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Abstract The mainstream crowd counting methods usually utilize the convolution neural network (CNN)

to regress a density map, requiring point-level annotations. However, annotating each person with a point

is an expensive and laborious process. During the testing phase, the point-level annotations are not con-

sidered to evaluate the counting accuracy, which means the point-level annotations are redundant. Hence,

it is desirable to develop weakly-supervised counting methods that just rely on count-level annotations, a

more economical way of labeling. Current weakly-supervised counting methods adopt the CNN to regress

a total count of the crowd by an image-to-count paradigm. However, having limited receptive fields for

context modeling is an intrinsic limitation of these weakly-supervised CNN-based methods. These methods

thus cannot achieve satisfactory performance, with limited applications in the real world. The transformer

is a popular sequence-to-sequence prediction model in natural language processing (NLP), which contains

a global receptive field. In this paper, we propose TransCrowd, which reformulates the weakly-supervised

crowd counting problem from the perspective of sequence-to-count based on transformers. We observe that

the proposed TransCrowd can effectively extract the semantic crowd information by using the self-attention

mechanism of transformer. To the best of our knowledge, this is the first work to adopt a pure trans-

former for crowd counting research. Experiments on five benchmark datasets demonstrate that the proposed

TransCrowd achieves superior performance compared with all the weakly-supervised CNN-based counting

methods and gains highly competitive counting performance compared with some popular fully-supervised

counting methods.
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1 Introduction

Crowd counting is a hot topic in the computer vision community, which plays an essential role in video
surveillance, public safety, and crowd analysis. Typical crowd counting methods [1–4] usually utilize
the convolution neural network (CNN) to regress a density map, which has achieved significant progress
recently. A standard regressor consists of an encoder and a decoder: the encoder extracts the high-level
feature information, and the decoder is designed for pixel-level regression based on the extracted feature.

However, these density-map regression-based methods [1–3, 5] still have some drawbacks. (1) They
apply the point-level annotations to generate ground-truth density maps, which are usually expensive
cost. Actually, some methods [6–9] discover that we can collect a new crowd dataset by using a more
economical strategy, such as mobile crowd-sensing [7] technology or GPS-less [8] energy-efficient sensing
scheduling. For a given crowd scene with different viewpoints and the same total count (such as auditoria,
classroom), if we know the total counts of one viewpoint, then the total counts of other viewpoints are
known. Besides, we can obtain the crowd number at a glance for some sparse crowd scenes. (2) The
annotated point label will not be taken to evaluate the counting performance, meaning that the point
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Figure 1 (Color online) (a) Traditional fully-supervised CNN-based method. All the training images are labeled with point-level

annotations. (b) Weakly-supervised CNN-based method from an image-to-count perspective, only relying on the annotated total

count of the crowd. (c) The proposed TransCrowd, a weakly-supervised method, reformulates the counting problem from the

sequence-to-count perspective.

label is redundant to some extent. Thus, point-level annotations are not absolutely necessary for the
crowd counting task.

Based on the above observations, it is desirable to develop the count-level crowd counting method.
Following previous studies [6,9], we call the methods which rely on the point-level annotations are fully-
supervised paradigms, and the methods which only rely on count-level are weakly-supervised paradigms.
The fully-supervised methods first utilize the point annotation to generate the ground-truth density map
and then elaborately design a regressor to generate a prediction density map and finally apply the L2
loss to measure the difference between the prediction and the ground truth, as shown in Figure 1(a).
The existing weakly-supervised methods usually regress the total count of crowd images directly, which
is from the image-to-count perspective, as shown in Figure 1(b).

Recently, the transformer [10], a popular language model proposed by Google, has been explored in
many vision tasks, such as classification [11], detection [12, 13], and segmentation [14]. Unlike the CNN,
which utilizes a limited receptive field, the transformer [10] provides the global receptive field, showing
excellent advantages over pure CNN architectures. In this paper, we propose TransCrowd, which is
the first to explore the transformer into the weakly-supervised crowd counting task, establishing the
perspective of sequence-to-count prediction, as illustrated in Figure 1(c).

Only a few methods are proposed with the consideration of reducing the annotations burden (e.g., semi,
weakly-supervised). L2R [15] facilitates the counting task by ranking the image patch. Wang et al. [16]
introduced a synthetic crowd dataset named GCC, and the model is pre-trained on the GCC dataset
and then fine-tuned on real data. One of the most relevant studies for our method is [6], which proposes
a soft-label network to facilitate the counting task, directly regressing the crowd number without the
supervision of location labels. However, Ref. [6] is a CNN-based method, which has a limited respective
field. The transformer has a global receptive field, which effectively solves the limited respective field
problem of CNN-based methods once and for all. It means that the transformer architecture is more
suitable for the weakly-supervised counting task since the task aims to directly predict a total count from
the whole image and rely on the global perspective.

