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Abstract Vehicle re-identification (reID) aims to identify vehicles across different cameras that have non-

overlapping views. Most existing vehicle reID approaches train the reID model with well-labeled datasets

via a supervised manner, which inevitably causes a severe drop in performance when tested in an unknown

domain. Moreover, these supervised approaches require full annotations, which is limiting owing to the

amount of unlabeled data. Therefore, with the aim of addressing the aforementioned problems, unsupervised

vehicle reID models have attracted considerable attention. It always adopts domain adaptation to transfer

discriminative information from supervised domains to unsupervised ones. In this paper, a novel progressive

learning method with a multi-scale fusion network is proposed, named PLM, for vehicle reID in the unknown

domain, which directly exploits inference from the available abundant data without any annotations. For

PLM, a domain adaptation module is employed to smooth the domain bias, which generates images with

similar data distribution to unlabeled target domain as “pseudo target samples”. Furthermore, to better

exploit the distinct features of vehicle images in the unknown domain, a multi-scale attention network is

proposed to train the reID model with the “pseudo target samples” and unlabeled samples; this network

embeds low-layer texture features with high-level semantic features to train the reID model. Moreover, a

weighted label smoothing (WLS) loss is proposed, which considers the distance between samples and different

clusters to balance the confidence of pseudo labels in the feature learning module. Extensive experiments are

carried out to verify that our proposed PLM achieves excellent performance on several benchmark datasets.

Keywords data adaptation module, weighted label smoothing loss, multi-scale attention network, vehicle

re-identification
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1 Introduction

Vehicle re-identification (reID) aims to search for and locate the same vehicle images from a variety
of images captured by multiple non-overlapping cameras; this is an important issue for modern, smart
surveillance systems. Moreover, through vehicle reID, the task of a search can automatically be conducted
with less manual labor and less time, which is vitally significant for intelligent transport, particularly for
deep learning models that rely on supervised approaches [1–4] for an ideal performance.

However, supervised reID models suffer from certain limitations; in different scenes, various illumi-
nation conditions, resolutions, backgrounds and viewpoints could cause domain bias. These limitations
could result in the vehicle reID models, though well-trained under these supervised methods, performing
poorly when directly deployed to the real-world large-scale camera networks. Moreover, full annotations
are necessary for these supervised methods, for example, identity labels, which are labor intensive and
impractical when annotating a large number of unlabeled data in real-world scenes when there are many
cameras. In particular, for vehicle reID, the same vehicle is required to be annotated under all cameras.
Hence, the incremental optimization of vehicle reID algorithms utilizing a combination of the abundant
unlabeled data and existing well-labeled data is a practical but challenging problem.
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To tackle the aforementioned problem, various strategies [5, 6] have been proposed to finish the task
of domain adaptation. These can be divided into two categories: cross-domain unsupervised transfer
learning and progressive learning. Cross-domain unsupervised transfer learning employs a generative
adversarial network to transfer labeled images from the source domain to the unlabeled domain [7–9],
together with the transfer of discriminative information to train the unsupervised reID model. Though
some improvements have been made, the learned style remains different from the authentic one, which
limits its performance. Conversely, progressive learning trains the reID model while estimating the pseudo
labels for unlabeled images until it converges after several iterations [10,11]. Assigning reliable labels for
unlabeled images is of vital importance, but is a challenging process. Although some approaches, such
as VR-PROUD [12], adopt feature clustering to calculate the pseudo labels, incorrect annotations are
inevitable, which causes severe adverse effects on unsupervised reID models.

In this paper, we propose a novel unsupervised domain adaptation method together with a weighted
label smoothing (WLS) based loss to better exploit the unlabeled data. This method progressively
adapts the unknown domain for vehicle reID. Considering that there are always some existing well-
labeled samples, it is better to make full use of these data rather than abandoning them. Hence, unlike
the existing unsupervised vehicle reID methods, an adaptation module is employed to generate “pseudo
target images”, which learns the style of the unlabeled domain while preserving the identity cues of the
labeled domain. Owing to the uncertainty of the classes in the unknown domain, DBSCAN is employed
to cluster the unlabeled samples and assign the pseudo labels. Moreover, after clustering and selecting
reliable pseudo-labeled data from large, unlabeled samples, fusion data that combine the “pseudo target
images” and reliable pseudo-labeled data are employed to train the vehicle reID model in the subsequent
processes.

In most approaches, the feature maps generated by the last convolutional layer carry high-level semantic
information, which is employed for visual tasks. However, feature maps from the intermediate layers also
have abundant texture cues that contain important details for vehicle reID. To this end, we propose
a multi-scale attention network for learning latent features with different cues from various scales. In
particular, to better adapt the unknown domain, WLS loss is presented to construct the pseudo label
distribution as a weighted distribution over all clusters, which effectively regularizes the network to the
target training data distribution. The major framework is illustrated in Figure 1.

