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Abstract In this paper, we tackle the long-tailed visual recognition problem from the categorical prototype

perspective by proposing a prototype-based classifier learning (PCL) method. Specifically, thanks to the gen-

eralization ability and robustness, categorical prototypes reveal their advantages of representing the category

semantics. Coupled with their class-balance characteristic, categorical prototypes also show potential for han-

dling data imbalance. In our PCL, we propose to generate the categorical classifiers based on the prototypes

by performing a learnable mapping function. To further alleviate the impact of imbalance on classifier gener-

ation, two kinds of classifier calibration approaches are designed from both prototype-level and example-level

aspects. Extensive experiments on five benchmark datasets, including the large-scale iNaturalist, Places-LT,

and ImageNet-LT, justify that the proposed PCL can outperform state-of-the-arts. Furthermore, validation

experiments can demonstrate the effectiveness of tailored designs in PCL for long-tailed problems.
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imbalance

Citation Wei X-S, Xu S-L, Chen H, et al. Prototype-based classifier learning for long-tailed visual recognition.

Sci China Inf Sci, 2022, 65(6): 160105, https://doi.org/10.1007/s11432-021-3489-1

1 Introduction

With the advent of research on deep convolutional neural networks (CNNs), more and more datasets that
reflect real-world challenges are proposed and further accepted by the computer vision community. One
of the fundamental and challenging problems is that real-world datasets always have skewed distributions
with a long tail [1, 2], i.e., a few classes (also known as (a.k.a.) head classes) compose most of the data,
while most classes (a.k.a. tail classes) have rarely few samples. Such long-tailed distributions can be
observed in diverse computer vision tasks, e.g., fine-grained classification [3], instance segmentation [4],
and object detection [5]. When dealing with these tasks, deep learning methods are not feasible to achieve
outstanding recognition accuracy due to both the data-hungry limitation of deep models and the extreme
class imbalance trouble of long-tailed data distributions.

In the literature, existing methods for long-tailed distributions attempt from various aspects, including
class re-balancing methods [6–9], decoupled learning [10,11], knowledge transfer [12–14], and loss margin
modification [15–17]. Different from those previous studies, we investigate how categorical prototypes
can help the long-tailed recognition task. The so-called prototype refers to a vector that can accurately
represent the semantics of the category (i.e., genuine class representation) in the visual space, which is
usually realized by the feature centroid of a specific class [18]. Our motivations hereby are two-fold. The
first one is that as the categorical prototypes are statistical representations with respect to (w.r.t.) their
categories, they have good generalization ability to describe the semantical meaning of categories, as well
as associating with good adversarial robustness [19,20]. The second one is that, in general, each category
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Figure 1 (Color online) Key idea of our prototype-based classifier learning method. Different marks represent examples of different

classes, and the star marks are the categorical prototypes. (a) is the conventional classifier boundaries for long-tailed distribution

data, where cross-entropy loss learns skewed features and results in biased classifiers. (b) is our proposal to map the categorical

prototype towards the corresponding classifier. Since the prototype representations of each class have good generalization ability

and more importantly they are class-balanced, the generated classifiers based on prototypes have the potential to handle long-tailed

recognition, without being affected by individual examples of long-tailed distribution, especially for the head data.

has only one prototype, which is balanced across different categories. Therefore, if the class-balanced and
representative categorical prototypes can be used for generating categorical classifiers, it is potential to
alleviate the impact of long-tailed imbalance; see Figure 1.

Motivated by this, in this paper, we propose a prototype-based classifier learning (PCL) method for
long-tailed recognition. Specifically, our PCL method consists of two main components, including (1)
prototype-based classifier generation and (2) classifier calibration. As the term suggests, prototype-
based classifier generation aims to generate categorical classifiers fc of class c based on the corresponding
categorical prototype x̄c. In concretely, we realize this process by performing a learnable mapping function
from x̄c to fc. Then, the learned classifiers fc are employed for recognition and the parameters of our
PCL model can be updated by minimizing the losses upon fc during training. However, by recalling the
under-presented issue of tail data, their prototypes might not be “accurate” as those of the head classes.
Meanwhile, since fc is generated directly based on the prototypes, the quality of representation ability of
x̄c is quite crucial to some extent. Therefore, we introduce two kinds of classifier calibration approaches
from both prototype-level and example-level to reduce the discrepancy of the learned fc for alleviating
data imbalance, particularly for the classifiers of tail data. More specifically, as the head classes have
adequate examples, their prototypes should be relatively accurate. Thus, we calibrate the classifiers
of tail classes by aggregating prototypical statistics from their similar head classes. On the other side,
“representative examples” of each class (especially for tail data) also have valuable information to modify
the learned classifiers, where these so-called representative examples hereby are those data either with high
confidence but misclassified or with low confidence but correctly classified. After selecting representative
examples, they are employed to generate a modification variable w.r.t. fc in a meta-learning fashion.
Finally, the classifiers after calibrations can be obtained and applied for long-tailed recognition in the
inference phase. Experiments are conducted on five long-tailed benchmark datasets, including long-tailed
CIFAR [21], iNaturalist 2018 [3], Places-LT [22], and ImageNet-LT [23]. Empirical results and ablation
studies can validate the effectiveness of our proposed PCL method and our proposals in PCL.

