrete MAS [17]. Also, Ref. [18] presented the coordination consensus using nearest neighbors’ precise
states considering the jointly connected graphs. When accurate information could not be obtained,
Ref. [19] demonstrated that average convergence at an exponential rate under the condition of bounded
switching time can be achieved with an MAS with five quantizers by selecting the appropriate control
gain and proportional function. Ref. [20] studied the distributed average consensus of MAS with directed
time-variant topologies and quantized communication. Ref. [21] studied the quantization consensus of an
MAS with directed switching topologies and proposed an effective distribution protocol.

As discussed above, there are no less than three quantizers in the observation system in the study of
the consensus problem of MAS with switching topologies and quantized communication. However, those
methods are no longer suitable in systems with two quantizers. Therefore, the phenomenon of switched
MAS with binary-valued observations is still unclear and demands further research. Consequently, this
paper studies a simple case that consists of switching undirected graphs with binary-valued information
and each graph emerges at a non-zero probability. Because of binary-valued communications between
agents, meaning each agent can only get limited information from its neighbors, to design the control
law, we first estimated all the neighbors’ states using the binary-valued information. Many binary-valued
identification algorithms have been successfully applied in the study of binary-valued MAS with fixed
topologies; for example, an empirical estimation method was used in [12], and an estimation method based
on recursive projection algorithm was applied in [15]. The former is an off-line estimation that requires a
waiting time to collect enough data, and the latter is an on-line estimation that can be conducted as soon
as one piece of data is obtained. In this paper, for the estimation of systems with random switching, we
could not afford a waiting time to collect the required data; as a result, the empirical estimation method
was not utilized.

Thus, we applied the RPI algorithm to design the two-step control law. First, we designed the estima-
tion update algorithm for neighbors’ states based on the RPI algorithm; then, we constructed a random
approximation control law based on the estimations.

The main contributions are as follows.

(1) A two-step control law based on the RPI algorithm was designed. Unlike the binary-valued MAS
with fixed topology, the binary-valued communication relationship between the agents may be time-
variant in the case of switching topology. Thus, the corresponding adjacent and degree matrices are not
constant matrices but random ones making the designation of the estimation and updating algorithms
more complicated. Similarly, the randomness of the matrices makes it difficult to interpret some of their
properties and derive the Lyapunov function. Different from the quantized consensus with switched
topologies, the goal of this paper is to design a control law using the binary-valued observations with
switched topologies. It is the binary-valued observations with switched topologies that results in very
little obtainable information and brings more difficulties in designing the control law.

(2) In the closed-loop system, the corresponding Lyapunov functions collectively analyzed for the
estimation and control were strongly integrated. It was proven that the estimations can converge to the
true states and the agents can be consistent. Additionally, it was also proven that both the estimation
convergence rate and the agent’s consensus rate can reach O(1/t). Besides, the results also imply that
the larger the value of the lowest probability that a graph emerges with, the more easily the consensus
could be achieved.

The remaining sections of this paper are organized as follows: the problem formulation is presented
in Section 2; the control law and consensus algorithm are presented in Section 3; the main results are
discussed in Section 4; the simulation is demonstrated in Section 5; while the conclusion and future work
are presented in Section 6.
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2 Problem formulation

Consider the following MAS with n agents at time t:

xi(t+ 1) = xi(t) + ui(t), i = 1, . . . , n,

where xi(t) ∈ R is the state of agent i, ui(t) ∈ R is the control input of agent i. The above MAS can be
written as vector form:

x(t+ 1) = x(t) + u(t), i = 1, . . . , n,

where x(t) = [x1(t), . . . , xn(t)]
′, u(t) = [u1(t), . . . , un(t)]

′.

Let Gm(t) denote the topology of the n agents at time t, Gm(t) ∈ {G1, . . . , Gh}. Let Gm(t) =

(Nm(t), Em(t)), where Nm(t) ≡ {1, . . . , n} denote the set of agents and Em(t)(∈ {E1, . . . , Eh}) denote

the ordered edges set of the topology Gm(t). Let N
m(t)
i (m(t) ∈ {1, . . . , h}) denote the neighbors set

of agent i in the topology Gm(t). j ∈ N
m(t)
i means agent j is the neighbor of agent i, and the edge

(i, j) ∈ Em(t). In turn, agent i is the neighbor of agent j, and the edge (j, i) ∈ Em(t). It is worth men-
tioning that the edges (i, j) and (j, i) are not the same edge. Let Am(t) and Dm(t) denote the adjacency

matrix and the degree matrix of the n agents, respectively, where Dm(t) = {dm(t)
1 , . . . , d

m(t)
n } and d

m(t)
i

is the degree of agent i. Then the Laplace matrix of Gm(t) is Lm(t) = Dm(t) −Am(t).

The agent i receives the binary-valued information from its neighbor j and there are noises during the
communicating process.

{

yij(t) = xj(t) + eij(t),

sij(t) = I{yij(t)6C},

where j ∈ N
m(t)
i , xj(t) is the state of agent j at time t, eij(t) is the communicating noise, yij(t) is

the hidden output, C is the threshold value, I{·} is the indicative function, sij(t) is the binary-valued
information that agent i collects from its neighbor j.