In our previous work [13], a progressive learning method was proposed for unsupervised domain adap-
tation vehicle reID. As an extension to [13], our new method exploits the potential similarity of various
samples in unknown domains in a progressive manner. In contrast to [13], we propose a multi-scale
attention network to learn rich features for clustering in the feature learning step. Owing to a lack of
labels in the unknown domain, the extracted rich semantic features are beneficial in distinguishing various
vehicles. As the depth of the network increases, some important cues gradually disappear. Therefore,
the attention-based multi-scale network is proposed, which constructs the attention structure in different
layers in order to achieve features with discriminative information, combining the progressive learning
framework in [13] with our proposed feature multi-scale fusion network, named PLM, to exploit gener-
alized cues to adapt to unknown domains. More visualized results than [13] are offered over benchmark
datasets.

Beyond [13], our contributions are summarized as follows.

• A novel progressive learning method is proposed for vehicle reID to better adapt to an unknown
domain; the method iteratively updates the model using a WLS-based multi-scale attention learning
network while adopting the clustering approach to assign labels with various weights for selected reliable
unlabeled data.

• Unlike [13], by learning feature extracting model with ResNet only, a multi-scale attention network is
developed to integrate features from multiple layers for training the reID model, including low-layer tex-
ture features and high-level semantic features. Moreover, considering the distances between the samples
and different clusters, we propose the WLS loss to balance the confidence of pseudo labels for improved
performance.

• To make full use of the labeled data, PLM employs a data adaptation module based on the generative
adversarial network to generate images, labeled as the “pseudo target samples”. These are then combined
with the selected samples from the unlabeled domain for training the model.
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Figure 1 (Color online) Illustration of our proposed PLM framework. The images are transferred from the source domain to

the target domain to generate pseudo target samples. Iterations then commence. During each iteration, we (1) train the reID

model using the proposed WLS-based multi-scale attention network, which utilizes the fusion data and combines the pseudo target

samples with selected samples, and (2) assign pseudo labels with various weights for unlabeled images and select reliable samples

according to a dynamic sampling strategy.

2 Related work

This paper considers the efficiency and accuracy of unsupervised vehicle reID in an unknown domain. In
this section, we briefly review the methods of supervised reID methods and unsupervised reID methods.

2.1 Supervised vehicle reID methods

There are many supervised vehicle reID methods; they can be divided into four categories. The first is
structure-based reID methods, which exploit various deep learning networks to tap potential discrimina-
tive cues, such as VAMI [14] or DHMVI [15]. According to the characteristics of vehicles, these methods
learn multi-view features by solely using sigle-view features to enhance the representation of vehicles. In
addition to the viewpoints cues, attributes such as models and colors enable more distinctive features
to be learned in MGR [16]. There are also some methods that try to locate details using detection or
segmentation approaches in the vehicle images as the local features, such as PGANet [17]. The second
category includes approaches that focus on designing metric losses to better optimize the training stage,
such as CCL loss [18] and GST loss [19]. Taking the group into consideration, GST loss aims to min-
imize the intra-class variance to achieve better performance. The third category considers that spatial
and temporal information are important cues to improve vehicle reID performance. The most popular
solution is to construct the spatial-temporal model to regularize the vehicle reID results. In PROVID [20]
and OIFE [21], the spatial-temporal cue is employed as the auxiliary information to refine the ranking
results obtained by other feature learning models. In contrast to these methods, the complex model
based on spatial-temporal information is exploited in [22], which mainly employs the Markov model to
construct the relationship between different samples. The final category includes the popular application
of generative adversarial networks (GAN) [23,24] in vision tasks, which some methods propose for vehicle
reID, such as CV-GAN [25] and EALN [2]. Various images with multiple viewpoints are generated in
CV-GAN [25] to construct the complete representation for vehicle images. Through EALN [2], hard
negative samples could be generated automatically to improve the discriminative ability of the vehicle
reID model, especially for vehicles with similar appearances.

However, supervised reID models are not effective in observing real-world scenes with considerable
unlabeled images. Therefore, we propose a novel and effective unsupervised vehicle reID model.

2.2 Domain adaptation methods for reID

Unsupervised vehicle reID means that there is no label information in the target dataset. Though some
methods have been exploited in person reID, only a few of these methods explore unsupervised reID.
VR-PROUD [12] presents a self-paced progressive unsupervised learning architecture that adopts the
unsupervised K-means clustering to infer the vehicle IDs in a semi-unsupervised manner. PUL [11]
proposes to train the reID model of the unlabeled domain by iterating the clustering and fine-tuning.
Similar to PUL, in [10], a self-training scheme is presented to assign labels for unlabeled target samples
with an encoder. These labels are utilized for training the encoder of the vehicle reID model.
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It is obvious that domain adaptation has been widely utilized for vehicle reID. However, domain
adaptation has multiple limitations, which presents the motivation of our proposed method. Hence, this
paper provides a feasible model by leveraging domain adaptation into progressive learning to solve the
unsupervised vehicle reID problem.

3 Progressive learning with a multi-scale attention network

3.1 Framework overview

The structure of PLM is shown in Figure 1. For unsupervised vehicle reID, domain adaptation is necessary
to transfer discriminative information between domains. Therefore, a domain adaptation module based
on GAN is trained to transfer the well-labeled images to the unlabeled target domain, as in part A of
Figure 1, which could decrease the domain bias and make full use of existing source domain images.
Then, as in part B of Figure 1, the generated images are employed as the “pseudo target samples”
to be input for the proposed multi-scale network for feature learning, which adapts the target domain
progressively. When the model is trained, WLS loss is proposed to balance the confidence of unlabeled
samples and different clusters, which exploits pseudo labels with different weights according to the ability
of the model trained by the last iteration. Next, the output features of the reID model are employed to
select reliable samples using a dynamic sampling strategy, by utilizing the various clustering results and
selection strategies, as in part C of Figure 1. Lastly, the “pseudo target samples” with accurate labels
and the selected samples from the unlabeled domain with pseudo labels are combined to be the training
sets for the next iteration. In this way, a more stable adaptive model can be learned progressively.