The main contributions of this paper are as follows.

• We investigate how categorical prototypes can benefit long-tailed recognition, and propose a novel
method of learning the corresponding categorical classifiers based on these prototypes.

• We develop two kinds of tailored classifier calibration approaches to modify the learned categorical
classifiers derived from the prototypes for further improving the accuracy of long-tailed recognition.

• We conduct experiments on five long-tailed recognition benchmark datasets, which demonstrates
superior results compared to the state-of-the-art methods, including the large-scale iNaturalist, Places-
LT, and ImageNet-LT datasets.

The rest of this paper is organized as follows. Section 2 reviews the related work of long-tailed
recognition and prototypes in computer vision. Section 3 elaborately presents the proposed PCL method,
as well as the training algorithm. In Section 4, we report the empirical settings and experimental results
for evaluating the effectiveness of our PCL. Finally, Section 5 gives the conclusion and promising future
work.
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2 Related work

We briefly review the previous studies in this paper from two related aspects, including long-tailed
recognition and prototypes in computer vision tasks.

2.1 Long-tailed recognition

Long-tailed recognition is a fundamental research topic in machine learning, where the key is to overcome
the data imbalance challenge [24–27]. With the advent of research on deep neural networks, increasing
attention is being shifted to deal with long-tailed recognition by developing deep learning based methods.
Broadly, existing long-tailed recognition approaches can be organized into the following paradigms.

Class re-balancing strategies. Re-balancing strategies, e.g., data re-sampling [6, 7] and loss re-
weighting [8, 9], are conventional solutions for dealing with imbalance data or long-tailed distribution.
Re-sampling methods as one of the most important class re-balancing strategies could be divided into
two types: (1) Over-sampling by simply repeating data of minority classes [6, 28, 29] and (2) under-
sampling by abandoning data of dominant classes [7,28,30]. Recently, OLTR [23] was proposed to firstly
learn representations with instance-balanced sampling and then fine-tune these representations with class-
balanced sampling with a memory module. But sometimes, with re-sampling, duplicated tailed samples
might lead to over-fitting upon minority classes [31, 32], while discarding precious data will certainly
impair the generalization ability of deep networks.

On the other side, re-weighting methods belong to another series of prominent class re-balancing
strategies, which usually allocate large weights for training samples of tail classes in loss functions [9,33].
However, re-weighting is not capable of handling the large-scale, real-world scenarios of long-tailed data
and tends to cause optimization difficulty [34]. Consequently, Cui et al. [32] proposed to adopt the effective
number of samples instead of proportional frequency. Shu et al. [35] proposed an explicit weighting
function that is adaptively learned from the data. Salman et al. [36] demonstrated an uncertainty based
class imbalance learning framework, and then learned robust features, as well as generalizable classifiers.

Decoupled learning. Decoupled learning is a recent trend towards effective long-tailed recognition,
which aims to improve long-tailed recognition by decoupling the learning of representation and classifier.
Specifically, Kang et al. [11] decoupled the deep models of long-tailed recognition into two separate
stages, i.e., representation learning and classifier learning. They used the cross-entropy loss as the loss
function for both of these two stages and concluded that uniform sampling could benefit representation
learning and class-balance sampling favored classifier learning. Parallel to this, Zhou et al. [10] proposed
a bilateral-branch network to dynamically combine uniform sampling and class-balance sampling as a
unified framework. In [10], each branch performed its own duty of representation learning and classifier
learning separately, and the whole model equipped with a cumulative learning strategy can first learn
the universal patterns and then pay attention to the tail data gradually. Also, the work in this research
line reveals that choosing proper data sampling strategies is crucial for different learning tasks in deep
models, as well as a common conclusion of “better features, better models” [37].

Knowledge transfer. Due to the under-represented issue, tail data of long-tailed distribution is
always shot of representative during reference. Transfer learning based approaches aim to transfer useful
knowledge/information from majority classes (a.k.a. head classes) to example-scarce minority classes
(a.k.a. tail classes) [12, 13, 23, 38, 39]. In particular, Liu et al. [40] proposed to estimate the head data
by the Gaussian distribution and then used it to enrich the representation of tail data. Kim et al. [12]
developed a major-to-minor translation method to augment tail classes via translating samples from head
classes. Wang et al. [33] attempted to transfer the meta-knowledge of parameters evolution by designing
a meta network. Besides, some other methods, e.g., [13,39], defined the concepts of class-specific features
and class-generic features by class activation maps [41] and mixed these two kinds of features in the
training phase for augmenting the feature space of tail data.

Margin modification. Another research line of long-tailed recognition is to modify the loss during
network training to encourage the model to have the optimal trade-off between per-class margins. In
the previous work [29], it was revealed that the effect of re-weighting can diminish when the data is
separable, which inspires to shift the classification boundary to move closer to a head (dominant) class.
Specifically, Menon et al. [15] developed a large relative margin between logits of rare positive versus
dominant negative labels. Cao et al. [16] proposed to integrate per-class margin into the traditional
cross-entropy loss, where margins are inversely proportional to the prior probability of a class and can
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enforce larger margins between a tail class and the others. While in [17], the authors tried to suppress
the negative gradients resulting from head data for each tail data.