Assumption 1. {G1, . . . , Gh} are jointly connected and Gγ emerges at time t with a probability pγ > 0,
where γ ∈ {1, . . . , h}.
Assumption 2. The noise eij(t) is independent identically normally distributed as N(µ,δ2) for i, j, t,
where F (·) and f(·) are distribution function and density function of eij(t), respectively.

Assumption 3. Lm(t) and eij(t) are independent. For t 6= l, Lm(t) and Lm(l) are independent; eij(t)
and eij(l) are independent.

3 Algorithm design

The goal of this paper is to estimate the neighbors’ states of each agent based on collected information
and design control law to reach consensus. The consensus algorithm and control law will be given as
follows.

(i) Initiation: xi(1) = x0
i is the initial state of agent i. x̂ij(0) = x0

ij is the initial value of the agent j’s

state estimated by agent i. |x0
i | 6 M , |x0

i | 6 M , where M > 0 is a given constant.

(ii) Observation: the agent i observes its neighbor agent j’s binary-valued information,

{

yij(t) = xj(t) + eij(t),

sij(t) = I{yij(t)6C},
(1)

where j ∈ N
m(t)
i , i = 1, . . . , n and m(t) = 1, . . . , h.

(iii) Estimation: the agent i estimates its neighbor j’s state at time t,

x̂ij(t) = πM

{

x̂ij(t− 1) +
β

t
(F (C − x̂ij(t− 1))− sij(t))

}

, (2)
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where β is the updating step-size and πM{·} is projection operator defined as below:

πM{x} = argmin
|ζ|6M

|x− ζ| =











−M, x < −M ;

x, |x| 6 M ;

M, x > M.

(iv) Update: the agent i estimates its neighbor j’s state and designs the control law to update its own
state based on the estimations,

xi(t+ 1) = xi(t)−
1

(t+ 1)dmax

∑

j∈N
m(t)
i

(xi(t)− x̂ij(t)) ,

where dmax = max{dm(t)
i , i = 1, . . . , n,m(t) = 1, . . . , h}, and d

m(t)
i means the agent has d

m(t)
i neighbors.

(v) Repetition: t = t+ 1.
For convenience, defining the above estimation and update as vector form, some matrices will be defined

first.
Firstly, we rewrite the estimations into vector form. The undirected graphs G1, G2, . . . , Gh constitute

a jointly connected graph denoted as G and G = (N,E), where N = {1, 2, . . . , n} is the set of agents,
E is the set of G’s edges. We consider the agent i in jointly connected graph G: assume there are di
neighbors of agent i and x̂ij(t) is the estimation of agent j estimated by agent i, where j ∈ Ni, Ni is the
set of neighbors of agent i, i = 1, 2, . . . , n. Hence, the estimation vector is

x̂(t) = [x̂1r1(t), . . . , x̂1rd1
(t), . . . , x̂ird1+···+di−1+1

(t), . . . , x̂ird1+···+di
(t),

. . . , x̂nrd1+···+dn−1+1
(t), . . . , x̂nrd1+···+dn

(t)]′,

where ‘′’ means transposition, rd1+···+di−1+1, . . . , rd1+···+di
∈ Ni, i = 1, 2, . . . , n, and assume that

∑n
i=1 di = m.
Matrix Pm(t): let Gm(t) denote the MAS’s topology at time t. Without loss of generality, assume

the edge between agent i and its neighbor j is consistent with rd1+···+di
∈ Ni described previously.

Thus, Pm(t)(d1 + · · · + di) = [0, . . . , 0, 1, 0, . . . , 0] ∈ R
1×m, the element of which in the (d1 + · · · + di)th

position is 1 when (i, j) ∈ Em(t), and Pm(t)(d1 + · · · + di) = [0, . . . , 0] when (i, j) /∈ Em(t). Then

Pm(t) = [P ′
m(t)(1), . . . , P

′
m(t)(m)]′ and

∑h
γ=1 Pγ > Im×m, where Pγ presents the corresponding Pm(t) of

Gγ at time t. The Pm(t) ensures that x̂ij(t) can be updated with obtaining new information sij(t), and
let x̂ij(t) = x̂ij(t− 1) otherwise.

Matrix Q: similarly, by continually using the assumption of the edge (i, j) in the introduction of
matrix Pm(t), Q(d1 + · · · + di) = [0, . . . , 0, 1, 0, . . . , 0] ∈ R

1×n (the element in the jth position is 1) and
Q = [Q′(1), . . . , Q′(m)]′.

MatrixWm(t): in the graphGm(t), there are d
m(t)
i neighbors of agent i, which are in {rd1+···+di−1+1, . . . ,

rd1+···+di
} ∈ Ni. Without loss of generality, we extract the first d

m(t)
i agents ∈ Ni. Then Wm(t)(i) =

[0, . . . , 0, 1, . . . , 1, 0, . . . , 0] ∈ R
1×m in which there are d

m(t)
i elements that are 1 and the corresponding

positions are d1 + · · ·+ di−1 +1, . . . , d1 + · · ·+ di−1 + d
m(t)
i ; Wm(t)(i) = [0, . . . , 0] ∈ R

1×m with the agent
i no neighbors. Thus, we get Wm(t) = [W ′

m(t)(1), . . . ,W
′
m(t)(n)]

′ ∈ R
n×m.