In this paper, we introduce two types of TransCrowd, named TransCrowd-Token and TransCrowd-
GAP, respectively. TransCrowd-Token utilizes an extra learnable token to represent the count.
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TransCrowd-GAP adopts the global average pooling (GAP) over all items in the output sequence of
transformer-encoder to obtain the pooled visual tokens. The regression tokens or pooled visual tokens
are then fed into the regression head to generate the prediction count. We empirically find that the
TransCrowd-GAP can obtain more reasonable attention weight, achieve a higher count accuracy, and
present fast-converging compared with TransCrowd-Token.

In summary, this article contributes to the following.

(1) TransCrowd is the first pure transformer-based crowd counting framework. We reformulate the
counting problem from a sequence-to-count perspective and propose a weakly-supervised counting method,
which only utilizes the count-level annotations without the point-level information in the training phase.

(2) We provide two different types of TransCrowd, named TransCrowd-Token and TransCrowd-GAP,
respectively. We observe that the TransCrowd-GAP can generate a more reasonable attention weight
and reports faster converging and higher counting performance than TransCrowd-Token.

(3) Extensive experiments demonstrate that the proposed method achieves state-of-the-art counting
performance compared with the weakly-supervised methods. Additionally, our method has a highly
competitive counting performance compared with the fully-supervised counting methods.

2 Related work

2.1 CNN-based crowd counting

The CNN-based crowd counting methods can be categorized into localization-based methods and
regression-based methods. The localization-based methods [17, 18] usually learn to predict bounding
boxes for each human, relying on box-level annotations. Recently, some methods [19–23] try to utilize
the pseudo bounding boxes based on point-level annotations or design a suitable map to realize counting
and localization tasks. However, these localization-based methods usually report unsatisfactory count-
ing performance. The mainstream of crowd counting is the density map CNN-based crowd counting
methods [1, 2, 24–28], whose integration of the density map gives the total count of a crowd image. Due
to the commonly heavy occlusion that exists in crowd images, multi-scale architecture is developed.
Specifically, MCNN [1] utilizes multi-size filters to extract different scale feature information. Sindagi
et al. [29] captured the multi-scale information by the proposed contextual pyramid CNN. TEDNet [30]
assembles multiple encoding-decoding paths hierarchically to generate a high-quality density map for
accurate crowd counting. Method in [31] proposes a scale-aware probabilistic model to handle large scale
variations through the density pyramid network (DPN), and each level of DPN copes with a given scale
range. Using the perspective information to diminish the scale variations is effective [32–34]. PACNN [32]
proposes a novel generating ground-truth perspective maps strategy and predicts both the perspective
maps and density maps at the testing phase. Yang et al. [34] proposed a reverse perspective network
to estimate the perspective factor of the input image and then warped the image. Appropriate measure
matching can help to improve the counting performance. S3 [35] proposes a novel measure matching
based on Sinkhorn divergence, avoiding generating the density maps. UOT [36] uses unbalanced optimal
transport (UOT) distance to quantify the discrepancy between two measures, outputting sharper density
maps.

The attention-based mechanism is another useful technique adopted by many methods [24, 27, 37].
ADCrowdNet [37] generates an attention map for the crowd images via a network called attention map
generate (AMG). Jiang et al. [27] proposed a density attention network to generate attention masks
concerning regions of different density levels. Zhang et al. [24] proposed a relation attention network
(RANet) that utilizes local self-attention and global self-attention to capture long-range dependencies.
It is noteworthy that RANet [24] is actually a non-local/self-attention mechanism based on CNN instead
of pure transformers, and we utilize a pure transformer without convolution layers.

2.2 Weakly-supervised crowd counting

Only a few methods focus on counting with a lack of labeled data. L2R [15] proposes a learning-to-rank
framework based on an extra collected crowd dataset. Wang et al. [16] introduced a synthetic crowd
scene for the pre-trained model. However, these two methods still rely on point-level annotations, which
are fully-supervised instead of weakly-supervised paradigms.



Liang D K, et al. Sci China Inf Sci June 2022 Vol. 65 160104:4

The traditional method [38] relies on hand-crafted features, such as GLCM and edge orientations, which
are turned to be sub-optimal for this weakly-supervised counting task. MATT [9] learns a model from a
small amount of point-level annotations (fully-supervised) and a large amount of count-level annotations
(weakly-supervised). The method in [39] proposes a weakly-supervised solution based on the Gaussian
process for crowd density estimation. Shang et al. [40] simultaneously predicted the global count and
local count. Wang et al. [41] directly regressed the global count, and some negative samples are fed into
the network to boost the robustness. Similarly, Yang et al. [6] also directly mapped the images to the
crowd numbers without the location supervision based on the proposed soft-label sorting network.

However, the counting performance of these count-level weakly-supervised counting methods still does
not achieve comparable results to the fully-supervised counting methods, existing massive degradation,
limiting the application of weakly-supervised methods in the real world. Different from the previous stud-
ies, the proposed TransCrowd utilizes the transformer architecture to directly regress the crowd number,
which formulates the counting problem as the sequence-to-count paradigm and achieves comparable
counting performance compared with the popular fully-supervised methods.