2.2 Prototypes in computer vision

In neural science, the infero-temporal cortex has a kind of prototypical representation via neurons tuned to
respond to different categories [18]. Inspired by the observations, prototype based methods are developed
for handling various computer vision and machine learning tasks. For instance, in traditional machine
learning, nearest prototype classifier is a popular classification model that assigns to observations the
label of the class of training samples whose mean (centroid) is closest to the observation, which is applied
in diverse applications, e.g., relevance feedback [42] and classification of tumors [43]. Additionally, in
few-shot learning [44], prototypical networks [45] were proposed as related to the neural statistician [46]
from the generative modeling literature, which extended the variational autoencoder to learn generative
models of datasets rather than individual points. In particular, the statistic network in the neural
statistician summarizes a set of data points into a statistic vector to perform the rest processing of
nearest neighbors. Later, deriving from this work, there were also Gaussian prototypical networks [47],
which predicted a covariance radius for each prototype, yielding some insight into the discriminating
force of each one of them. Beyond that, the prototypical sampling [48] on the data space, as performed
by self-organizing maps, allows the representation of what is known about a data distribution, using
methods quoted in prototypical networks and known as optimizing statistical criteria [49]. Compared
with previous work, we investigate how the categorical prototypes as the category-level knowledge directly
generate the corresponding categorical classifiers for dealing with the class imbalance issue.

3 Methodology

In this section, we elaborate the proposed PCLmethod in the following three aspects, i.e., prototype-based
classifier generation, classifier calibration, and its overall algorithm process.

3.1 Prototype-based classifier generation

The key idea of our PCL method is to learn the categorical classifiers based on the corresponding cate-
gorical prototypes by performing a learnable mapping function, i.e., m(·). The generated classifiers are
then employed for the final recognition. There are two advantages beneath the prototype-based learning
fashion. (1) The one is that the prototypical features have good generalization ability to represent their
semantical categories, as well as associating with good adversarial robustness [19,20]. (2) The other one is
that prototypes of different classes are balanced, since each class has only one prototype. Therefore, cate-
gorical classifiers derived from their corresponding prototypes can not only achieve strong generalization
ability for recognition, but also be beneficial to alleviate the impact of raw data imbalance.

More specifically, given the training image I associated with its corresponding label y ∈ {1, 2, . . . , C}
(where C is the number of classes), we can use any CNN base models to get the holistic features of an
image and define it as x. Regarding the categorical prototype of class c, it is obtained by

x̄c =
1

|Ωc|

∑

i∈Ωc

xi, (1)

where Ωc = {j|yj = c} represents the set of indices of all examples belonging to class c. Then, the
categorical classifier fc of class c is produced via the aforementioned mapping as

fc = m(x̄c;φ), (2)

where φ is the parameter in such a mapping function. The generated categorical classifiers {fc} of all
classes can be employed for the final recognition. In concretely, given a training example x′ with label
y′ = c, we compute its prediction distribution via softmax as

pm(y′ = c|x′) =
exp(fc · x

′)
∑

c′ exp(fc′ · x′)
. (3)

The model parameters are trained via minimizing the negative log-likelihood J (x′, y′) = − log(pm(c|x′)).
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Categories Hornbill House finch Macaw Damselfly Pickup truck Brain coral Odometer

Similarities (cf. Eq. (4)) 91.875 87.625 83.938 76.875 63.625 58.688 53.406

Exampled images

Figure 2 (Color online) Similarity of feature means of different categories in the balanced test set from ImageNet-LT [23]. Given

the category of Goldfinch (left), we calculate its prototype (i.e., feature mean) and also compute its similarity between other

categories and itself.

3.2 Classifier calibration

As the classifier is learned based on the categorical prototypes, it is particularly important that these
prototypes can accurately represent the corresponding categories without significant bias. For the head
data of the long-tailed distribution, its prototype should be relatively “accurate”. However, due to the
under-represented tail data, the prototypes of these tail classes might deviate from the oracle represen-
tations, which in turn leads to poor classifier learning. Therefore, we introduce two kinds of classifier
calibration approaches to reduce the discrepancy of these learned classifiers for alleviating data imbalance,
especially for the tail data’s classifiers.

3.2.1 Prototype calibration

The first calibration approach focuses on reducing the feature distribution discrepancy of prototypes,
which aims to alleviate overfitting on tail classes and obtain more accurate prototypical representations
(especially for tail data) for further generating classifiers with better generalization.

As a preliminary experiment shown in Figure 2, we report the similarity of feature mean (a.k.a. pro-
totypes) on the balanced test set of ImageNet-LT [23]. It can be observed that, for a specific category,
e.g., Goldfinch, similar categories have similar feature means (i.e., prototypes) w.r.t. their visual repre-
sentations. Meanwhile, head classes could have more accurate feature distribution statistics thanks to
their sufficient training data. Inspired by this, the prototypes of tail classes can be calibrated to reduce
the feature discrepancy by transferring statistics from the prototypes of head classes.