After matrices have been defined, the estimations and updates are given as follows:
(1) Estimation:

x̂(t) =
∏

M

{

x̂(t− 1) + Pm(t)
β

t
(F (C− x̂(t− 1))− s(t))

}

, (3)

where
∏

M{·} is the m-dimensional projection operator vector with each dimension denoted as πM{·},
C = C1m×1 and

s(t) = [s1r1(t), . . . , s1rd1 (t), . . . , sird1+···+di−1+1
(t), . . . , sird1+···+di

(t),

. . . , snrd1+···+dn−1+1
(t), . . . , snrd1+···+dn

(t)]′.

If d1 + · · ·+ di = j, then sird1+···+di
presents that the agent i can receive binary-valued information from

neighbor j. sird1+···+di
updates itself as the new information received lately if the agent i can obtain new

data at time t; otherwise, sird1+···+di
should remain the old value as it was at time t− 1.
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(2) Update:

x(t + 1) = x(t) − 1

(t+ 1)dmax
Lm(t)x(t) +

1

(t+ 1)dmax
Wm(t)ε(t), (4)

where ε(t) = x̂(t)−Qx(t),

ε(t) = [ε1r1(t), . . . , ε1rd1 (t), . . . , εird1+···+di−1+1
(t), . . . , εird1+···+di

(t),

. . . , εnrd1+···+dn−1+1
(t), . . . , εnrd1+···+dn

(t)]′.

If d1 + · · ·+ di = j, then εird1+···+di
(t) = x̂ird1+···+di

(t)− xj(t).

4 Main results

4.1 Two convergence indexes

Let E[·] denote the expectation. The weak consensus (E[|xi(t)− xj(t)|2] → 0) of agents can be described
by

V (t) = E
[

x′(t)Lm(t)x(t)
]

= E

[

x′(t)

(

h
∑

γ=1

pγLγ

)

x(t)

]

. (5)

The square error R(t) of estimations is defined as follows:

R(t) = E[ε′(t)ε(t)]. (6)

We will see later that the two convergence indexes are Lyapunov functions depending on each other and
we will use this quality to discuss the consensus problem of the MAS.

4.2 Theory preparation

Corollary 1. Under Assumption 1, the Laplace matrix
∑h

γ=1 Lγ is a nonnegative definite matirx with
rank n− 1.

Lemma 1 ([22], Theorem 7.2.2). Assume A, B ∈ R
n×n are Hermitian matrices with the eigenvalues

ascending as below:
λ1(A) 6 λ2(A) 6 · · · 6 λn(A),

λ1(B) 6 λ2(B) 6 · · · 6 λn(B),

λ1(A+B) 6 λ2(A+B) 6 · · · 6 λn(A+B);

then

λi(A+B) >























λi(A) + λ1(B),

λi−1(A) + λ2(B),
...

λ1(A) + λi(B).

Lemma 2. Under Assumption 1, the matrix
∑h

γ=1 pγLγ is a nonnegative definite matrix with rank
n− 1.
Proof. Let pmin = min{p1, . . . , ph}, ∆pγ = pγ − pmin > 0, γ ∈ {1, . . . , h}; then

h
∑

γ=1

pγLγ = pmin

h
∑

γ=1

Lγ +

h
∑

γ=1

∆pγLγ .

It is obvious that λ(pmin

∑h
γ=1Lγ) > 0 by Lemma 1. Because Lγ is a Laplace matrix and is positive and

semi-definite, the matrix
∑h

γ=1∆pγLγ is also a positive semi-definite matrix, meaning λ(
∑h

γ=1 ∆pγLγ) >

0. By Lemma 1, we can get that λ(
∑h

γ=1 pγLγ) > 0 and no more than one eigenvalue is 0. For each Lγ

that is a Laplace matrix with an eigenvector being 1n, there must be one 0-eigenvalue of
∑h

γ=1 pγLγ .
The lemma can be obtained.



Hu M, et al. Sci China Inf Sci June 2022 Vol. 65 162207:6

Corollary 2. Under Assumption 1, let λn denote the largest eigenvalue and λ2 denote the smallest

positive one of
∑h

γ=1 pγLγ . Set c =
λ2
2

λn
; then (

∑h
γ=1 pγLγ)

2 > c
∑h

γ=1 pγLγ .
Proof. The proof is similar to Theorem 5 in [23].

Lemma 3 ([13], Lemma 3). For arbitrary ν ∈ R,
(i)

k
∏

i=1

(

1− ν

i

)

= O

(

1

kν

)

, k → ∞.

(ii) For arbitrary δ > 0,

k
∑

l=1

k
∏

i=l+1

(

1− ν

i

) 1

l1+δ
=







































O

(

1

kδ

)

, 0 < δ < ν;

O

(

ln k

kν

)

, δ = ν;

O

(

1

kν

)

, δ > ν.

Lemma 4. The agent state xi(t) and the estimation x̂ij(t) are all bounded, meaning that there exists a

bounded positive constant M such that |xi(t)| 6 M and |x̂ij(t)| 6 M , where i = 1, 2, . . . , n , j ∈ N
m(t)
i .

Proof. Let Ω = {x|x ∈ R, |x| 6 M}. Then xi(0) ∈ Ω, x̂i(0) ∈ Ω. Owing to the definition of the
projection operator, we can get |x̂ij(t)| 6 M , meaning x̂ij(t) ∈ Ω.