2.3 Visual transformer

The transformers [10], dominating the natural language modeling [42,43], utilize the self-attention mech-
anism to capture the global dependencies between input and output. Recently, many studies [11, 12, 14,
44,45] attempt to apply the transformer to the vision task. Specifically, DETR [12] firstly utilizes a CNN
backbone to extract the visual features, followed by the transformer blocks for the box regression and
classification. ViT [11] is the first which directly applies transformer-encoder [10] to sequences of image
patches to realize the classification task. SETR [14] regards semantic segmentation from a sequence-
to-sequence perspective with transformers. IPT [45] develops a pre-trained model for image processing
(low-level task) using the transformer architecture.

To the best of our knowledge, we are the first to explore the pure transformer [10] to the counting task.

3 Our method

The overview of our method consists of the sequence (tokens) of the image, a transformer-encoder, and a
naive regression head, as shown in Figure 2(a). Specifically, the input image is first transformed into fixed-
size patches and then flatten to a sequence of vectors. The sequence is fed into the transformer-encoder,
followed by a naive regression head to generate the prediction count.

3.1 Image to sequence

In general, the transformer adopts a 1D sequence of feature embeddings Z ∈ R
N×D as input, where N is

the length of the sequence and the D means the input channel size. Thus, the first step of TransCrowd
is to transform the input image I into a sequence of 2D flattened patches. Specifically, given an RGB
image1) I ∈ R

H×W×3, we reshape I into a grid of N patches, resulting in {xi
p ∈ R

K2×3|i = 1, . . . , N},
where N = H

K
× W

K
and K is the pre-defined patch size.

3.2 Patch embedding

Next, we need to map the x into a latent D-dimensional embedding feature by a learnable projection,
since the transformer uses constant latent vector size D through all of its layers, defined as

e = [e1; e2; · · · ; eN ] = [x1
pE;x2

pE; · · · ;xN
p E], E ∈ R

(K2×3)×D, (1)

where E is a learnable matrix, and e ∈ R
N×D is the mapped features. Thus, we add a specific position

embedding {pi ∈ R
D|i = 1, . . . , N} into e, maintaining position information, defined as

Z0 = [Z1
0 ;Z

2
0 ; · · · ;ZN

0 ] = [e1 + p1; e2 + p2; · · · ; eN + pN ], (2)

where Z0 is the input of the first transformer layer.

1) H, W , 3 indicate the spatial height, width, and channel number, respectively.
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Figure 2 (Color online) (a) The pipeline of TransCrowd. The input image is split into fixed-size patches, each of which is linearly

embedded with position embeddings. Then, the feature embedding sequence is fed into the transformer-encoder, followed by a

regression head to generate the prediction count. (b) We utilize an extra token to represent the crowd count, similar to the class

token in Bert [42] and ViT [11]. (c) A global average pooling is adopted to pool the output visual tokens of the transformer-encoder.
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Figure 3 (Color online) A standard transformer layer consists of multi-head attention and MLP blocks. Meanwhile, the layer

normalization (LN) and residual connections are employed.

3.3 Transformer-encoder

We only adopt the transformer encoder [10], without the decoder, similar to ViT [11]. Specifically, the
encoder contains L layers of multi-head self-attention (MSA) and multilayer perceptron (MLP) blocks.
For each layer l, layer normalization (LN) and residual connections are employed. A stand transformer
layer is shown in Figure 3, and the output can be written as follows:

Z ′
l = MSA(LN(Zl−1)) + Zl−1, (3)

Zl = MLP(LN(Z ′
l)) + Z ′

l , (4)

where Zl is the output of layer l. Here, the MLP contains two linear layers with a GELU [46] activation
function. In particular, the first linear layer of MLP expands the feature embedding’s dimension from D

to 4D, while the second layer shrinks the dimension from 4D to D.
MSA is an extension with m independent self-attention (SA) modules: MSA(Zl−1) = [SA1(Zl−1);

SA2(Zl−1); · · · ; SAm(Zl−1)]WO, where WO ∈ R
D×D is a re-projection matrix. At each independent SA,

the input consists of query (Q), key (K), and value (V ), which are computed from Z l−1:

Q = Zl−1WQ, K = Zl−1WK , V = Zl−1WV , (5)

SA(Zl) = softmax

(

QKT

√
D

)

V, (6)

where WQ/WK/WV ∈ R
D×D

m are three learnable matrices. The softmax function is applied over each

row of the input matrix and
√
D provides appropriate normalization.

3.4 The input of regression head

We introduce two different inputs for the regression heads to evaluate the effectiveness of TransCrowd.
The goal of the regression head is to generate the prediction count instead of the density map. We briefly
describe the two types of input.
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(1) Regression token. Similar to the class token in Bert [42] and ViT [11], we prepend a learn-
able embedding named regression token to the input sequence Z0, as shown in Figure 2(b) [42]. This
architecture forces the self-attention to spread information between the patch tokens and the regression
token, making the regression token contain overall semantic crowd information. The regression head is
implemented by MLP containing two linear layers. We refer to the TransCrowd with the extra regression
token as TransCrowd-Token.