In concretely, regarding the prototype of class c in (1), the similarity between the other head class
(taking q for an example) and itself is obtained by

sc,q =
x̄T
c · x̄q

‖x̄c‖‖x̄q‖
. (4)

Then, a set of the top-k most similar categories w.r.t. class c can be formed as

Γc = arg topk
q

{sc,q} (5)

by ranking the similarity scores in descending order. Thus, the prototype of class c is calibrated by the
statistics of its top-k similar head classes by performing

x̄′
c = (1− λc) · x̄c + λc ·

∑

j∈Γc
x̄j

k
, (6)

where λc is a tradeoff parameter to adjust the importance of the prototypes of class c and other similar
head classes. In details, λc is set according to the number of examples by following the original long-tailed
distribution, which is formulated as λc = t · Nmax−Nc

Nmax−Nmin
. Among the equation, t is a temperature scalar.

Nmax, Nmin and Nc represent the number of examples of the class having the maximum examples, the
class having the minimum examples and class c, respectively.

In consequently, when class c is a head class, its calibrated prototype will be almost dominated by
itself. While, if class c is a tail class, the prototype will be calibrated by aggregating statistics from its
similar head classes. After that, following (2), the updated categorical classifier of class c is generated
based on its calibrated prototype:

f ′
c = m(x̄′

c;φ). (7)
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3.2.2 Representative example calibration

Beyond the prototype calibration, we also consider to incorporate representative examples of each class
(particularly for tail data) to modify the learned classifier f ′

c. The so-called representative examples
hereby are those data either with high confidence but misclassified or with low confidence but correctly
classified. Both kinds of examples are representative and beneficial for modeling powerful categorical
classification boundaries for long-tailed recognition.

Representative example selection. Specifically, we leverage the expected accuracy and average
confidence of reliability diagrams [50] to realize the metrics to distinguish these representative examples.
By formulations, to estimate the expected accuracy from finite examples, we group predictions into H
interval bins where each of bins has a size of 1/H . Let Λh denote the set of indices of examples whose
prediction confidence falls into the interval Ih =

(

h−1
H

, h
H

]

. Thus, the accuracy of Λh can be calculated
as

acc(Λh) =
1

|Λh|

∑

i∈Λh

1(ŷi = yi), (8)

where ŷi and yi are the predicted and ground truth labels w.r.t. the inputs Ii. Besides, the average
confidence within bin Λh can be defined as

conf(Λh) =
1

|Λh|

∑

i∈Λh

p̂i, (9)

where p̂i is the confidence for example xi. Therefore, regarding the aforementioned two kinds of repre-
sentative examples within a bin Λh, we use

{xi|conf(Λh)− acc(Λh) > δ ∩ ŷi 6= yi ∩ i ∈ Λh} (10)

to present the examples with high confidence but misclassified, while

{xi|acc(Λh)− conf(Λh) > δ ∩ ŷi = yi ∩ i ∈ Λh} (11)

is used for presenting the examples with low confidence but correctly classified. By combining (10) and
(11), we obtain a unified formulation to select the representative examples in Λh as

{xi||acc(Λh)− conf(Λh)| > δ ∩ i ∈ Λh}, (12)

where δ is a scalar as the threshold. For all H bins, based on (12), we obtain the corresponding repre-
sentative examples and then separate them according to their classes, which is denoted by a set X repres

c

w.r.t. class c.
Intuitive observations are shown in Figure 3. For the long-tailed CIFAR-100 dataset with different

imbalance ratios, we can find that especially for the tail data, the mismatch between the expected accuracy
and average confidence is quite large. In the following, we propose to learn a classifier calibration based
on these representative examples in a meta-learning fashion.

Meta-learning classifier calibrations based on representative examples. The main idea of
meta-learning classifier calibrations is to firstly hold out a balanced development set Sd from the training
set Str for obtaining representative examples X repres

c , and then use X repres
c to generate a modification

variable ∆fc to adjust the categorical classifier f ′
c in (7).

More specifically, we obtain the representative examples X repres
c from Sd by following (12). Then, ∆fc

is derived from another mapping function mφ∆(·), which is as follows:

∆fc = mφ∆(x̄
repres
c ;φ∆) , (13)

where φ∆ is the parameter in mφ∆(·), and x̄repres
c is the feature mean of these representative examples of

class c, i.e., x̄repres
c = 1

|X repres
c |

∑

xi∈X repres
c

xi. In particular, for the classes with no selected representative

examples, we set x̄repres
c = 0, and thus ∆fc equals 0.

At last, the final learned categorical classifier after both prototype calibration and representative
example calibration is obtained by

f ′′
c = f ′

c + α∆fc, (14)

where α is the optimization step size. Then, the parameters of our PCLmethod are updated by minimizing
the negative log-likelihood on the balanced development set Sd:

− log

(

exp(f ′′
c · x′)

∑

c′ exp(f
′′
c′ · x

′)

)

, ∀(x′, y′) ∈ Sd. (15)
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Figure 3 (Color online) Reliability diagrams for a ResNet-32 model on the long-tailed CIFAR-100 dataset. In each subfigure,

“IR” represents the imbalance ratio. “Many”, “Medium”, and “Few” stand for the many/medium/few-shot classes [23], respectively.