(1) When there is no neighbor of the agent i at time t, meaning d
m(t)
i = 0, the state of agent i does

not update, meaning xi(t+ 1) = xi(t).

(2) When there exists a neighbor of the agent i, meaning d
m(t)
i > 0, we have

xi(t+ 1) = xi(t)−
1

(t+ 1)dmax

∑

j∈N
m(t)
i

(xi(t)− x̂ij(t))

=

(

1− d
m(t)
i

(t+ 1)dmax

)

xi(t) +
1

(t+ 1)dmax

∑

j∈N
m(t)
i

x̂ij(t)

=

(

1− d
m(t)
i

(t+ 1)dmax

)

xi(t) +
d
m(t)
i

(t+ 1)dmax

∑

j∈N
m(t)
i

1

d
m(t)
i

x̂ij(t).

For
∑

j∈N
m(t)
i

1

d
m(t)
i

= 1 and 1

d
m(t)
i

> 0, we have
∑

j∈N
m(t)
i

1

d
m(t)
i

x̂ij(t) ∈ Ω; for 0 <
d
m(t)
i

(t+1)dmax
< 1 and

(1− d
m(t)
i

(t+1)dmax
)+

d
m(t)
i

(t+1)dmax
= 1, we have xi(t+1) ∈ Ω. Both cases indicate that |xi(t+1)| 6 M . Combining

the items (1) and (2), xi(t+ 1) ∈ Ω for arbitrary t > 0.

Lemma 5 ([24], the remark in Subsection 2.6.2). Let X be a variable and ν be a σ-algebra; thus

E[E[X |ν]] = E[X ].

Lemma 6. The recursive inequality of Lyapunov function V (t) is

V (t+ 1) 6

(

1− 3c/2

(t+ 1)dmax

)

V (t) +
2λW /c

(t+ 1)dmax
R(t) +

B

(t+ 1)2
, (7)

where B = B1+B2+B3, 0 < Bi < ∞, i = 1, . . . , h, c =
λ2
2

λn
, λn is the largest eigenvalue of

∑h
γ=1 pγLγ , and

λ2 is the smallest positive eigenvalue of
∑h

γ=1 pγLγ , λW = max
{

λmax{W ′
1ĽW1}, . . . , λmax{W ′

hĽWh}
}

.
Proof. See the proof in Appendix A.

Lemma 7. The recursive inequality of Lyapunov function R(t) is

R(t) 6

(

1− 2pminβfMdmax − λQL

α − 2
√

λQλW̌

tdmax

)

R(t− 1) +
α

tdmax
V (t− 1) +

B̃

t2
, (8)
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where B̃ = B4 + B5, 0 < Bi < ∞, i = 1, 2, pmin = min{p1, . . . , ph}, fM = f(|C| + M), β is the
constant given in (2), λQL = max {λmax{QL1Q

′}, . . . , λmax{QLhQ
′}}, λQ = λmax{QQ′}, 0 < α < ∞,

λW̌ = max{λmax{W ′
1W1}, . . . , λmax{W ′

hWh}}.
Proof. See proof in Appendix B.

4.3 The conditions of consensus and consensus speed of O(1

t
)

Put the two Lyapunov functions into a vector and matrix form:






























V (t) 6

(

1− 3c/2

tdmax

)

V (t− 1) +
2λW /c

tdmax
R(t− 1) +

B

t2
,

R(t) 6






1−

2pminβfMdmax −
λQL

α
− 2
√

λQλW̌

tdmax






R(t− 1) +

α

tdmax
V (t− 1) +

B̃

t2
.

(9)

Let

U =

(

u1 u2

u3 u4

)

, Z(t) =

(

V (t)

R(t)

)

, H =

(

B

B̃

)

,

where u1 = 3c
2dmax

, u2 = − 2λW

cdmax
, u3 = − α

dmax
, u4 =

2pminβfMdmax−
λQL

α
−2

√
λQλW̌

dmax
. Then by (9) we obtain

||Z(t)|| 6
∥

∥

∥

∥

(

I − 1

t
U

)

Z(t− 1)

∥

∥

∥

∥

+
1

t2
||H ||, (10)

and we have the following theorem.

Theorem 1. Under Assumptions 1–3, we have

||Z(t)|| =







































O

(

1

tλmin(U)

)

, λmin(U) < 1;

O

(

lnt

t

)

, λmin(U) = 1;

O

(

1

t

)

, λmin(U) > 1.

Proof. Let u2 = u3; then the matrix U is symmetry. By c =
λ2
2

λn
, we get α = 2λnλW

λ2
2

. Because U is

symmetry,

λ

(

I − 2U

t
+

U2

t2

)

=

(

1− λ(U)

t

)2

6

(

1− λmin(U)

t

)2

.

Thus

∥

∥

∥

∥

I − U

t

∥

∥

∥

∥

=

√

√

√

√λmax

(

(

I − U

t

)2
)

=

√

λmax

(

I − 2U

t
+

U2

t2

)

6 1− λmin(U)

t
.