3.2 Domain adaptation module

Domain adaptation is a pivotal part of unsupervised vehicle reID. With the intervention of domain
adaptation, an unsupervised reID model can obtain discriminative information transferred from the
labeled source domain. As in part A of Figure 1, there are two types of vehicle images for the task of
unsupervised vehicle reID: well-labeled images in the source domain and unlabeled images from the target
domain. However, although there are some well-labeled samples, directly applying them to the target
domain may result in a poor performance due to the domain bias. Moreover, for the target domain, the
supervised learning approaches are limited by the unlabeled samples, which cannot be utilized to train
the reID model. Hence, CycleGAN [26, 27] is employed as a data adaptation module to make full use
of these well-labeled data. This generates “pseudo target samples”, which decreases the domain bias by
transferring the style between the source domain and target domain. Noteably, although “pseudo target
samples” with labels are employed, we do not utilize any labeled data from the target domain.

CycleGAN introduces two generator-discriminator pairs, (G, DT ) and (F , DS), which map a sample
from a source (target) domain to a target (source) domain and generate a sample, which is indistinguish-
able from those in the target (source) domain [28]. For our method, besides the traditional adversarial
losses and cycle-consistent loss in CycleGAN, a content loss [29] is utilized to maintain the label infor-
mation from the source domain, which is formulated as follows:

Lid(G,F,X, Y ) = Ey∼pdata(y)||F (y)− y||1 + Ex∼pdata(x)||G(x) − x||1, (1)

where X and Y represent the source domain and target domain, respectively, and pdata(x) and pdata(y)
denote the sample distributions in the source and target domain, respectively. Through the generated
network, we can make full use of the well-labeled data. There are two reasons. The first is that through
the CycleGAN, the generated “pseudo target samples” have a similar distribution as the target domain,
which reduces the bias between the source and target domains. The second reason is that the identity
information of the source domain is also preserved by turning the content loss during the transferring
phrase, which means that the well labeled annotations could be reused in the subsequence.

3.3 Multi-scale attention network

Training the reID model with a feature learning network plays a vital role in the PLM, which trains
the model by combining the generated “pseudo target images” with the selected pseudo labeled samples.
Owing to the lack of labels in the unknown domain, more distinctive and strong features from the deep
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learning network are beneficial to train the vehicle reID model. Thus, in contrast to [13], a multi-scale
attention network is proposed in this subsection (part B of Figure 1).

Visual cues are a vital component in vehicle reID. In a typical network, visual cues optimize the
convolutional neural networks for achieving deep features from the last layer. However, the texture of
different scales or other discriminative cues from low layers are neglected. Moreover, with the increase
of the network’s depth, these features can easily and gradually disappear. Therefore, in our paper, the
multi-scale fusion network is introduced to integrate features from multiple layers, which contain low-
layer texture features and high-level semantic features with various scales. The features from intermediate
layers are redundant, as they may cause some noise for the vehicle reID task. Therefore, a self-attention
structure is added into our network to select the most relevant piece of information for visual analysis.

The structure of the proposed multi-scale attention network is illustrated in Figure 2. Based on
ResNet [30], 4 branches are added to generate multi-scale feature maps, which follow Block2, Block3,
Block4 and Block5, as shown in Figure 2. In our network, in each branch, to reduce the dimension of
features and extract effective features, several additional layers are utilized, which contain ReLU layers
and convolutional layers. From Figure 2, it can be seen that it is significant that the features with
different scales from multiple layers concentrate on different regions, which are important cues for vehicle
reID. For the unlabeled domain, pseudo labels are achieved by clustering, which is inaccurate. Hence,
more distinct features could partly make up for the deficiency. Moreover, considering a large amount of
redundant information from different layers, we can build a soft attention mechanism to extract attentive
features while enhancing the discriminative information.

Specifically, for each branch, after several convolutional layers and ReLU layers, the set of the attention
mask M corresponding to each branch can be computed as follows:

M i,j
c = Softmax(F i,j

c ), (2)

where M i,j
c and F i,j

c are the values for the corresponding features maps at pixel location (i, j) of the cth
channel. We use Softmax to generate the weights of pixels in F i,j

c , which is similar to the ranking of

importance for every pixel. Softmax is calculated by
exp(F i,j

c )
∑

exp(F i,j
c )

. M is used to re-weight the pixels to

produce the attentive features as follows:

T i,j
c = [F i,j

c , F i,j
c + F i,j

c ⊗M i,j
c ], (3)

where T i,j
c is the attentive feature of each sub-branch. Owing to the spatial misalignment of some of

the images in the training set, the mask M could be imprecise, which could subsequently result in the
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attentive feature being disturbed by noise. Hence, in our paper, a shortcut connection architecture is
utilized to fuse the features from the low layer with the attended features.

