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Abstract Pedestrian detection has made great progress with the rapid development of deep learning, but

pedestrian detection under occlusion remains a challenge. To solve the occlusion problem, some research

endeavors have been carried out based on visible parts, such as the body, but there is still substantial

room for improvement due to the introduction of additional calculation. Aiming to improve the detection

performance under occlusion, this paper proposes a head-aware pedestrian detection network (HAPNet) by

using the inherent structural relationship between the human body and head. The postprocessing stage

is redesigned to include a scoring module and an augmented non-maximum suppression (NMS) algorithm.

Specifically, HAPNet detects head and body simultaneously through different layers of a feature map. We

then propose a head-side affinity model, which can represent the association between the head and body

sides. Detection and affinity prediction tasks are implemented through different branches of HAPNet. In the

scoring module, the head and body detection scores are fused to match the head-body pairs to improve the

detection performance. On this basis, an enhanced NMS algorithm is proposed, which achieves a good balance

between reducing false positives and missing detection. The experimental results verify the effectiveness of

this method in pedestrian detection under occlusion.
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1 Introduction

Pedestrian detection has attracted wide attention due to its applications in video surveillance and auto-
matic driving. With the introduction of the convolutional neural network (CNN) [1–6], the performance
of pedestrian detection has substantially improvements. However, occlusion remains a significant chal-
lenge. Generally, occlusion can be divided into two types: interclass occlusion and intraclass occlusion [6].
In terms of pedestrian detection, the former occurs when pedestrians are occluded by vehicles, buildings,
trees or other non-human categories, as shown in Figure 1(a), and the latter occurs when pedestrians
are occluded by each other, as shown in Figure 1(b). Both types of occlusion cause varying degrees of
overlap and increase the missing rate of detection. Moreover, occlusion occurs on different parts of the
body, complicating the visible region-based approach.

Some efforts have been devoted to part-based methods, including methods based on manually selecting
parts [1, 7]. However, these methods are suboptimal because the computational cost grows linearly with
increasing number of parts. Additionally, multiple parts may complicate the postprocessing. To simplify
the postprocessing, a two-branch structure [2] with the full body and a visible part was introduced. Nev-
ertheless, the visible region part is not reliable and robust enough for its various location configurations.
To overcome the above shortcomings, this paper introduces a crucial part, the head, to help detect indi-
viduals in occlusion cases. As shown in Figure 1(c), compared with other parts or the whole body, the
head part is hardly occluded by nearby pedestrians or objects from other categories.

*Corresponding author (email: liutiel@163.com, yuan.ze.jian@xjtu.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-021-3300-2&domain=pdf&date_stamp=2022-4-7
https://doi.org/10.1007/s11432-021-3300-2
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-021-3300-2
https://doi.org/10.1007/s11432-021-3300-2


Ding J L, et al. Sci China Inf Sci June 2022 Vol. 65 160102:2

(a) (b) (c)

Figure 1 (Color online) (a) Pedestrians occluded by vehicles (interclass occlusion). (b) Pedestrians that overlap with each other

(intraclass occlusion). (c) Heat map produced by averaging the visible masks of occluded pedestrians (red color indicates the

highest score). The yellow line represents the assignment of the head and its corresponding full body.

In this paper, we propose a head-aware pedestrian detection network (HAPNet) for occluded pedestrian
detection. First, HAPNet is divided into three branches after the backbone, and the top two branches are
used for head and pedestrian detection tasks, as shown in Figure 2. These two branches exploit different
feature maps with different scales because the shallow layer contains a wealth of detailed information and
semantic information is stored in high-level features. Then, a head-side affinity module is introduced to
assign the head and full body detections, which represents the association of the head and body sides.

The body side is the general definition for the direction of one side of the upper body, which is broad
sensed. In this paper, we select the trisection points instead of the middle points, while taking the center
of the head as the center of the circle. This indicates that HAPNet is more discriminative and reliable
than the detections of human-designed parts or multiple/single visible regions. In short, the affinity
module is a 2D vector field encoding the localizations and orientations from head to body sides, which is
built based on the observation that there is a sharp edge along the line segment from the head center to
the body side.