Hence

||Z(t)|| 6
(

I − λmin(U)

t

)

||Z(t− 1)||+ 1

t2
||H ||

6

t
∏

i=⌈λmax(U)⌉+1

(

I − λmin(U)

i

)

||Z(⌈λmax(U)⌉)|| +
t
∑

i=⌈λmax(U)⌉+1

t
∏

l=i+1

(

I − λmin(U)

l

) ||H ||
i2

,

where ⌈·⌉ means the biggest integer which is no more than ‘·’. Finally, we can obtain the theorem by
Lemma 3.

Remark 1. As V (t) 6 ||Z(t)|| and R(t) 6 ||Z(t)||, V (t) and R(t) have the order no more than that of
||Z(t)||, where the vector Z(t) and the matrix U are described as above.
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Theorem 2. The binary-valued switched MAS reaches weak consensus, and the estimations of neighbors
converge to the real states, for β > κ1

2pminfMdmax
, where

κ1 =
8λ3

nλ
2
W

3λ6
2

+
λ2
2λQL

2λnλW
+ 2
√

λQλW̌ ,

and pmin, λQ, λQL, λW , λW̌ are defined in Lemma 6 or Lemma 7, λ2, λn are defined in Lemma 2.
Proof. Let |λI − U | = (λ− u1)(λ− u4)− u2

2 = 0; then

λmin(U) =
u1 + u4 −

√

(u1 + u4)2 − 4(u1u4 − u2
2)

2
.

If β > κ1

2pminfMdmax
, then u1u4 > u2

2. For u1 > 0, u4 > 0, then u1 + u4 > 0. Thus the smallest eigenvalue
of matrix U follows:

λmin(U) =
u1 + u4 −

√

(u1 + u4)2 − 4(u1u4 − u2
2)

2
> 0.

By Theorem 1 and Remark 1, we can obtain

E[|xi(t)− xj(t)|2] → 0, ∀i, j = 1, 2, . . . , n, i 6= j,

and
E[|x̂ij(t)− xj(t)|2] → 0, j ∈ Ni, i = 1, 2, . . . , n.

Theorem 3. The binary-valued switched MAS reaches weak consensus at a speed of O(1t ), and the

estimations of neighbors converge to the real states at a speed of O(1t ), for u1 =
3λ2

2

2λn
> 1 and β >

κ2

2pminfMdmax
, where

κ2 =
8λ3

nλ
2
W

λ4
2(3λ

2
2 − 2λndmax)

+
λ2
2λQL

2λnλW
+ 2
√

λQλW̌ + dmax,

and pmin, λQ, λQL, λW , λW̌ are defined in Lemma 6 or Lemma 7, λ2, λn are defined in Lemma 2.
Proof. If β > κ2

2pminfMdmax
, then

u4 = 2pminβfMdmax −
λQL

α
− 2
√

λQλW̌

>
8λ3

nλ
2
W

λ4
2(3λ

2
2 − 2λn)

+ 1

=
u2
2

u1 − 1
+ 1.

If u1 > 1, then u4(u1 − 1) > u2
2 + (u1 − 1). Consequently,

(u1 + u4)
2 − 4(u1u4 − u2

2) < (u1 + u4 − 2)2.

For u1 > 1 and u4 > 1, then u1 + u4 − 2 > 0, and

√

(u1 + u4)2 − 4(u1u4 − u2
2) < u1 + u4 − 2.

Hence, the smallest eigenvalue of matrix U follows

λmin(U) =
u1 + u4 −

√

(u1 + u4)2 − 4(u1u4 − u2
2)

2
> 1.

By Theorem 1 and Remark 1, we can obtain Theorem 3.

Remark 2. Theorems 2 and 3 mean that the larger the pmin, the smaller the corresponding κ1

2pminfMdmax

and κ2

2pminfMdmax
, and the easier the β is to obtain, which is consistent with perceptual intuition: when

the value of the lowest probability that a graph emerges with is not too small, the information among
agents can be transmitted in time so that the consensus could be reached more easily.



Hu M, et al. Sci China Inf Sci June 2022 Vol. 65 162207:9

1 1 1

2 2 23

G1 G2 G3

3 3

Figure 1 (Color online) A switched MAS with three agents.
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Figure 2 (Color online) Updates of agents’ states. Figure 3 (Color online) Estimations of the neighbors.

5 Simulation

This part will give a simulation with a three-agent system and there are three switched graphs, which
are depicted in Figure 1.

Set the initial states as x(0) = [−5, 1, 8]′ and the initial estimations as x̂(0) = [0, 2, 2,−3, 1,−2]′. Take
G1 for example and we give the corresponding matrices:

Q =









0 1 0 1 0 0

0 0 1 0 0 1

1 0 0 0 1 0









′

, L1 =









1 0 −1

0 0 0

−1 0 1









, W1 =









1 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0









, P1 =

[

P11 P12

P21 P22

]

,

where

P11 =









1 0 0

0 1 0

0 0 0









,

P12 = P21 = P22 = 03×3. Then dmax = 1, λ2 = 0.9278, λ3 = 1.0722, λQL = max{λmax{QL1Q
′},

λmax{QL2Q
′}, λmax{QL3Q

′}} = 4, λW = max
{

λmax{W ′
1ĽW1}, λmax{W ′

2ĽW2}, λmax{W ′
3ĽW3}

}

=
1.0631, pmin = p1 = 7

24 , p2 = 1
3 , pmax = p3 = 3

8 , λW̌ = max{λmax{W ′
1W1}, λmax{W ′

2W2}, λmax{W ′
3W3}}

= 1, λQ = 2. Let M = 8, µ = 0 and δ = 6 of the noises; then fM = 0.0273. Thus κ1 = 10.1628, and the
consensus can be obtained when β > 639 by Theorem 2. Compute κ2 = 39.6737 and u1 = 1.2043 > 1,
and the consensus speed of O(1t ) can be reached with β > 2492 by Theorem 3. Finally, we let β = 2500
and the following are the simulation results.