(2) Global average pooling. We apply the global average pooling (GAP) to shrink the sequence
length, as shown in Figure 2(c). Similar to TransCrowd-Token, two linear layers are used for the regression
head. We refer to the TransCrowd with global average pooling as TransCrowd-GAP. The global average
pooling can effectively maintain the useful semantic crowd information in patch tokens. We find that
using pooled visual tokens will generate richer discriminative semantic crowd patterns and achieve better
counting performance than using the extra regression token, the detailed discussion listed in Section 6.

We utilize L1 loss to measure the difference between the prediction and the ground truth:

L1 =
1

M

M
∑

i=1

|Pi −Gi| , (7)

where Pi and Gi are the prediction crowd number and the corresponding ground truth of the i-th image,
respectively. M is the batch size of training images.

4 Experiments

4.1 Implementation details

The transformer-encoder is similar to ViT [11], which contains 12 transformer layers, and each MSA
consists of 12 SA. We utilize the fixed H and W , both of which are set as 384. We set K as 16, which
means N is equal to 576. We use Adam [47] to optimize our model, in which the learning rate and weight
decay are set to 1E−5 and 1E−4, respectively. The weights pre-trained on ImageNet are used to initialize
the transformer-encoder. During training, the widely adopted data augmentation strategies are utilized,
including random horizontal flipping and grayscaling. Due to some datasets having various resolution
images, we resize all the images to the size of 1152 × 768. Each resized image can be regarded as six
independent sub-image, and the resolution of each sub-image is 384 × 384. We set the batch size as 24
and use a V100 GPU for the experiments. The code is available at the website2).

4.2 Dataset

NWPU-Crowd [48], a large-scale and challenging dataset, consists of 5109 images, 2133375 instances
annotated elaborately. To be specific, the images are randomly split into three parts, including training,
validation, and testing sets, which contain 3109, 500, and 1500 images, respectively.

JHU-CROWD++ [49] contains 2722 training images, 500 validation images, and 1600 testing images,
collected from diverse scenarios. The total number of people in each image ranges from 0 to 25791.

UCF-QNRF [50] contains 1535 images captured from unconstrained crowd scenes with about one
million annotations. It has a count range of 49 to 12865, with an average count of 815.4. Specifically, the
training set consists of 1201 images, and the testing set consists of 334 images.

ShanghaiTech [1] contains 1198 crowd images with 330165 annotations. The images of the dataset are
divided into two parts: Part A and Part B. In particular, Part A contains 300 training images and 182
testing images, and Part B consists of 400 training images and 316 testing images.

UCF CC 50 [51] is a small dataset for dense crowd counting, which just contains 50 images with an
average of 1280 individuals per image. The images are captured in a diverse set of events, and the
pedestrians count of each image ranges between 94 and 4543.

WorldExpo’10 [52] contains 1132 surveillance videos from 108 cameras. The training set consists of
3380 images captured from 103 different scenes, and the testing set contains 600 images from 5 scenes.
There are 199923 annotations labeled in the whole 3980 images.

2) https://github.com/dk-liang/TransCrowd.
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Table 1 Quantitative comparison (in terms of MAE and MSE) of the proposed method and some popular methods on three

widely adopted benchmark datasetsa)

Method Year
Training label UCF-QNRF Part A Part B

Location Crowd number MAE MSE MAE MSE MAE MSE

MCNN [1] CVPR16
√ √

277.0 426.0 110.2 173.2 26.4 41.3

CL [50] ECCV18
√ √

132.0 191.0 – – – –

CSRNet [2] CVPR18
√ √

– – 68.2 115.0 10.6 16.0

L2R [15] TPAMI19
√ √

124.0 196.0 73.6 112.0 13.7 21.4

CFF [53] ICCV19
√ √

– – 65.2 109.4 7.2 12.2

PGCNet [54] ICCV19
√ √

– – 57.0 86.0 8.8 13.7

TEDNet [30] CVPR19
√ √

113.0 188.0 64.2 109.1 8.2 12.8

BL [26] ICCV19
√ √

88.7 154.8 62.8 101.8 7.7 12.7

ASNet [27] CVPR20
√ √

91.5 159.7 57.7 90.1 – –

LibraNet [55] ECCV20
√ √

88.1 143.7 55.9 97.1 7.3 11.3

NoisyCC [56] NeurIPS20
√ √

85.8 150.6 61.9 99.6 7.4 11.3

DM-Count [56] NeurIPS20
√ √

85.6 148.3 59.7 95.7 7.4 11.8

Method in [31] MM20
√ √

84.7 147.2 58.1 91.7 6.5 10.1

S3 [35] IJCAI21
√ √

80.6 139.8 57.0 96.0 6.3 10.6

UOT [36] AAAI21
√ √

83.3 142.3 58.1 95.9 6.5 10.2

Method in [6]* ECCV20 –
√

– – 104.6 145.2 12.3 21.2

MATT [9]* PR21 –
√

– – 80.1 129.4 11.7 17.5

TransCrowd-Token (ours)* – –
√

98.9 176.1 69.0 116.5 10.6 19.7

TransCrowd-GAP (ours)* – –
√

97.2 168.5 66.1 105.1 9.3 16.1

a) * represents the weakly-supervised methods.