After achieving attentive features from different branches, a concatenate layer is employed to fuse these
features in order to exploit latent information from these features adaptively. This is described as follows:

Dc = [T 2
c , T

3
c , T

4
c , T

5
c , F

5
c ], (4)

where T 2
c , T

3
c , T

4
c and T 5

c represent the output features from each of the sub-branches, respectively. Dc

is the final feature for optimizing the vehicle reID model with the loss function.

3.4 Weighted label smoothing loss

Through the multi-scale attention network, rich features could be obtained to train the reID model. To
match up with these abundant features, reasonable labels should be considered in the unknown domain
in order to better optimize the reID model. Therefore, a novel weighted label smoothing loss is proposed
in this subsection.

For the “pseudo target images”, it is trivial to obtain the label information. However, assigning
reasonable labels for the pseudo labeled samples is a big challenge. In the unlabeled domain, if the
clustering centroids are regarded as the pseudo labels directly, ambiguous prediction in training owing to
inaccurate clustering results could occur. Moreover, it is improper to assign the same labels for all the
samples regardless of the distance to the clustering centroids.

Hence, WLS loss is presented to set the pseudo label distribution as a weighted distribution over all
clusters, which effectively regularizes the feature learning network to the target training data distribution.
Each generated sample that is well-labeled in the training set is assigned with only one ground-truth label,
which can be formulated as follows:

qk(g) =

{

0, if k 6= y,

1, if k = y,
(5)

where y is the ground-truth class label of g. However, through the aforementioned analysis, it is not
suitable to the unknown domain with pseudo labels. Hence, according to the result of clustering, we model
the virtual label distribution as a weighted distribution over all clusters for unlabeled data, according to
the distance between the features and each centroid of clusters.

Thus, the weights over all clusters are different in WLS loss. In this way, a dictionary α is constructed
to record the weights. For an image g, the weights of the label can be calculated as

w
g
k =

1

K
α
g
k, k ∈ [1,K], (6)

where αg
k represents the weight of the image g over the kth cluster. To obtain αg

k, unlabeled samples are
clustered to obtain the centroids set C = {c1, c2, . . . , ck}, k ∈ [1,K], which is introduced in Subsection 3.5.
K is the number of clusters; the similarity between g and ck can be calculated as dgk = ||fg−fck ||2, where
f represents the feature of images or centroids. The set of distance of image g over K centroids can
be described as dg = {dg1, d

g
2, . . . , d

g
k}, k ∈ [1,K]. Inspired by [31], all elements in dg are sorted with

descending order, and saved to dsg. αk is obtained by taking the corresponding index of dsgk in the set
of dsg:

α
g
k =

(

1−
d
g
k

max(dg)

)

· ψdsg (d
g
k), (7)

where ψdsg (·) is the index of dgk in dsg. Thus, the corresponding relationship between images and cluster
centroids is constructed with different weights. Hence, the WLS loss of unlabeled data ℓwls can be
formulated as follows:

ℓwls = −
K
∑

k=1

wklog(p(k)). (8)

In addition to the real unlabeled samples, there are some generated images by CycleGAN that are
combined to train the reID model. The training loss is defined as follows:

ℓ = −(1− σ) · log(p(y))− σ · λ ·

K
∑

k=1

wklog(p(k)). (9)
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For a generated image λ = 0, the loss is equivalent to the cross-entropy loss and y is the label of the
generated image. When λ = 1, the image is from the unlabeled data and belongs to the cluster y. For
the unlabeled data, σ is a smoothing factor between cross-entropy loss and WLS loss.

3.5 Clustering and selecting reliable samples

Appropriate candidates are crucial to exploit the unlabeled domain. When the model is weak, a small
reliable measure is set, which is near the cluster centroids in the feature space. As the model becomes
stronger in subsequent iterations, various instances should be adaptively selected as the training examples.
Hence, a dynamic sampling strategy is proposed to ensure the reliability of the selected pseudo-labeled
samples, as in part C of Figure 1. Images in the target domain are processed by the well-trained reID
model to output features with high dimensions. Most methods select the K-means to generate clusters,
which need to be initialized by the cluster centroids. However, it is uncertain how many categories
are required in the target domain. Hence, DBSCAN is selected as the clustering method. Instead of
employing the fixed clustering radius, this paper employs a dynamic cluster radius rad that is calculated
by K-nearest neighbors (KNN). After implementing DBSCAN, in order to filter noise, some of the top
reliable samples are selected to be assigned with soft labels, according to the distance between the features
of the samples and cluster centroids. In our method, samples with ||fg, cfg ||2 < γ are satisfied for the
next iteration for training the model, where fg is the feature of the gth image and cfg is the feature of
the cluster centroid to which fg belongs. Our method is summarized in Algorithm 1.