In the postprocessing, we propose a scoring module that assigns each head detection to its corresponding
pedestrian detection by choosing the maximal integrated association score and fuses the scores of the head
and pedestrian detections. The scoring module is well-adapted to the proposed head-aware pedestrian
detection method. Inspired by the representative region non-maximum suppression (NMS) [8], we propose
an augmented NMS to deal with the heavily occluded cases, which considers the overlap of both the head
and full body bounding boxes simultaneously. Specifically, we introduce two thresholds and perform NMS
on the head and full body detections with the two thresholds. The experiments indicate that the head
part can offer a more accurate guide for distinguishing individuals with the proposed augmented-NMS
algorithm.

To further evaluate the performance of the pedestrian detector under occlusion conditions, this paper
builds a dataset containing scenes of crowds of pedestrians (CrowdHuman-Ped) and the original data
belongs to the CrowdHuman dataset [9]. To select the pedestrian instances from the CrowdHuman
dataset, two criteria are introduced, which refer to the width-height ratio of the full body box and the
area ratio between the head and full body boxes in the CityPersons dataset.

The major contributions of this paper include three aspects. First, we propose HAPNet to deal with
the occluded pedestrian detection task. Specifically, we introduce the head to form a head-body pair and
associate it with the proposed head-side affinity module. Second, we propose to modify the postprocess-
ing stage, including designing a re-scoring module and formulating an augmented NMS criterion. The
proposed method greatly matches the head and pedestrian detections and achieves an effective trade-off
between precision and recall. Third, we collect a crowded pedestrian dataset (CrowdHuman-Ped), estab-
lished on top of CrowdHuman [9], to evaluate the pedestrian detectors under different occlusion cases.
We achieve considerable performance on CrowdHuman-Ped and CityPersons with the proposed detector,
especially in occluded cases.
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Figure 2 (Color online) Overview of the proposed HAPNet. H-Net denotes the head detection network, and B-Net is the body

detection network. The third branch, Aff-Net, is the affinity module. In the final detections, the red box indicates the head

detection, the green box denotes the body detection, and the yellow line is the head-body assignment.

2 Related work

2.1 Pedestrian detection

Pedestrian detection has achieved considerable improvement through both traditional methods [10–13]
and deep learning-based methods [3–5, 14–17] over the last decade. With the revival of convolutional
neural networks, some traditional methods relying on manually selected features [10], classifiers and
decision trees [11] are gradually losing their application value, whereas deep learning-based methods [18,
19] yield unusually brilliant results. General object detectors are commonly divided into two types: one-
stage or two-stage. They perform well for pedestrian detection. With the success of Faster R-CNN [14], a
typical two-stage object detection method, a wave of pedestrian detection approaches [3,4,7,17,20,21] are
proposed following the custom architecture. For instance, Zhang et al. [17] properly adapted the model
of Faster R-CNN and gain a significant improvement in detection performance. Mao et al. [4] presented a
new network architecture that aggregates extra features into the detection framework and jointly learns
pedestrian detection as well as the given extra features.

To accelerate the speed of pedestrian detection, a series of one-stage CNN-based pedestrian detec-
tors [22–25] are proposed. Noh et al. [22] implemented pedestrian detection on state-of-the-art one-stage
models, e.g., YOLO9000 [26], SSD [27], and DSSD [28]. Liu et al. [23] proposed an effective ALF module
that stacks multiple predictors to gradually evolve the detection from SSD to improve the localization
performance in pedestrian detection. Song et al. [29] proposed a progressive refinement network that
contains three sequential refinement phases; the network uses confidence-aware calibration for adaptive
initialization of anchors. Considering the efficiency of the one-stage pedestrian detector, the proposed
detector similarly employs the one-stage structure to perform the pedestrian and head detection.

Despite the fact that the single-stage method is more efficient, the results for small-scale pedestrians still
trouble many researchers. Small-scale pedestrians are more blurred and noisier, and many attempts have
been made to overcome these challenges. For instance, Cao et al. [30] solved the problem of small-scale
pedestrian detection and occlusion pedestrian detection at the same time by focusing on the predictive
bounding box with low positioning accuracy and extracting more contextual information around the
object. Inspired by FPN [31], employing different scales has become popular. For example, Li et al. [32]
proposed to detect small-scale pedestrians and large-scale pedestrians simultaneously. In addition, Li et
al. [33] proposed a box guided convolution (BGC) that can dynamically adjust the sizes of convolution
kernels guided by the predicted bounding boxes. In this way, it can better address the challenge of large
variations of scale.