4.3 Evaluation metrics

We choose mean absolute error (MAE) and mean squared error (MSE) to evaluate the counting perfor-
mance:

MAE =
1

N

N
∑

i=1

|Pi −Gi| , MSE =

√

√

√

√

1

N

N
∑

i=1

|Pi −Gi|2, (8)

where N is the number of testing images, Pi and Gi are the predicted and ground-truth counts of the
i-th image, respectively.

5 Results

We conduct extensive experiments to demonstrate the effectiveness of the proposed weakly-supervised
crowd counting method on five popular benchmarks. For each dataset, we divide the existing methods
into fully-supervised methods (based on point-level annotations) and weakly-supervised methods (based
on count-level annotations).

Compared with the weakly-supervised counting methods. Our method achieves state-of-the-
art counting performance on all the conducted datasets, as listed in Tables 1–7 [53–70]. Specifically,
on ShanghaiTech Part A, our TransCrowd-GAP improves 17.5% in MAE and 18.8% in MSE compared
with MATT [9], improves 36.8% in MAE and 27.6% in MSE compared with [6]. On ShanghaiTech
Part B, TransCrowd-GAP improves 20.5% in MAE and 8.0% in MSE compared with MATT [9], improves
24.4% in MAE and 24.1% in MSE compared with [6]. Besides, the proposed TransCrowd-Token also
achieves significant improvement compared with MATT [9] and [6] in terms of MAE and MSE, and only
the proposed methods report counting performance close to the fully-supervised methods. Note that
MATT [9] still applies a small number of images, which contain point-level annotations for training.

Compared with the fully-supervised counting methods. Although it is unfair to compare the
fully-supervised and weakly-supervised crowd counting methods, our method still achieves highly com-
petitive performance on the five counting datasets, as shown in Tables 1–7. An impressive phenomenon is
that the proposed method even surpasses some popular fully-supervised methods. For example, as shown
in Table 3, our TransCrowd-GAP brings 11.0 MAE and 13.6 MSE improvement compared with CSR-
Net [2] on the JHU-CROWD++ (testing set) dataset. BL [26], a recent strong counting method, achieves
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Table 2 Quantitative results on the JHU-CROWD++ (val set) dataseta)

Method Year Training label Val set

Low Medium High Overall

Location Crowd number MAE MSE MAE MSE MAE MSE MAE MSE

MCNN [1] CVPR16
√ √

90.6 202.9 125.3 259.5 494.9 856.0 160.6 377.7

CMTL [57] AVSS17
√ √

50.2 129.2 88.1 170.7 583.1 986.5 138.1 379.5

DSSI-Net [58] ICCV19
√ √

50.3 85.9 82.4 164.5 436.6 814.0 116.6 317.4

CAN [59] CVPR19
√ √

34.2 69.5 65.6 115.3 336.4 619.7 89.5 239.3

SANet [60] ECCV18
√ √

13.6 26.8 50.4 78.0 397.8 749.2 82.1 272.6

CSRNet [2] CVPR18
√ √

22.2 40.0 49.0 99.5 302.5 669.5 72.2 249.9

CG-DRCN [49] PAMI20
√ √

17.1 44.7 40.8 71.2 317.4 719.8 67.9 262.1

MBTTBF [61] ICCV19
√ √

23.3 48.5 53.2 119.9 294.5 674.5 73.8 256.8

SFCN [16] CVPR19
√ √

11.8 19.8 39.3 73.4 297.3 679.4 62.9 247.5

BL [26] ICCV19
√ √

6.9 10.3 39.7 85.2 279.8 620.4 59.3 229.2

TransCrowd-Token (ours)* – –
√

7.1 10.7 33.3 54.6 302.5 557.4 58.4 201.1

TransCrowd-GAP (ours)* – –
√

6.7 9.5 34.5 55.8 285.9 532.8 56.8 193.6

a) * “Low”, “Medium”, and “High” respectively indicate three categories based on different ranges: [0, 50], (50, 500], and >500.

* represents the weakly-supervised crowd counting methods.