Algorithm 1 PLM for cross-domain vehicle reID

Require: Number of images on the target domain N , labeled source domain S, unlabeled target domain T , iteration number M ,

cluster number K, reliability threshold γ, new training set D;

Ensure: An encoder E for target domain;

1: Transfer style from S to T by GAN to generate pseudo target images ST ;

2: Initialization E(0) with ST , D: D = ST ;

3: for i=1 to M do

4: Train E(i) with D utilizing WLS-based multi-scale attention network; compute ft = E(i)(D);

5: Reduce dimension by manifold learning f = mad(ft); calculate number and centroids of clusters: (K,C) = DBSCAN(f);

6: Select features of centroids: {ck}K
k=1 → {fck}

K
k=1;

7: D= ST ;

8: for k=1 to K do

9: for g = 1 to N do

10: if ||fg, fck ||2 > γ then

11: D = D ∪ Tg ;

12: Calculate weights w
g

k
by (2)–(4);

13: end if

14: end for

15: end for

16: end for

4 Experiments

4.1 Datasets and evaluation metrics

In this subsection, detailed analyses are conducted to verify the effectiveness of the proposed PLM.
Additionally, the cumulative match characteristic (CMC) curve and the mean average precision (mAP)
are utilized to evaluate all methods in our experiments. In this subsection, in addition to the comparison
with state-of-the-art approaches, each part of PLM is analyzed in detail in the ablation studies. Our
experiments are trained and tested on two benchmark datasets: VeRi-776 and VehicleID.

• VeRi-776 [20] is a vehicle dataset that contains over 50000 images of 776 vehicles. In addition to
identity annotations, it also has information about the vehicle’s color and type. The training set owns
37781 images of 576 vehicles and the test set has 11579 images of 200 vehicles. The query set is a subset
of 1678 images from the test set.

• VehicleID [18] is a large vehicle dataset captured from multiple non-overlapping cameras. It contains
221763 images of 26267 vehicles. In our experiments, there are four subsets for test sets, which contain
800, 1600, 2400 and 3200 vehicles, respectively. During the testing stage, the gallery set is generated from
test sets. The probe set is generated with the remaining images after selecting one image of one identity.
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VehicleID images VehicleID images to VeRi-776 style VeRi-776 images VeRi-776 images to VehicleID style
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Figure 3 (Color online) Sample images of (a) VehicleID dataset, (b) VehicleID images which are translated to VeRi-776 style,

(c) VeRi-776 dataset, and (d) VeRi-776 images translated to VehicleID style.

Moreover, the generated “pseudo target samples” from the above 2 datasets are also included in the
training of PLM. The generated samples have a similar distribution as the target domain, which reduces
the bias between the source and target domains, as shown in Figure 3.

4.2 Implementation details

In the data adaptation module, the tensorflow [32] is utilized for the training platform to train the
translated model. During the training procedure, the learning rate is set to 0.0002, the min-batch size is
16, and epoch is 6. For feature learning, the proposed multi-scale network is employed as the backbone
network. The vehicle reID model is trained in the Matconvnet [33]. We utilize SGD to optimize the
training procedure with a momentum of µ = 0.0005. The batch size and the iteration are set to 64 and
6, respectively.

For PLM, images are transferred by CycleGAN from the source domain to the target domain, which
is used as initial samples for training the feature learning model. Considering the limit of the device,
when training the reID model on VeRi-776, 10000 transferred images from VehicleID are utilized as the
“pseudo target images”. On VehicleID, the same implementations are conducted to train the reID model.
When training the unsupervised model on VehicleID, only 35000 images from the VehicleID are selected
for the training set.

4.3 Comparison with the state-of-the-art methods

To better validate the effectiveness of PLM, some existing methods are compared with our proposed
method. Additionally, the results of the comparison between PLM and other state-of-the-art methods
are reported in Tables 1 and 2 and Figure 4. The methods to be compared with PLM are (1) FACT [34];
(2) FACT+Plate-SNN+STR [34]; (3) Mixed Diff+CCL [18]; (4) VR-PROUD [12]; (5) CycleGAN [26],
a method of style transfer, which is employed for the domain adaptation; (6) ECN [35]; (7) UDAR [10];
(8) direct transfer, which directly employs the well-trained reID model of [36] on the source domain
to the target domain; (9) baseline system, which, compared with the framework of PLM, utilizes the
original samples from the source domain instead of the generated data and only trains the reID model
with cross-entropy (CE) loss; (10) PUL [11]; (11) PAL [13].

Methods (1)–(3) are supervised vehicle reID approaches, whereas the remaining methods are unsuper-
vised methods. In particular, the PUL is an unsupervised adaptation method of person reID. As there
are only a few studies focused on unsupervised vehicle reID, PUL is also compared with our proposed
PLM. There are some other methods that are similar to PUL; however, most of them require special an-
notations, such as labels for segmenting or detecting keypoints, which are not annotated in the existing
vehicle reID datasets. From Tables 1 and 2, we note that the proposed PLM achieves the best perfor-
mance among all approaches, with Rank-1 = 77.59%, mAP = 47.37% on VeRi-776, Rank-1 = 51.23%,
45.40%, 41.73%, 39.25%, mAP = 54.85%, 49.41%, 46.00%, 43.46% on VehicleID with the test size of 800,
1600, 2400, 3200, respectively.