2.2 Occlusion pedestrian detection

Occlusion often accompanies the task of pedestrian detection. In term of handling occlusions for pedes-
trian detection, many approaches have been proposed recently, which can be mainly divided into three
categories: exploiting the attention mechanism [20, 34], feature transformation [35] and part-based de-
tection [2, 5, 7, 12, 22, 36]. Several methods describe the pedestrian using a part-based model to handle
occlusion. Zhou et al. [2] addressed the occlusion by regressing two bounding boxes to localize the full
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body and the visible part of the pedestrian simultaneously. Xie et al. [5] proposed PSC-Net, which is
designed to explicitly capture co-occurrence information of different pedestrian body parts through a
graph convolutional network (GCN). However, too many designed parts or visible regions still bother the
researchers. Differently, we employ the head as partial information for occluded pedestrian detection.
Detecting a pedestrian between the head and the body is reliable because of the inherent structure of the
head-body pair.

Several studies [9, 34, 37–39] are focusing on pedestrian head detection. Shao et al. [9] used FPN [31]
and RetinaNet [40] to perform head detection. Chi et al. [37] designed a mask-guided module to leverage
the head information to enhance the feature representation learning of the backbone network. Chen et
al. [39] presented a novel approach that learns a semantic connection between the pedestrian head and
other body parts. Instead of simply using the information of the head, we model the association between
the head and body detection using a newly defined affinity field, which makes good use of the inherent
human body structure.

Additionally, some studies are being conducted on designing overlap-aware loss [6,7] or modifying the
NMS criterion [41, 42] to minimize the effect of occlusion. Wang et al. [6] proposed a repulsion loss
for bounding box regression that attaches each proposal to its designated target and pushes it away
from other close-by ground truth boxes and proposals. However, the additional loss terms disturb the
localization of the pedestrian to some extent. In non-maximum suppression, it is hard to choose a perfect
intersection over union (IoU) threshold to delete the close-by detections correctly [43]. To handle this
problem, Liu et al. [41] proposed novel adaptive-NMS, which applies a dynamic suppression strategy
and designs an auxiliary and learnable subnetwork to predict the adaptive NMS threshold. In addition,
to reduce the missing rate in the crowded cases, Soft-NMS [44] would offer a little value instead of the
zero in the traditional NMS algorithm. To adapt to our method, we propose a two-thresholds-augmented
NMS algorithm, different with the traditional NMS. General methods implicitly model the relationship of
close-by detections; differently, we introduce the head detection and build an explicit criterion for NMS.

3 Proposed method

3.1 Overview

The overview of the framework is shown in Figure 2. By observing its structure, it can be found that
the framework is mainly divided into two parts, HAPNet and the postprocessing stage. HAPNet consists
of three separate branches with a shared backbone, and the first two branches are used for head and
full body detections with a single-stage detection scheme. Moreover, the head and pedestrian detections
are performed based on the feature maps from different layers (Conv4-3, Conv5-3, Conv6-1, and Pool6;
similar structure in SSD [27], MSCNN [3]). As for the third branch, the head-side affinity module is
employed to predict the head-side affinity field. Furthermore, we design a new associated module to
match the head-body pair and propose an augmented NMS algorithm to adapt HAPNet.

3.2 Head and full-body detection

It is a great challenge to select the visible region part for the part-based occluded pedestrian detection
methods. Different from other body parts, the head is more distinct, and its authenticity was verified
on CityPersons [17] a long time ago. We consider exploiting the head to assist the body in positioning
pedestrians. In this paper, VGG16 [45] is used as the backbone. Specifically, the structure of the first 5
layers remains unchanged, but a 3×3×512 convolution layer (Conv6-1) and a followed max-pooling layer
(Pool6) are added after Conv4-3. The overview of the detection framework is depicted in Figure 3(a). For
the sake of readability, this paper only shows the branches on the feature maps from one layer (Conv4-3)
in Figure 3(a). The head branch and the body branch are built separately using a set of convolutional
filters with the same structure pipeline. In the both branches, the number of channels is 512, and different
numbers after the channels denote the width and height of different rectangular convolution kernels, which
can deal with the situation that pedestrian detecting and head detecting boxes are mostly rectangular
boxes. To choose an appropriate anchor box size for head detection, the proposed detector builds an
anchor pool and selects the one with the maximum IoU between anchor boxes and ground truths.
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Figure 3 (Color online) (a) Structure of the head and body detections; (b) structure of the head-side affinity module.