Table 3 Quantitative results on the JHU-CROWD++ (testing set) dataseta)

Method Year Training label Testing set

Low Medium High Overall

Location Crowd number MAE MSE MAE MSE MAE MSE MAE MSE

MCNN [1] CVPR16
√ √

97.1 192.3 121.4 191.3 618.6 1,166.7 188.9 483.4

CMTL [57] AVSS17
√ √

58.5 136.4 81.7 144.7 635.3 1,225.3 157.8 490.4

DSSI-Net [58] ICCV19
√ √

53.6 112.8 70.3 108.6 525.5 1,047.4 133.5 416.5

CAN [59] CVPR19
√ √

37.6 78.8 56.4 86.2 384.2 789.0 100.1 314.0

SANet [60] ECCV18
√ √

17.3 37.9 46.8 69.1 397.9 817.7 91.1 320.4

CSRNet [2] CVPR18
√ √

27.1 64.9 43.9 71.2 356.2 784.4 85.9 309.2

CG-DRCN [49] PAMI20
√ √

19.5 58.7 38.4 62.7 367.3 837.5 82.3 328.0

MBTTBF [61] ICCV19
√ √

19.2 58.8 41.6 66.0 352.2 760.4 81.8 299.1

SFCN [16] CVPR19
√ √

16.5 55.7 38.1 59.8 341.8 758.8 77.5 297.6

BL [26] ICCV19
√ √

10.1 32.7 34.2 54.5 352.0 768.7 75.0 299.9

UOT [36] AAAI21
√ √

11.2 26.2 28.7 45.3 274.1 648.2 60.5 252.7

S3 [35] IJCAI21
√ √

– – – – – – 59.4 244.0

TransCrowd-Token (ours)* – –
√

8.5 23.2 33.3 71.5 368.3 816.4 76.4 319.8

TransCrowd-GAP (ours)* – –
√

7.6 16.7 34.8 73.6 354.8 752.8 74.9 295.6

a) * “Low”, “Medium”, and “High” respectively indicate three categories based on different ranges: [0, 50], (50, 500], and >500.

* represents the weakly-supervised crowd counting methods.

75.0 in MAE and 299.9 in MSE, one of the state-of-the-art methods on the JHU-Crowd++ (testing set)
dataset, while our TransCrowd-GAP improves 0.1 MAE and 4.3 MSE, respectively. Besides, from the
results on UCF-QNRF, ShanghaiTech, and NWPU-Crowd datasets, we can also observe that our method
achieves significant improvement compared with some popular fully-supervised methods (e.g., MCNN [1],
CSRNet [2], L2R [15]). We think the reasons why the proposed method outperforms some fully super-
vised methods in the NWPU-Crowd and JHU-CROWD++ may be two-fold. First, the transformer is
beneficial to capture the long-range dependence, and these two datasets contain many large-scale per-
sons. The proposed TransCrowd can effectively learn the global crowd semantic feature representation.
However, some state-of-the-art methods (e.g., BL [26]) utilize a fixed Gaussian kernel for these datasets,
and the fixed Gaussian kernel cannot effectively cover the large scale variations. Second, Dosovitskiy et
al. [11] proved that the CNNs outperform transformers on small datasets (despite regularization opti-
mization), but with the larger datasets, the transformer overtakes. For instance, the NWPU-Crowd is
a large dataset containing 5190 images, which may help the transformer better fit the dataset. These
impressive results further demonstrate the effectiveness of the proposed method and indicate point-level
annotations are not entirely necessary for the counting task.
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Table 4 Comparison of the counting performance on the NWPU-Crowda)

Method Year Training label Val set Testing set

Overall Overall Scene level (only MAE)

Location Crowd number MAE MSE MAE MSE Average S0–S4

C3F-VGG [62] Tech19
√ √

105.79 504.39 127.0 439.6 666.9 140.9/26.5/58.0/307.1/2801.8

CSRNet [2] CVPR18
√ √

104.89 433.48 121.3 387.8 522.7 176.0/35.8/59.8/285.8/2055.8

PCC-Net-VGG [33] CVPR19
√ √

100.77 573.19 112.3 457.0 777.6 103.9/13.7/42.0/259.5/3469.1

CAN [59] CVPR19
√ √

93.58 489.90 106.3 386.5 612.2 82.6/14.7/46.6/269.7/2647.0

SFCN† [16] CVPR19
√ √

95.46 608.32 105.7 424.1 712.7 54.2/14.8/44.4/249.6/3200.5

BL [26] ICCV19
√ √

93.64 470.38 105.4 454.2 750.5 66.5/8.7/41.2/249.9/3386.4

KDMG [63] PAMI20
√ √

– – 100.5 415.5 632.7 77.3/10.3/38.5/259.4/2777.9

NoisyCC [56] NeurIPS20
√ √

– – 96.9 534.2 608.1 218.7/10.7/35.2/203.2/2572.8

DM-Count [64] NeurIPS20
√ √

70.5 357.6 88.4 388.6 498.0 146.6/7.6/31.2/228.7/2075.8

S3 [35] IJCAI21
√ √

– – 87.8 387.5 566.5 80.7/7.9/36.3/212.0/2495.4

UOT [36] AAAI21
√ √

– – 83.5 346.9 – –

TransCrowd-Token (ours)* – –
√

88.2 446.9 119.6 463.9 736.0 88.0/12.7/47.2/311.2/3216.1

TransCrowd-GAP (ours)* – –
√

88.4 400.5 117.7 451.0 737.8 69.3/12.8/46.0/309.0/3252.2

a) * S0–S4 respectively indicate five categories according to the different number ranges: 0, (0, 100], (100, 500], (500, 5000],

>5000. * represents the weakly-supervised crowd counting methods.