(a) IR = 10; (b) IR = 50; (c) IR = 100.

3.3 Overall algorithm

As aforementioned, our proposed PCL consists of two stages for learning satisfactory categorical classifiers
{f ′′

c }, i.e., the prototype-based classifier generation stage and the classifier calibration stage. Algorithm 1
illustrates the training process of our PCL in more details.

Algorithm 1 The proposed prototype-based classifier learning (PCL) method

Require: Θcnn(·) denotes a backbone CNN model to extract deep representation x from raw image data; Str = {(x, y)} is the

training set from original long-tailed distributions; H and δ denote the width of interval bins and a threshold for selecting

representative examples by reliability diagrams; α denotes the optimization step size in meta-learning classifier calibrations.

1: for c in {1, 2, . . . , C} do

2: Compute the categorical prototype x̄c of class c by the following (1);

3: Calibrate the categorical prototype as x̄′

c by incorporating the statistics of head classes as presented in (6);

4: Generate the categorical classifier f ′

c upon the prototype calibration x̄′

c by the mapping function mφ(·), cf. (7);

5: end for

6: Update the parameters of Θcnn(·) and mφ(·) by minimizing J (x′, y′) (∀(x′, y′) ∈ Str) in (3) with f ′

c until convergence;

7: while until model convergency do

8: Randomly hold out a balanced development set Sd from Str;

9: Select the representative examples as X repres
c from Sd by the following (12);

10: Generate the classifier modification variable ∆fc from X repres
c by another mapping function mφ∆

(·), cf. (13);

11: Obtain the final learned categorical classifier f ′′

c based on both f ′

c and ∆fc, cf. (14);

12: Update Θcnn(·), mφ(·), and mφ∆
(·) by minimizing the negative log-likelihood on Sd by the following (15);

13: end while

4 Experiments

In this section, we first introduce the datasets and experimental settings, as well as the implementation
details. Then, we report the main results on these long-tailed recognition datasets. Ablation studies are
followed for further discussion.
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4.1 Datasets and empirical settings

We conduct experiments on five long-tailed benchmark datasets for accuracy evaluations, including long-
tailed CIFAR-10 [21], long-tailed CIFAR-100 [21], Places-LT [22], ImageNet-LT [23], and iNaturalist
2018 [3].

Long-tailed CIFAR-10 and CIFAR-100. Both CIFAR-10 and CIFAR-100 contain 60000 images,
50000 for training, and 10000 for validation with category numbers of 10 and 100, respectively. For fair
comparisons, we use the long-tailed versions of CIFAR datasets as the same as those used in [16] with
controllable degrees of data imbalance. We use an imbalance factor β to describe the severity of the long
tail problem with the number of training samples for the most frequent class and the least frequent class,
e.g., β = Nmax

Nmin
. Imbalance factors we use in experiments are 10, 50 and 100.

iNaturalist 2018. The iNaturalist species classification datasets are large-scale real-world datasets
that suffer from extremely imbalanced label distributions. The 2018 version is composed of 437513 images
from 8142 categories. Note that, besides the extreme imbalance, the iNaturalist datasets also face the
fine-grained problem [51–54]. In this paper, the official splits of training and validation images are utilized
for fair comparisons.

Places-LT. The Places-LT dataset is also a large-scale long-tailed dataset artificially created from
the balanced Places-2 [22] dataset. It contains 184.5k images from 365 diverse scene categories. The
distribution of labels in the training set is also extremely long-tailed, where the sample number of each
class ranges from 5 to 4980. The difference between the sample numbers of head or tail classes is larger
than that of CIFAR and iNaturalist datasets.

ImageNet-LT. The ImageNet-LT dataset is a long-tailed version of the original ImageNet-2012 [55],
which is constructed by sampling a subset following the Pareto distribution with the power value α = 6.
Overall, it has 115.8k images from 1000 categories, with maximally 1280 images per class and minimally
5 images per class.

4.2 Implementation details

For different benchmark datasets, we employ ResNet-32 [56], ResNet-50 [56], and ResNet-152 [56] as the
backbone networks by the following previous studies [10,23] to conduct experiments for fair comparisons.
Regarding data augmentation, for long-tailed CIFAR-10 and CIFAR-100 datasets, we follow the data
augmentation strategies proposed in [56]: randomly crop a 32 × 32 patch from the original image or its
horizontal flip with 4 pixels padded on each side. For iNaturalist, we firstly resize the image by setting
the shorter side to 256 pixels and then take a 224 × 224 crop from it or its horizontal flip. While for
Places-LT, its all images are resized to 256×256 and randomly cropped to 224×224. Data augmentations
include random horizontal flip with probability of 0.5 and random color jitter on brightness, contrast and
saturation with jitter factor of 0.4. For ImageNet-LT, we follow the empirical setting and implementation
of [57] to conduct experiments. Additionally, a supervised contrastive loss [58] is used to pre-train the
backbones for better representation learning on each dataset. Regarding the hyper-parameters in our
PCL method, we set k in (5) as 2, t in (6) as 0.5, H in Subsection 3.2.2 as 20, δ in (12) as 0.15, and α in
(14) as 0.1, respectively. For these two mapping functions, i.e., mφ(·) and mφ∆(·), they are realized by a
three-layer and a two-layer multilayer perceptron with ELU [59] as the activation functions, respectively.
The number of their hidden units per layer is 2048. All experiments are conducted on four NVIDIA V100
GPUs.