3.3 Head-side affinity module

To better assign the head to the corresponding individual, this paper design a head-side affinity module
to represent the association of the head and the full body. Inspired by the part affinity field [46], we
visualize the orientation of association between the limbs of the upper body. The part affinity field realizes
the association between limbs by encoding the position and direction of the limbs on each pixel between
the nodes. As shown in Figure 4(a), there is consistency of orientation in the upper body. The blue
area shows the right orientation of the upper body, while the left orientation is shown in red. Based on
this appearance cue, the proposed detector models the association of the head and corresponding body
by the proposed head-side affinity module. Moreover, the head-side affinity module shows robustness
against occlusion. As shown in Figure 4(d), when one pedestrian is occluded by the right person, there is
sufficient edge information in the region of the left side. This ensures the robust assignment of the head
and the corresponding human body.

We first define the module as follows. Assume that the center point of the head and the right body
side point are defined as xk

h and xk
b , where k indicates the k-th pedestrian. The two points are shown in

Figure 4(b). Here, we select the trisection points instead of the middle points of the body sides because
the mean orientation of the left/right upper body points is closer to the orientation from the head center
to the trisection points of the left/right body sides. Then, a unit vector vk

r is introduced to specify the
direction from xk

h to xk
b as follows:

vk
r =

xk
b − xk

h

||xk
b − xk

h||
. (1)

A point p located in the dotted box in Figure 4(b) needs to meet the following requirements:

0 6 vk
r · (p− xk

h) 6 ρkr , |vk
r⊥ · (p− xk

h)| 6 σk
r , (2)

where vk
r⊥ is a unit vector perpendicular to vk

r . ρkr is the length from the head to the right-side body,
and σk

r is half the width of the dotted box. An illustration is shown in Figure 4(b). Finally, the head-side
affinity field for the right side of the k-th person Ak

r (p) can be defined as

Ak
r (p) =

{

vk
r , if p on the right head-body side,

0, otherwise.
(3)

During training, the ground truth head-side affinity field at each point A∗(p) can be calculated by
averaging both orientations of all pedestrians as follows:

A∗(p) =
1

n(p)

∑

o∈{r,l}

∑

k

Ak
o(p), (4)

where n(p) = max(1, nr(p) + nl(p)) is a non-zero value representing the coverage times of point p by
both the right and left head-side of all the pedestrians.

In the overview of the affinity module, as depicted in Figure 3(b), multiple deconvolution layers are
attached to different convolution layers to increase the resolution of the feature maps. Moreover, to
capture the different visual characteristics of the pedestrian instances from different scales, these multiple
feature maps from different layers are concatenated, and a 1×1×512 convolution layer is employed to
reduce the channels of the concatenated feature map.
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Figure 4 (Color online) Statistical heat maps of pedestrians. The blue box indicates the bounding box of the head, and the

red box denotes the whole body bounding box. (a) The average orientation of the whole body. Red: left orientation. Blue: right

orientation. (b) Instance of the definition of head-side affinity. (c) Average orientation of individuals overlapped by pedestrians on

the right side. (d) Corresponding connections of overlapped pedestrians.

3.4 Loss function

HAPNet is jointly trained using a multitask loss; the first part is detection, and the definitions are as
follows. Assume that a training sample is denoted by (X,Y ), and the bounding box coordinates are
known. Here, X is the image patch and Y = (c∗, b∗) denotes its class label: 0 for background and 1 for
object (head or body). The objective loss function is defined as a weighted sum of the classification loss
lcls and the localization loss lloc as in [14, 47]. The objective loss for training includes the head and the
body; however, in the following formula, we do not separate them.