Figure 2 depicts the updating process of three agents and we can see that the three agents converge
to the same state. Figure 3 presents the convergence tendency of estimations of agents’ neighbors and
we also obtain that the estimations are converge to the same one. Figure 4 demonstrates the trajectory
of consensus index V (t), converging to 0. Figure 5 describes the trajectory of the logarithm of V (t)
compared with 12 − log(t) and −6 − log(t), and we see that the three trajectories are almost parallel,
meaning that the consensus speed of O(1t ) can be obtained when we give β a proper value.
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Figure 4 (Color online) The trajectory of V (t). Figure 5 (Color online) The trajectory of the log of V (t).

6 Conclusion

This paper presents preliminary studies on the consensus of random switched MAS based on the RPI
algorithm. It is proved that by properly selecting the iteration step β in the RPI algorithm, the estimates
can converge to the real states and the agents can achieve consensus. Moreover, both the convergence
speed of the estimation and the consensus speed of the agents are proved to be O(1/t). And the simulation
result is consistent with the theoretical analysis.

In this work, we assumed that each graph emerges randomly with a positive non-zero probability. The
consensus problem of switched binary-valued MAS is a more interesting and challenging topic for future
research. We assumed a convergence in the analysis of the agents’ final states to study whether the final
states converge to or are approximate to the average initial states. In this paper, we considered that each
graph switches with a non-zero probability. But is the consensus algorithm and control law still sufficient
to make the agents attain consensus when the graphs are under more general switching conditions?
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Appendix A Derivation of V (t)
From Lemma 6,

V (t + 1) = E
[

x′(t + 1)Lm(t+1)x(t+ 1)
]

= E

[

x′(t)

(

I −
1

(t + 1)dmax

Lm(t)

)

Lm(t+1)

(

I −
1

(t + 1)dmax

Lm(t)

)

x(t)

]

+
2

(t + 1)dmax
E

[

x
′
(t)

(

I −
1

(t + 1)dmax
Lm(t)

)

Lm(t+1)Wm(t)ε(t)

]

+
1

(t + 1)2d2
max

E

[

ε′(t)W ′

m(t)Lm(t+1)Wm(t)ε(t)
]

. (A1)

By Lemma 5, we get the first term on the right of (A1) as follows:

E

[

x′(t)

(

I −
1

(t + 1)dmax

Lm(t)

)

Lm(t+1)

(

I −
1

(t + 1)dmax

Lm(t)

)

x(t)

]

= E

[

E

[

x′(t)

(

I −
1

(t + 1)dmax

Lm(t)

)

Lm(t+1)

(

I −
1

(t + 1)dmax

Lm(t)

)

x(t)

∣

∣

∣

∣

x(t)

]]

= E

[

x
′
(t)E

[(

I −
1

(t + 1)dmax
Lm(t)

)

Lm(t+1)

(

I −
1

(t + 1)dmax
Lm(t)

)]

x(t)

]

= E

[

x′(t)E

[

E

[(

I −
1

(t + 1)dmax

Lm(t)

)

Lm(t+1)

(

I −
1

(t + 1)dmax

Lm(t)

) ∣

∣

∣

∣

Lm(t)

]]

x(t)

]

= E



x′(t)E





(

I −
1

(t + 1)dmax

Lm(t)

)

(

h
∑

γ=1

pγLγ)

(

I −
1

(t + 1)dmax

Lm(t)

)



 x(t)





= E



x′(t)



(
h

∑

γ=1

pγLγ) −
2

(t + 1)dmax

(
h

∑

γ=1

pγLγ)
2 +

1

(t + 1)2d2
max

E



Lm(t)(
h

∑

γ=1

pγLγ)Lm(t)







 x(t)



 .

Let L =
∑h

γ=1 pγLγ(
∑h

γ′=1
pγLγ′)Lγ , Ľ =

∑h
γ=1 pγLγ , and by Lemma 2 we get

E

[

x
′
(t)

(

I −
1

(t + 1)dmax
Lm(t)

)

Lm(t+1)

(

I −
1

(t + 1)dmax
Lm(t)

)

x(t)

]

6 E

[

x′(t)

{(

1 −
2c

(t + 1)dmax

)

Ľ +
L

(t + 1)2d2
max

}

x(t)

]

6

(

1 −
2c

(t + 1)dmax

)

V (t) +
B1

(t + 1)2
, (A2)

where 0 < B1 < ∞.