4.3 Main results

In experiments, we compare our PCL with three groups of methods.

• Baseline methods. We employ plain training with cross-entropy loss and focal loss [60] as our
baselines for comparisons.

• Two-stage fine-tuning strategies. We also compare with the two-stage fine-tuning strategies proposed
in previous state-of-the-art [16]. We train networks with cross-entropy (CE) on imbalanced data in the
first stage, and then conduct class re-balancing training in the second stage. “CE-DRW” and “CE-DRS”
refer to the two-stage baselines using re-weighting and re-sampling at the second stage.

• State-of-the-art methods. For state-of-the-art methods, we compare with the previously proposed
methods which achieve good classification accuracy on these long-tailed benchmark datasets, including
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Table 1 Top-1 error rates of ResNet-32 on long-tailed CIFAR-10 and CIFAR-100a)

Top-1 error rate (%)

Method Published in Long-tailed CIFAR-10 Long-tailed CIFAR-100

IR=100 IR=50 IR=10 IR=100 IR=50 IR=10

CE – 29.64 25.19 13.61 61.68 56.15 44.29

Focal loss [60] ICCV 2017 29.62 23.28 13.34 61.59 55.68 44.22

CB-Focal [32] CVPR 2019 25.43 20.73 12.90 60.40 54.83 42.01

CE-DRW [16] NeurIPS 2019 23.66 20.03 12.44 58.49 54.71 41.88

CE-DRS [16] NeurIPS 2019 24.39 20.19 12.62 58.39 54.52 41.89

LDAM-DRW [16] NeurIPS 2019 22.97 18.97 11.84 57.96 53.38 41.29

CB-DA [61] CVPR 2020 20.00 17.77 12.60 55.92 50.84 42.00

M2m [12] CVPR 2020 20.90 – 12.50 56.50 – 42.40

BBN [10] CVPR 2020 20.18 17.82 11.68 57.44 52.98 40.88

Causal model [62] NeurIPS 2020 19.40 16.40 11.50 55.90 49.70 40.40

Hybrid-SC [63] CVPR 2021 18.60 14.64 8.88 53.28 48.13 36.95

Our PCL This paper 17.66 13.32 8.30 52.33 47.11 35.87

a) Best results are marked in bold.

Table 2 Top-1 error rates of ResNet-50 on large-scale long-tailed dataset iNaturalist 2018a)

Method Published in Top-1 error rate (%)

CE – 42.84

CB-Focal [32] CVPR 2019 38.88

CE-DRW [16] NeurIPS 2019 36.27

CE-DRS [16] NeurIPS 2019 36.44

LDAM-DRW [16] NeurIPS 2019 32.00

CB-DA [61] CVPR 2020 32.45

FeatAug [13] ECCV 2020 34.09

Decoupling [11] ICLR 2020 34.80

BBN [10] CVPR 2020 33.71

DisAlign [57] CVPR 2021 30.50

Hybrid-SC [63] CVPR 2021 33.26

Our PCL This paper 28.88

a) Best results are marked in bold.

CB-DA [61], M2m [12], BBN [10], FeatAug [13], Decoupling [11], Causal model [62], DisAlign [57], and
Hybrid-SC [63].

The comparisons between the proposed PCL method and existing approaches on long-tailed CIFAR
datasets are presented in Table 1. We conduct extensive experiments on long-tailed CIFAR datasets
with three different imbalanced ratios: 10, 50, and 100. The compared methods cover various categories
of ideas for imbalance classification, e.g., loss re-weighting [60], margin modification [16], transfer learn-
ing [12], data augmentation [13], decoupling of classifier and representation learning [10, 11], and causal
inference [62]. As validated in Table 1, our PCL method consistently achieves the best results among
these compared methods on all the settings of different imbalance ratios. In particular, compared with
the recent work Hybrid-SC [63], our PCL outperforms it by about 1% under extreme imbalance settings
(i.e., imbalance ratio of 100).