Table 5 The performance comparison on the UCF CC 50 dataseta)

Method
Training label

MAE MSE
Location Crowd number

MCNN [65]
√ √

377.6 509.1

CSRNet [2]
√ √

266.1 397.5

ADCrowdNet [37]
√ √

257.1 363.5

MATT [9]* –
√

355.0 550.2

TransCrowd-Token (ours)* –
√

288.9 407.6

TransCrowd-GAP (ours)* –
√

272.2 395.3

a) * represents the weakly-supervised crowd counting methods.

Table 6 Comparison results of different methods on 5 scenes in the WorldExpo’10 dataseta)

Method
Training label MAE

Location Crowd number S1 S2 S3 S4 S5 Average

MCNN [1]
√ √

3.4 20.6 12.9 13.0 8.1 11.6

CP-CNN [29]
√ √

2.9 14.7 10.5 10.4 5.8 8.8

Liu et al. [66]
√ √

2.0 13.1 8.9 17.4 4.8 9.2

IC-CNN [67]
√ √

17.0 12.3 9.2 8.1 4.7 10.3

CSRNet [2]
√ √

2.9 11.5 8.6 16.6 3.4 8.6

SANet [60]
√ √

2.6 13.2 9.0 13.3 3.0 8.2

LSC-CNN [68]
√ √

2.9 11.3 9.4 12.3 4.3 8.0

MATT [9]* –
√

3.8 13.1 10.4 15.9 5.3 9.7

TransCrowd-Token (ours)* –
√

2.3 14.2 9.9 14.0 4.3 8.9

TransCrowd-GAP (ours)* –
√

2.1 13.3 8.9 13.8 4.4 8.5

a) * represents the weakly-supervised crowd counting methods. S1, S2, S3, S4, and S5 indicate different scenes.

Table 7 The performance comparison on the Trancos dataseta)

Method
Training label

MAE MSE
Location Crowd number

FCN-HA [65]
√ √

4.21 –

CSRNet [2]
√ √

3.56 –

ADCrowdNet [37]
√ √

2.44 –

TransCrowd-Token (ours)* –
√

3.28 4.80

TransCrowd-GAP (ours)* –
√

3.23 4.66

a) * represents the weakly-supervised crowd counting methods.
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Figure 4 (Color online) Examples of attention maps from TransCrowd-Token and TransCrowd-GAP. TransCrowd-GAP generates

more reasonable attention weights compared with TransCrowd-Token.

6 Analysis

6.1 The influence of regression heads

We introduce two different inputs for the regression head. Specifically, TransCrowd-Token utilizes an
extra learnable regression token to perform counting, similar to the class token in Bert [42] and ViT [11].
TransCrowd-GAP utilizes global average pooling to obtain the pooled visual tokens for count prediction.
The results of TransCrowd-Token and TransCrowd-GAP are listed in Tables 1–7. We find that the
results of TransCrowd-GAP are better than TransCrowd-Token in all conducted datasets. For example,
TransCrowd-GAP outperforms TransCrowd-Token by 2.8 MAE and 11.4 MSE on the ShanghaiTech Part
A dataset, a significant improvement. TransCrowd-GAP also has steady improvement on ShanghaiTech
Part B, a sparse crowd dataset. Based on the superior performance, we hope the researchers can design
a more reasonable regression head based on the transformer-encoder in the future.

6.2 Visualizations

To further investigate the proposed TransCrowd, we provide qualitative comparison results in Figure 4 to
understand what the transformer attends to. We observe that both TransCrowd-Token and TransCrowd-
GAP can successfully focus on the crowd region, which demonstrates the effectiveness of both meth-
ods. Moreover, the TransCrowd-GAP generates a more reasonable attention map compared with the
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Figure 5 (Color online) Convergence curves of CSRNet, TransCrowd-Token, and TransCrowd-GAP on ShanghaiTech Part A

dataset. The proposed TransCrowd-GAP achieves the best counting performance and is fast-converging.

Table 8 Comparison with BL [26] and CSRNet [2] using the same input image resolution on a Titan XP

Method Resolution Parameter Backbone FPS

CSRNet [2] 384 × 384 16.2 M VGG16 21.67

BL [26] 384 × 384 21.6 M VGG19 45.66

TransCrowd-Token 384 × 384 86.8 M Transformer 46.41

TransCrowd-GAP 384 × 384 90.4 M Transformer 46.73

TransCrowd-Token. Specifically, the TransCrowd-Token may pay more attention to the background,
leading to amplifying the counting error. This observation explains why the result of TransCrowd-GAP
is better than TransCrowd-Token.

6.3 Convergence curves

We further compare the convergence curves between the popular fully-supervised method (CSRNet [2])
and the proposed TransCrowd. Detailed convergence curves are shown in Figure 5. Based on the
convergence curves, we can observe the following phenomena: (1) Compared with CSRNet, TransCrowd-
GAP achieves better performance with 1.9× fewer training epochs. (2) Using global average pooled visual
tokens can converge faster and achieve a better count accuracy than using the extra regression token.
(3) Both TransCrowd-Token and TransCrowd-GAP present a smooth curve and fast converging, while
the curve of CSRNet is oscillating. These observations show the potential value of the transformer in the
counting task.