By Lemma 5, we obtain the second term on the right of (A1) as follows:

2

(t + 1)dmax

E

[

x′(t)

(

I −
1

(t + 1)dmax

Lm(t)

)

Lm(t+1)Wm(t)ε(t)

]

=
2

(t + 1)dmax
E

{

E

[

x
′
(t)

(

I −
1

(t + 1)dmax
Lm(t)

)

Lm(t+1)Wm(t)ε(t)

] ∣

∣

∣

∣

x(t), x̂(t), Lm(t)

}

=
2

(t + 1)dmax

E

[

x′(t)

(

I −
1

(t + 1)dmax

Lm(t)

)

ĽWm(t)ε(t)

]

=
2

(t + 1)dmax

E

[

x′(t)

(

I −
1

(t + 1)dmax

Lm(t)

)

L̃′L̃Wm(t)ε(t)

]

6
2

(t + 1)dmax

√

E

[

x′(t)

(

I −
1

(t + 1)dmax

Lm(t)

)

L̃′L̃

(

I −
1

(t + 1)dmax

Lm(t)

)

x(t)

]

E

[

ε′(t)W ′

m(t)
ĽWm(t)ε(t)

]

.
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For m(t) ∈ {1, . . . , h}, thus we can get the maximum eigenvalue of the matrix W ′

m(t)ĽWm(t), defined as λW = max{λmax{W
′

1Ľ

W1}, . . . , λmax{W
′

hĽWh}}. We have

2

(t + 1)dmax

E

[

x′(t)

(

I −
1

(t + 1)dmax

Lm(t)

)

Lm(t+1)Wm(t)ε(t)

]

6
2

(t + 1)dmax

√

E

[

x′(t)

(

Ľ −
2c

(t + 1)dmax
Ľ +

L

(t + 1)2d2
max

)

x(t)

]

E

[

ε′(t)W ′

m(t)
ĽWm(t)ε(t)

]

6
2

(t + 1)dmax

√

[(

1 −
2c

(t + 1)dmax

)

V (t)

]

[λWR(t)] +
B2

(t + 1)2

6
2

(t + 1)dmax

√

V (t)λWR(t) +
B2

(t + 1)2

=
2

(t + 1)dmax

√

c

2
V (t) ·

2λW

c
R(t) +

B2

(t + 1)2

6
1

(t + 1)dmax

[

c

2
V (t) +

2λW

c
R(t)

]

+
B2

(t + 1)2

6
c/2

(t + 1)dmax
V (t) +

2λW /c

(t + 1)dmax
R(t) +

B2

(t + 1)2
, t >

2c

dmax
− 1 and t > 0, (A3)

where 0 < B2 < ∞ and c is as defined in Lemma 2.

The third term on the right of (A1) is

1

(t + 1)2d2
max

E

[

ε′(t)W ′

m(t)Lm(t+1)Wm(t)ε(t)
]

6
B3

(t + 1)2
, (A4)

where 0 < B3 < ∞.

By (A2)–(A4), the Lyapunov function V (t) can be obtained:

V (t + 1) 6

(

1 −
3c/2

(t + 1)dmax

)

V (t) +
2λW /c

(t + 1)dmax

R(t) +
B

(t + 1)2
, (A5)

where B = B1 + B2 + B3.

Appendix B Derivation of R(t)
From Lemma 7, by the property ([14], Proposition 6) of the projection operator, we have

R(t)

= E
[

ε′(t)ε(t)
]

= E

[

[

∏

M

{

x̂(t − 1) + Pm(t)

β

t
(F (C − x̂(t − 1)) − s(t))

}

− Qx(t)

]

′

·

[

∏

M

{x̂(t − 1) + Pm(t)

β

t
(F (C− x̂(t − 1)) − s(t))} − Qx(t)

]

]

6 E

[ [

x̂(t − 1) + Pm(t)

β

t
(F (C − x̂(t − 1)) − s(t)) − Qx(t)

]

′

·

[

x̂(t − 1) + Pm(t)

β

t
(F (C − x̂(t − 1)) − s(t)) − Qx(t)

] ]

= E

[ [

ε(t − 1) +
β

t
Pm(t)(F (C − x̂(t − 1)) − s(t)) +

1

tdmax

Q(Lm(t−1)x(t − 1) − Wm(t−1)ε(t − 1))

]

′

·

[

ε(t − 1) +
β

t
Pm(t)(F (C − x̂(t − 1)) − s(t)) +

1

tdmax

Q(Lm(t−1)x(t− 1) − Wm(t−1)ε(t − 1))

] ]

= R(t − 1) +
2β

t
E[ε′(t − 1)Pm(t)(F (C − x̂(t − 1)) − s(t))]

+
2

tdmax

E[ε′(t − 1)Q(Lm(t−1)x(t − 1) − Wm(t−1)ε(t − 1))] +
B4

t2
, (B1)

where 0 < B4 < ∞.

The second term on the right of (B1) is

2β

t
E
[

ε′(t − 1)Pm(t)(F (C − x̂(t − 1)) − s(t))
]

=
2β

t
E
[

ε′(t − 1)Pm(t)F (C − x̂(t − 1))
]

−
2β

t
E
[

E
[

ε′(t − 1)Pm(t)s(t)|s(1), . . . , s(t − 1), x̂(t − 1), x(t − 1), Lm(t)

]]

=
2β

t
E
[

ε′(t − 1)Pm(t) (F (C− x̂(t − 1)) − F (C − Qx(t)))
]
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=
2β

t
E
[

E
[

ε′(t − 1)Pm(t) (F (C − x̂(t − 1)) − F (C− Qx(t))) |x̂(t − 1), x(t − 1), x(t)
]]

=
2β

t
E



ε′(t − 1)





h
∑

γ=1

pγPγ



 (F (C − x̂(t − 1)) − F (C− Qx(t)))



 .