Table 2 shows the results on the large-scale fine-grained and long-tailed dataset, i.e., iNaturalist 2018.
As shown in Table 2, when compared with other methods, our PCL still outperforms competing ap-
proaches and baselines on iNaturalist. Compared with the state-of-the-art methods, e.g., DisAlign [57]
and Hybrid-SC [63], the proposed method obtains 2% and 4% improvements over these approaches, re-
spectively. Similar observations can be found in Table 3 [64–66]. In Table 3, we report the comparison
results on the Places-LT dataset for evaluating the performance of scene-centric data. Our PCL can still
achieve about 2% improvements over these compared methods. Furthermore, the results on ImageNet-LT
are presented in Table 4, which also shows the superiority of the proposed method.
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Table 3 Top-1 error rates of ResNet-152 on the Places-LT dataseta)

Method Published in Top-1 error rate (%)

Focal loss [60] ICCV 2017 63.40

Range loss [64] CVPR 2017 64.90

FSLwF [65] CVPR 2018 65.10

Lifted loss [66] CVPR 2019 64.80

OLTR [23] CVPR 2019 64.10

Decoupling [11] ICLR 2020 62.10

BBN [10] CVPR 2020 63.10

DisAlign [57] CVPR 2021 60.70

Our PCL This paper 59.19

a) Best results are marked in bold.

Table 4 Top-1 error rates of ResNet-50 on ImageNet-LTa)

Method Published in Top-1 error rate (%)

LDAM-DRW [16] NeurIPS 2019 57.00

M2m [12] CVPR 2020 56.30

Decoupling [11]∗ ICLR 2020 50.50

Causal model [62]∗ NeurIPS 2020 48.20

DisAlign [57] CVPR 2021 47.10

Our PCL This paper 45.56

a) Best results are marked in bold. ∗ presents that the method’s backbone is ResNeXt-50.

Table 5 Ablation studies on long-tailed CIFAR-10 and CIFAR-100a)

Method
Setting

Top-1 error rate (%)

Long-tailed CIFAR-10 Long-tailed CIFAR-100

Subsection 3.1 Subsection 3.2.1 Subsection 3.2.2 IR=100 IR=50 IR=10 IR=100 IR=50 IR=10

Vanilla backbone – – – 29.64 25.19 13.61 61.68 56.15 44.29

BBN [10] – – – 20.18 17.82 11.68 57.44 52.98 40.88

Our PCL (♯1) X 27.81 23.15 11.65 61.05 55.70 42.43

Our PCL (♯2) X X 20.27 17.75 10.84 58.35 52.47 39.90

Our PCL (♯3) X 29.01 24.23 12.59 61.31 55.98 43.78

Our PCL (♯4) X X X
b) 18.37 15.88 9.04 56.60 49.83 37.27

Our PCL (♯5) X X X
c) 20.57 17.41 10.78 58.62 52.87 39.48

Our PCL (♯6) X X X 17.66 13.32 8.30 52.33 47.11 35.87

a) Best results are marked in bold.

b) Performing representative example calibration by only using data with high confidence but misclassified.

c) Performing representative example calibration by only using data with low confidence but correctly classified.

4.4 Ablation studies and discussion

In this subsection, we conduct ablation studies on long-tailed CIFAR to characterize the proposed PCL
method, especially for its three main components and these two kinds of classifier calibration.

Effects of components of PCL. We firstly investigate the effects of main components of our PCL,
i.e., prototype-based classifier generation (Subsection 3.1), prototype calibration (Subsection 3.2.1), and
representative example calibration (Subsection 3.2.2). In Table 5, we report the results by performing
various empirical settings, i.e., ♯1 to ♯6. Specifically, ♯1, ♯2, and ♯6 are the results by stacking these
three components in PCL one by one. It is observed that the recognition accuracies on long-tailed
CIFAR are steadily improved. The observations justify the effectiveness of our proposed components
in PCL. Moreover, we also compare the results with the vanilla backbone and BBN [10] as baselines
for in-depth discussions. When only equipped with the prototype-based classifier generation, our PCL
even obtains (slightly) better accuracy than the vanilla backbone. It shows our proposal of prototype-
based classifier mapping is effective, i.e., categorical classifiers derived from the corresponding prototypes
not only achieve strong generalization recognition power, but also can alleviate the impact of raw data
imbalance. Besides, our designs of classifier calibration (i.e., prototype calibration and representative
example calibration) also work well. With only prototype calibration, our method can achieve comparable
accuracy with BBN. By further combining representative example calibration, our PCL gets new state-of-
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Figure 4 (Color online) Error rate comparisons with different numbers of prototype calibration, i.e., k in (6). The lower,

the better. (a) Long-tailed CIFAR-10 (IR = 100); (b) long-tailed CIFAR-10 (IR = 50); (c) long-tailed CIFAR-10 (IR = 10);

(d) long-tailed CIFAR-100 (IR = 100); (e) long-tailed CIFAR-100 (IR = 50); (f) long-tailed CIFAR-100 (IR = 10).

the-art results. Furthermore, for in-depth analyses about the representative example calibration of PCL,
we also perform ♯3, ♯4, and ♯5. ♯3 only uses the prototypes of representative examples to generate the
final categorical classifiers, which do not have the base categorical classifiers and cause data bias. It is
no surprise that ♯3 achieves unsatisfactory performance. For ♯4 and ♯5, as shown in Figure 3, there are
more examples with high confidence but misclassified than examples with low confidence but correctly
classified in long-tailed distributions. Thus, ♯4 obtains better recognition results than ♯5. Besides, in
these examples with high confidence but misclassified, the tail data is mostly, which allows ♯4 to achieve
good results.