Compared with PAL, PLM also performs better for both VeRi-776 and VehicleID. In particular, in the
VeRi-776 dataset, there are 6.35% and 9.42% improvements in mAP and Rank-1, respectively. The main
reason for this is that the proposed attention-based multi-scale network learns more distinct features
that integrate high-level semantic features with low-layer texture features, which are stronger for vehicle
reID than the feature from ResNet. This also validates that the excellent feature learning network is
conductive to exploit the unknown domain.
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Table 1 Performance of different methods on VeRi-776. The best results are shown in bold face. PLM achieves the best

performance.

Method mAP (%) Rank-1 (%) Rank-5 (%)

FACT [34] 18.75 52.21 72.88

FACT+Plate-SNN+STR [34] 27.77 61.44 78.78

VR-PROUD [12] 22.75 55.78 70.02

PUL [11] 17.06 55.24 66.27

CycleGAN [26] 21.82 55.42 67.34

ECN [35] 20.06 57.41 70.53

UDAR [10] 35.8 76.9 85.8

Direct transfer 19.39 56.14 68.00

Baseline system 31.94 58.58 73.24

PAL [13] 42.04 68.17 79.91

PLM 47.37 77.59 87.00

Table 2 Performance of various methods over different reID methods on VehicleID. The best results are shown in bold face. PLM

can achieve the best performance in most situations. Mixed Diff+CCL can also achieve a good performance.

Method
Test size = 800 (%) Test size = 1600 (%) Test size = 2400 (%) Test size = 3200 (%)

mAP Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP Rank-1 Rank-5

FACT [34] – 49.53 67.96 – 44.63 64.19 – 39.91 60.49 – – –

Mixed Diff+CCL [18] – 49.00 73.50 – 42.80 66.80 – 38.20 61.60 – – –

PUL [11] 43.90 40.03 56.03 37.68 33.83 49.72 34.71 30.90 47.18 32.44 28.86 43.41

CycleGAN [26] 42.32 37.29 58.56 34.92 30.00 49.96 31.89 27.15 46.52 29.17 24.83 42.17

Direct transfer 40.58 35.48 57.26 33.59 28.86 48.34 30.50 26.08 44.02 27.90 23.85 39.76

Baseline system 42.96 39.11 55.24 38.03 34.04 50.91 34.04 30.10 48.41 31.98 28.24 43.77

PAL [13] 53.50 50.25 64.91 48.05 44.25 60.95 45.14 41.08 59.12 42.13 38.19 55.32

PLM 54.85 51.23 67.11 49.41 45.40 63.37 46.00 41.73 60.94 43.46 39.25 57.99
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Figure 4 (Color online) CMC curves of several typical methods on VeRi-776 and VehicleID. The proposed PLM outperforms

other compared methods, especially the “CycleGAN” and the “direct transfer’ method. This demonstrates that progressive learning

could increase the adaptive ability for the reID model in the unlabeled target domain. (a) VeRi-776; (b) VehicleID (test size =

2400); (c) VehicleID (test size = 3200).

Compared with PUL [11] and VR-PROUD [12], PLM has 30.31% and 24.62% gains in mAP on VeRi-
776, respectively. Our model also outperforms the PUL and VR-PROUD in Rank-1, Rank-5 and mAP
on VehicleID. For these methods, the K-means is employed to assign pseudo-labels for unlabeled samples.
Owing to the uncertainty over the number of categories, it is not appropriate to utilize the K-means in
reID. Compared with UDAR [10], a clustering-based domain adaptation reID method whose structure is
similar to our method, our method again achieves better results on VeRi-776, with a 11.57% improvement
in mAP. In addition, compared with the “direct transfer” method, our proposed PLM achieves 27.98%
and 21.45% gains in mAP and Rank-1 on VeRi-776, which is significant. Our method also demonstrates
similar improvements on VehicleID. Furthermore, compared with the supervised approaches, such as
FACT [34], Mixed Diff+CCL [18] and FACT+Plate-SNN+STR [34], PLM performs better on VeRi-776
and VehicleID, validating that PLM is more adaptive to different domains.

Compared with CycleGAN [26], which adapts the domain bias by style transfer, our method signifi-
cantly outperforms on both VeRi-776 and VehicleID. For VeRi-776, our proposed PLM achieves 25.55%
and 22.17% improvements in mAP and Rank-1, respectively. Similarly, our method has 13.94%, 15.40%,
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Figure 5 (Color online) Comparison results. (a)–(c) are the mAP, Rank-1 and Rank-5 of four comparison methods on VeRi-776;

(d)–(f) are the results of four comparison methods in every iteration on VehicleID.

Table 3 Settings for different ablation models

Method Generated images Original images WLS CE

BS × √ × √

CEL
√ × × √

OIMG × √ √ ×
PLM

√ × √ ×

14.58% and 14.42% gains in Rank-1 on VehicleID with the test sets of 800, 1600, 2400 and 3200, re-
spectively. These significant improvements are mainly due to the fact that PLM exploits the similarity
among unlabeled samples through iterations for unsupervised vehicle reID. Though the generated images
have the style of the target domain, they merely serve as pseudo samples. The real samples in the target
domain could be more reliable in generating the discriminative features during the training stage. These
results suggest that reliable samples in the target domain are an important component for unsupervised
reID, which indicates that PLM could make full use of the unlabeled samples in the target domain. Com-
pared with ECN [35], which employs exemplar memory to assign soft labels for unlabeled samples, our
methods also have 27.31% and 20.18% improvements in mAP and Rank-1 on VeRi-776 dataset. Though
this method solves the problem of assigning labels, it has a lot of noisy labels in the training set, which
could cause errors in the training stage.