Let P̌ =
∑h

γ=1 Pγ . For F (C− x̂ij(t−1))−F (C−xj(t)), there exists ξij(t) ∈ (C−xj(t), C− x̂ij(t−1)) or (C− x̂ij(t−1), C−xj(t)),

such that

F (C − x̂ij(t − 1)) − F (C − xj(t)) = −f(ξij(t))(x̂ij(t − 1) − xj(t)).

Let ξ(t) = (ξ1(t), . . . , ξr(t), . . . , ξm(t)). r is the number of the edge (i, j), and then

F (C − x̂(t − 1)) − F (C− Qx(t))

= −diag(f(ξ(t)))(x̂(t − 1) − Qx(t))

= −diag(f(ξ(t)))

(

x̂(t − 1) − Q

(

x(t− 1) −
1

tdmax

Lm(t−1)x(t − 1) +
1

tdmax

Wm(t−1)ε(t − 1)

))

= −diag(f(ξ(t)))

(

ε(t − 1) +
1

tdmax
Q

(

Lm(t−1)x(t − 1) − Wm(t−1)ε(t − 1)
)

)

,

where

diag(f(ξ(t))) =











f(ξ1(t)) 0

. . .

0 f(ξm(t))











.

Hence

2β

t
E



ε
′
(t − 1)





h
∑

γ=1

pγPγ



 (F (C − x̂(t − 1)) − F (C − Qx(t)))





= −
2β

t
E



ε′(t − 1)





h
∑

γ=1

pγPγ



diag (f(ξ(t))) ε(t − 1)



 +
B5

t2
, (B2)

where 0 < B5 < ∞. For |x̂ij(t)| 6 M , |x̂i(t)| 6 M , dF/dx = f ; then fM 6 f(ξij(t)) 6 1, where fM = f(|C| + M),

diag(f(ξ(t))) > fMIm×m. And by P̌ > Im×m we have

−
2β

t
E



ε′(t − 1)





h
∑

γ=1

pγPγ



 diag(f(ξ(t)))ε(t − 1)





6 −
2β

t
E
[

ε′(t − 1)pminIm×mfMIm×mε(t − 1)
]

6 −
2pminβfM

t
R(t − 1). (B3)

By (B2) and (B3) we can get the second item on the right of (B1) as follows:

2β

t
E
[

ε′(t − 1)Pm(t)(F (C − x̂(t − 1)) − s(t))
]

6 −
2pminβfM

t
R(t − 1) +

B5

t2
. (B4)

The third item on the right of (B1) is

2

tdmax
E
[

ε′(t − 1)Q(Lm(t−1)x(t − 1) − Wm(t−1)ε(t − 1))
]

=
2

tdmax

E
[

ε′(t − 1)QLm(t)x(t − 1)
]

−
2

tdmax

E
[

ε′(t − 1)QWm(t)ε(t − 1)
]

. (B5)

Let λQL = max
{

λmax{QL1Q
′}, . . . , λmax{QLhQ

′}
}

and 0 < α < ∞. Then the first item on the right of (B5) is

2

tdmax

E
[

ε′(t − 1)QLm(t−1)x(t − 1)
]

6
2

tdmax

√

E[ε′(t − 1)QL̃′

m(t−1)
L̃m(t−1)Q′ε(t − 1)]E[x′(t − 1)L̃′

m(t−1)
L̃m(t−1)x(t − 1)]

6
2

tdmax

√

λQLR(t − 1)V (t − 1)

=
2

tdmax

√

[

λQL

α
R(t − 1)

]

[αV (t − 1)]

6
1

tdmax

[

λQL

α
R(t − 1) + αV (t − 1)

]

. (B6)

Let λW̌ = max{λmax{W
′

1W1}, . . . , λmax{W
′

hWh}} and λQ = λmax{QQ′}. Then the second item on the right of (B5) is

−
2

tdmax
E
[

ε
′
(t − 1)QWm(t−1)ε(t − 1)

]
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6
2

tdmax

√

E [ε′(t − 1)QQ′ε(t − 1)]E[ε′(t − 1)W ′

m(t−1)
Wm(t−1)ε(t − 1)]

6
2

tdmax

√

λQR(t − 1)λW̌R(t − 1)

=
2
√

λQλW̌

tdmax
R(t − 1). (B7)

By (B5)–(B7) we can obtain the third item on the right of (B1) as below:

2

tdmax
E
[

ε
′
(t − 1)Q(Lm(t−1)x(t− 1) − Wm(t−1)ε(t − 1))

]

6
1

tdmax

[

λQL

α
R(t − 1) + αV (t − 1)

]

+
2
√

λQλW̌

tdmax
R(t − 1). (B8)

Thus, by (B1), (B4) and (B8), the Lyapunov function R(t) has the following form:

R(t) 6



1 −
2pminβfMdmax −

λQL
α

− 2
√

λQλW̌

tdmax



R(t − 1) +
α

tdmax

V (t − 1) +
B̃

t2
, (B9)

where B̃ = B4 + B5.
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