6.4 Comparison of run-time

As shown in Table 8, we compare with two popular fully supervised counting methods, including BL [26]
and CSRNet [2]. The experiment is conducted on a Titan XP GPU. Even though both the proposed
TransCrowd-Token and TransCrowd-GAP contain more parameters than other methods, they still achieve
outstanding run-time. This is because the fully supervised methods need to maintain high-resolution
features to generate high-quality density maps (e.g., 1/8 size of the input in CSRNet [2] and 1/16 size of
the input in BL [26]). Additionally, we can observe that the frames per second (FPS) of VGG19-based
BL [26] outperforms the VGG16-based CSRNet [2], mainly because the BL generates a small-resolution
density map (1/16 of the input image). This phenomenon further demonstrates the influence of feature
resolution on run-time.



Liang D K, et al. Sci China Inf Sci June 2022 Vol. 65 160104:12

Table 9 The fine-tuning CSRNet’s and TransCrowd-GAP’s results on ShanghaiTech Part A dataset by using three different

pre-trained strategies

Method Year
Training label None Pre-ImgNet Pre-GCC

Location Crowd number MAE MSE MAE MSE MAE MSE

CSRNet [2] CVPR18
√ √

120.0 179.4 68.2 115.0 67.4 112.3

TransCrowd-Token (ours)* – –
√

142.0 212.5 69.0 116.5 67.2 111.9

TransCrowd-GAP (ours)* – –
√

139.9 231.0 66.1 105.1 63.8 102.3

Table 10 Experimental results on the transferability of different methods under cross-dataset evaluation

Method Year
Training label Part B→Part A Part A→Part B QNRF→Part A QNRF→Part B

Location Crowd number MAE MSE MAE MSE MAE MSE MAE MSE

MCNN [1] CVPR16
√ √

221.4 357.8 85.2 142.3 – – – –

D-ConvNet [69] ECCV18
√ √

140.4 226.1 49.1 99.2 – – – –

RRSP [70] CVPR19
√ √

– – 40.0 68.5 – – – –

BL [26] ICCV19
√ √

– – – – 69.8 123.8 15.3 26.5

TransCrowd-GAP (ours)* – –
√

141.3 258.9 18.9 31.1 78.7 122.5 13.5 21.9

6.5 Comparison of different pre-trained strategies

In this subsection, we study the impact of the pre-trained model in TransCrowd. We choose the popular
CNN-based method CSRNet [2] as a comparison, and the results are listed in Table 9. Specifically, there
are three strategies. (1) None: The models are directly trained on ShanghaiTech Part A. (2) Pre-ImgNet:
The models are pre-trained on the ImageNet and fine-tuned on ShanghaiTech Part A. (3) Pre-GCC: The
models are pre-trained on GCC [16], a synthetic dataset, and are fine-tuned on ShangahiTech Part A
dataset.

From Table 9, there are some interesting findings. (1) Without any pre-trained dataset, the CNN-based
method outperforms the transformer-based method. (2) Using the extra pre-trained data can effectively
prompt the performance, and the proposed TransCrowd-GAP achieves better counting performance than
CSRNet. (3) Besides, when the model is pre-trained on the GCC dataset, the proposed method can even
outperform several recent fully-supervised methods (e.g., CFF [53], TEDNet [30]). Note that the GCC
dataset is a synthetic crowd dataset, without any annotation cost, which means the TransCrowd-GAP can
achieve similar counting performance to the fully-supervised methods by using small count-level labeled
real-data and extensive free synthetic data, promoting the practical applications. It is noteworthy that
the proposed method only uses count-level annotations of the GCC dataset, different from the previous
fully-supervised work.

6.6 Cross-dataset evaluation

Finally, we conduct cross-dataset experiments on the UCF-QNRF, ShanghaiTech Part A and Part B
datasets to explore the transferability of the proposed TransCrowd-GAP. In the cross-dataset evaluation,
models are trained on the source dataset and tested on the target dataset without further fine-tuning.
Quantitative results are shown in Table 10. Although our method is a weakly-supervised paradigm, we
still achieve highly competitive performance, which shows remarkable transferability.

7 Conclusion

In this study, we present an alternative perspective for weakly-supervised crowd counting in images by in-
troducing a sequence-to-count prediction framework based on transformer-encoder, named TransCrowd.
To the best of our knowledge, we are the first to solve the counting problem based on the transformer. We
analyze and show that the attention mechanism is very promising to capture the semantic crowd informa-
tion. Extensive experiments on five challenging datasets demonstrate that TransCrowd achieves superior
counting performance compared with the state-of-the-art weakly-supervised methods and achieves com-
petitive performance compared with some popular fully-supervised methods. In the future, we plan to
make fully-supervised counting using transformer architectures and extend it to video-based counting
task.
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