Compared with the baseline system, PLM has large improvements both on VeRi-776 and VehicleID. The
PLM achieves 15.43% increase in mAP on VeRi-776, and 11.89%, 11.38%, 11.96%, 11.48% improvements
in mAP on VehicleID with different test sets. These indicate that the “pseudo target images” and
“weighted label smoothing” are two core components in PLM. This leads the reID model trained by our
method to be more robust to different domains. More details will be discussed in Subsection 4.4.

4.4 Ablation studies

To better analyze PLM, we conducted ablation studies on two major components of PLM: the data
adaptation module and WLS, which are both shown in Figure 5. The settings are depicted in Table 3.
In addition to the backbone, all of them share a similar structure to PLM. For a fair comparison, the
backbone of the feature learning network is ResNet50 [30] when training the reID model in these ablation
studies. When the target domain is the VehicleIS dataset, 35000 images are randomly selected from
the VehicleID dataset to be employed to train the reID model. “Generated images” indicates that the
transferred images from the source domain and the image of the target domain are employed to train the
models, while “Original images” indicates that the original images from the source domain and samples
from the target domain are utilized for unsupervised vehicle reID. WLS and CE indicate that the WLS
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Table 4 Performance comparison between CEL, OIMG and BS on VeRi-776

Iteration
CEL (%) OIMG (%) BS (%)

mAP Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP Rank-1 Rank-5

Iter1 27.71 59.89 72.10 28.61 60.90 74.19 25.04 57.33 71.33

Iter2 33.76 64.12 78.06 30.11 62.09 75.32 30.19 58.40 73.53

Iter3 35.73 65.55 78.18 30.52 61.02 74.43 32.49 59.41 73.06

Iter4 36.01 63.28 77.47 32.51 63.70 76.16 32.63 59.77 74.07

Iter5 33.86 60.90 77.11 33.90 65.19 76.34 32.86 60.96 74.91

Iter6 34.03 62.09 75.38 37.33 67.69 79.02 31.94 58.58 73.24

Table 5 Performance comparison between CEL, OIMG and BS on VehicleID (2400)

Iteration
CEL (%) OIMG (%) BS (%)

mAP Rank-1 Rank-5 mAP Rank-1 Rank-5 mAP Rank-1 Rank-5

Iter1 35.69 31.43 49.54 35.45 31.19 48.95 34.93 30.71 48.41

Iter2 35.89 31.44 49.65 34.48 30.26 48.25 34.00 29.90 46.98

Iter3 36.49 32.39 50.84 34.94 30.74 48.93 34.33 30.29 47.14

Iter4 36.62 32.73 51.01 35.22 31.20 48.66 33.62 29.67 46.38

Iter5 37.33 33.69 51.25 34.48 30.35 48.21 34.08 30.15 46.94

Iter6 37.12 33.45 51.36 38.95 34.90 52.69 34.04 30.10 46.94

loss and cross-entropy loss are employed to train reID models, respectively. Figure 5 shows that PLM
achieves the best performance on both datasets, demonstrating that the data adaptation module and
WLS are effective in adapting to an unlabeled domain.

Effectiveness of the data adaptation module. To demonstrate the effectiveness of the generated
samples, BS and CEL are compared, and the results are reported in Tables 4 and 5. For CEL, CycleGAN
is employed to translate some of the labeled images from the source domain to the target domain, and
these generated images are regarded as the “pseudo target samples”. Then, the “pseudo target samples”
are combined with the images in the target domain in order to train the reID model. Examples of
translated images by CycleGAN are shown in Figure 3. It can be seen that the generated images are able
to learn some styles from different domains for VehicleID, such as low illumination or high resolution.
Both CEL and BS are trained by cross-entropy loss. From Tables 4 and 5, according to the last iteration,
compared with BS, the mAP of CEL increases by 2.09% for VeRi-776. Additionally, it rises to 37.12% and
33.45% in mAP and Rank-1 on VehicleID, demonstrating that some important latent style information is
learned by the generated images from the target domain, which could subsequently smooth the domain
bias and achieve a better performance.

Effectiveness of WLS. A comparison between BS and OIMG is conducted to validate the effec-
tiveness of the WLS. Tables 4 and 5 show the comparisons for VeRi-776 and VehicleID. Our proposed
WLS achieves a better performance than cross-entropy loss. The last iteration for OIMG, compared with
BS, has an increased accuracy of 5.39% and 9.11% on VeRi-776 for mAP and Rank-1, respectively. The
similar conclusion holds for VehicleID, which achieves 4.91% and 4.8% increases for mAP and Rank-1,
respectively. These results indicate that the WLS loss has a better ability to achieve discriminative repre-
sentation during the training stage. Additionally, Tables 4 and 5 show that the accuracy of CEL changes
slowly during iterating, which is significant. The reason for this is that the pseudo labels assigned by
clustering are inaccurate, which could cause ambiguous predictions during the training phase. Therefore,
it is not desirable to use the clustering results for the pseudo labels of unlabeled data. In our method, the
WLS loss sets the pseudo label distribution as a weighted distribution over all clusters, which effectively
regularizes the feature learning network to the target training data distribution. This demonstrates that
WLS is more suitable for an unknown domain in an unsupervised setting.