Effects of different numbers of prototype calibration. To explore the effects of different numbers
of prototype calibration, i.e., k in (6), on long-tailed recognition accuracy, we change the values of k in
a set of {1, 2, 3, 4}, as depicted in Figure 4. Generally, this figure shows that the prototype calibration
should be conducted within a small number of similar categories. Otherwise, it might be overly affected
by irrelative categorical prototypes. In experiments, we choose the optimal value of k by performing a
validation set. We can see that when k = 2, it can achieve the best recognition accuracy on long-tailed
CIFAR. If k is small, prototype calibration will not play a significant role; while if k is large (e.g., larger
than 2), side effects will gradually appear.

Effects of different α for representative example calibration. We vary the values of the tradeoff
parameter α in (14) for representative example calibration, and show the results in Figure 5. As presented,
the optimal value of α is 0.2. Particularly, when α = 0, it is equivalent to no example-level calibration.
Additionally, as the value of α increasing, the final classifiers are gradually affected by more and more
representative example calibration, resulting in bias or discrepancy. Especially when α = 1, the impact
is the most serious.

Effects of two mapping functions. There are two mapping functions in the PCL method, i.e.,
mφ(·) and mφ∆(·). By considering the computational efficiency, it is desirable to investigate: Would it
be possible to just learn a single mapping function from the categorical prototypes and the prototypes
of representative examples to the classifier parameters? Therefore, we perform such a single mapping
function in PCL and report the results in Figure 6. As shown, it is apparent to observe that using a
single mapping function gets worse results than the results of our proposal. The reason could be that the
inputs and outputs of mφ(·) and mφ∆(·) are all different; thus, we should have two mapping functions
to sufficiently model these two different processes. In concretely, for mφ(·), its inputs and outputs are
the categorical prototypes and the categorical (base) classifiers, respectively (cf. (7)). While, for mφ∆(·),
its inputs and outputs are representative examples and a modification variable of the base classifier,
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Figure 5 (Color online) Error rate comparisons with different values of α in (14). The lower, the better.

(a) Long-tailed CIFAR-10 (IR = 100); (b) long-tailed CIFAR-10 (IR = 50); (c) long-tailed CIFAR-10 (IR = 10);

(d) long-tailed CIFAR-100 (IR = 100); (e) long-tailed CIFAR-100 (IR = 50); (f) long-tailed CIFAR-100 (IR = 10).
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Figure 6 (Color online) Error rate comparisons with a single mapping function vs. two mapping functions in PCL. The lower,

the better. (a) Long-tailed CIFAR-10; (b) long-tailed CIFAR-100.

cf. (13).

Effects of the number of layers of mapping functions. In this subsection, we investigate how
the number of layers of mapping functions, i.e., mφ(·) and mφ∆(·), affects the final results. In concretely,
we fix mφ∆(·) and change the number of layers of mφ(·) from 1 to 4; and then we fix mφ(·) and change
the number of layers of mφ∆(·) from 1 to 3. On long-tailed CIFAR-10 and CIFAR-100, the results of this
ablation study are presented in Figures 7 and 8. It is clear to see that when the number of layers equals 1
(which means it is a linear mapping), its error rates are high. While, if the number of the layer increases,
error rates firstly significantly decrease and then reach the optimal, and later there is a slight increase
(perhaps due to overfitting).

5 Conclusion

In this paper, we proposed a PCL method for dealing with long-tailed recognition. Specifically, moti-
vated by the advantages of categorical prototypes, we developed a learnable mapping function upon these
prototypes for generating the corresponding categorical classifiers. Then, in order to explicitly alleviate
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Figure 7 (Color online) Error rate comparisons with different number of layers of mφ(·) when fixing mφ∆
(·). The lower,

the better. (a) Long-tailed CIFAR-10 (IR = 100); (b) long-tailed CIFAR-10 (IR = 50); (c) long-tailed CIFAR-10 (IR = 10);

(d) long-tailed CIFAR-100 (IR = 100); (e) long-tailed CIFAR-100 (IR = 50); (f) long-tailed CIFAR-100 (IR = 10).
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Figure 8 Error rate comparisons with different number of layers of mφ∆
(·) when fixing mφ(·). The lower, the better. (a) Long-

tailed CIFAR-10 (IR = 100); (b) long-tailed CIFAR-10 (IR = 50); (c) long-tailed CIFAR-10 (IR = 10); (d) long-tailed CIFAR-100

(IR = 100); (e) long-tailed CIFAR-100 (IR = 50); (f) long-tailed CIFAR-100 (IR = 10).

the imbalance issue, two kinds of classifier calibration approaches, i.e., prototype calibration and repre-
sentative example calibration, were designed for modifying the generated classifiers in the previous stage.
After calibration, the classifiers were employed for the final recognition and the losses can be utilized for
training the PCL model in an end-to-end manner. By conducting extensive experiments, we proved that
our PCL could achieve the best results on long-tailed benchmarks, including the large-scale datasets of
iNaturalist, Places-LT, and ImageNet-LT. In the future, we attempt to tackle the long-tailed detection
problem with our PCL method.
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