Effectiveness of the multi-scale network. A comparison between PAL and PLM is conducted to
validate the effectiveness of the multi-scale network. Figure 6 shows the comparisons for VeRi-776 and
VehicleID. In particular, compared with PAL, PLM achieves significant improvements for every iteration.
This is because the multi-scale network in PLM can generate abundant features that integrate the high
semantic information into low texture cues, demonstrating that features from the multi-scale network
are more distinctive and beneficial for vehicle reID in the unknown domain. Additionally, to verify
the effectiveness of the soft attention mechanism in the multi-scale network, we removed the structure
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Figure 6 (Color online) Comparison results. (a)–(c) are the mAP, Rank-1 and Rank-5 of four comparison methods on VeRi-776

in different iterations, respectively.

Table 6 Results for different structures on VeRi-776

Method mAP (%) Rank-1 (%) Rank-5 (%) Rank-10 (%)

PLM-Sum 53.19 84.02 91.59 94.33

PLM-Concat-noAtt 53.44 83.61 91.41 93.98

PLM-Concat 54.16 83.84 91.89 94.33

Original images PAL PLM Original images PAL PLMAttention-2 Attention-3 Attention-2 Attention-3

Figure 7 (Color online) Visualization of attention maps. The first column is original images, and the last four columns are the

visualization of feature maps from ResNet, the multi-scale attention network and the output of the soft-attention structure in the

second branch and the third branch, respectively.

and directly concatenated features from different layers, denoted as “PLM-Concat-noAtt”. Table 6
shows the comparison results. It is obvious that, after adding the soft attention structure, the mAP
has a 0.72% improvement for the VeRi-776 dataset. Moreover, the concatenation in (4) is replaced by
the summarization, denoted as “PLM-Sum”, to exploit the impact of different fusion methods on our
framework. As shown in Table 6, the mAP of “PLM-Sum” drops to 53.19%, which demonstrates that
concatenation is better than summarization in our network compared to “PLM-Concat”. Moreover, we
summarize our computational complexity in terms of memory and training time. For one single model, the
saved parameter files of using ResNet50 and our multi-scale attention network are 186.8 and 336.9 Mb,
respectively. This is because, based on ResNet50, there are some convolutional layers added into our
network, which increases the amount of parameters. Additionally, for one epoch, the computing time for
our network is approximately 3 min more than that of using ResNet50.

4.5 Qualitative analysis

Visualization of attention maps. To verify the effectiveness of the multi-scale attention network,
features from ResNet and our proposed multi-scale attention network are visualized. This is outlined
in Figure 7, where there are five columns in each group: original images, visualization of feature maps
from ResNet, the multi-scale attention network, the output of the soft-attention structure in the second
branch and the third branch. It is significant that the reID model trained by the multi-scale attention
network can seek more distinctive parts.

Visualization of feature distributions. To better demonstrate the effectiveness of PLM for an
unlabeled domain, the features of vehicle images in the gallery set are visualized in the different datasets,
and the features are projected to 2-dimensional space via t-SNE [37] for dimension reduction and visual-
ization. Figure 8 shows the visualization of feature distribution. Specifically, there are features of a total
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Figure 8 (Color online) Visualization of feature distribution by t-SNE [37]. Different colors represent different vehicle IDs.

(a) iter = 1; (b) iter = 2; (c) iter = 3; (d) iter = 4; (e) iter = 5; (f) iter = 6.
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Figure 9 (Color online) Retrieval results for VeRi-776. The image in the left-hand column is the query image, whereas the

right-hand side shows the top-11 retrieval results obtained in different iterations.

of 200 vehicles that are extracted for different iterations on VeRi-776. The reID model is trained by our
proposed PLM. It is observed that as the iteration grows, the result becomes better than the previous
iteration.

Visualization of retrieval results. To further validate the effectiveness of PLM, some visualized
results are provided in Figure 9 for VeRi-776 and VehicleID, where, for different datasets, the 6 separate
rows represent the retrieval results from the first iteration to the sixth one. The number in the top-left
represents the Vehicle ID/Camera ID. Each individual vehicle has its own Vehicle ID. The Camera ID
is the number of the camera that captured the images. The image in the left-hand column is the query
image, whereas the right-hand side shows the top-11 retrieval results obtained in different iterations. In
each row, the correct results are indicated by a green border on the vehicle, whereas all other images are
wrong. Figure 9 shows that a better performance is obtained as the iterations increase, for both VeRi-776
and VehicleID.
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5 Conclusion

In this paper, we proposed a network for unsupervised vehicle reID, named PLM, which iteratively
updates feature learning and estimates pseudo labels for unlabeled data to adapt the reID model in a
target domain. The proposed domain adaptation module makes full use of the source domain, while the
WLS loss treats the labels as a distribution over all pseudo labels, according to the distance between
the samples and clustering centroids. PLM balances the confidence of different pseudo labels well. As
an extension of this, the attention-based multi-scale network is proposed to learn more distinct features
in unknown domains. The experimental results along with a detailed analysis have been carried out,
demonstrating the advantages of PLM.
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