l = lcls(ŝ, c
∗) + λh[c

∗ = 1]lloc(b̂, b
∗, ba), (5)

where ŝ is the predicted score, and b̂, b∗, and ba indicate the bounding boxes of the prediction, ground
truth and corresponding anchor, respectively. They are all made up of four parameters, denoted as
(x,y,w,h). The localization loss is defined using a smooth L1 loss [47] between the predicted box b̂ and
the ground truth box b∗. Specifically, lloc is performed on the offset vector ∆ = (δx, δy, δw, δh) based on
the anchor box ba. The offset vector between ground truth b∗ and anchor ba is computed as follows:

δx = (x∗ − xa)/wa, δy = (y∗ − ya)/ha,

δw = log(w∗/wa), δh = log(h∗/ha).
(6)

In practice, ∆ is normalized by its mean and variance to improve the effectiveness of localization [3,14,48].
As for the second part, the affinity module, the loss is calculated as follows. Given an image I ∈

RW×H×3 including multiple pedestrians, the head-side affinity map is defined as Â ∈ R
Wa×Ha×2, where

Wa and Ha are the width and height of the affinity map, with a ratio identical to that of the original
image size. During training, the mean squared error (MSE) is employed to measure the loss between the

predicted association map Â and the ground truth A∗ over each position p as

laff =
1

N(p)
·
∑

p

M(p) · ||Â(p)−A∗(p)||22, (7)

where N(p) is the number of points in affinity maps. M ∈ R
Wa×Ha denotes the mask with the same spa-

tial size as the head-side affinity map, in which a point covered by any ignored pedestrians or pedestrians
without annotated heads is set to 0 and a point is otherwise set to 1.

The training loss is described as

l = lb + αh · lh + αaff · laff . (8)
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The first two components lb and lh represent the loss of full body and head detections, respectively,
as described in (5), and the third term laff denotes the loss of the head-side affinity module. In the
following experiments, αh is set to 1 and αaff is set to 0.1. During the training process, the proposed
detector employs a multi-step training strategy. In the first step, each branch is trained separately and
simultaneously. The shared networks in the backbone are updated along with each task. In the second
step, all layers are jointly optimized using the final loss in (8).

3.5 Postprocessing

3.5.1 Anchor-based assignment

A straight approach to assign the head and pedestrian detections is associating them based on an anchor
pair, as shown in Figure 2. Both the head and full body detections can be traced back to an anchor cen-
tered at a specified feature pixel. Considering the statistical localization of the head and its corresponding
full body, this approach defines an anchor pair whose relative position relation is fixed as illustrated in
Figure 2. A head detection and a full body detection are aligned if their original anchors are matched as
an anchor pair. This kind of assignment method is simple and efficient. It is performed on the initialized
proposals, so it can guarantee that there is an assigned head proposal for each full body detection.

3.5.2 Head-side affinity module-based assignment

Despite the efficiency, the anchor-based assignment approach yields numerous incorrect alignments when
the pedestrians overlap with each other. To address this shortcoming, the proposed detector refines the
assignment of the head box and its corresponding full body detection based on the head-side affinity
module. For the j-th pedestrian candidate, this approach first selects a set of overlapped head candidates
and builds a head candidate pool P j

h . Then, the association score ŝi,j between j and a head candidate

i ∈ P
j
h is calculated via integration over the predicted head-side field map Â along the line segment from

the head center to the side points:

ŝi,j =
∑

o∈{r,l}

∫ u=1

u=0

Â(po(u)) ·
x̂o − x̂h

||x̂o − x̂h||2
du, (9)

where x̂h and x̂o represent the prediction localization of head center and body side (right or left),
respectively, and po(u) indicates the interpolations along the line segments. Then, the ĩ-th head with the
maximum combined score is selected as the registered head detection for the j-th pedestrian detection as
follows:

ĩ = argmax
i∈P

j

h

(ŝih + ŝi,j), (10)

where ŝih is the detection score of head candidate i. Finally, the prediction boxes of the j-th pedestrian
are banded as (bb, bh)j .

While the head and full body detections are aligned, we propose to fuse their detection scores to
improve the performance of the pedestrian detection. Let sb = (s0b , s

1
b) and sh = (s0h, s

1
h) specify the raw

outputs of the detections from PDNets and HDNets without softmax, where the superscript indexes the
background (0) and object (1). The final pedestrian detection score s̃ is re-scored by fusing these raw
scores with a softmax operation as [49]

s̃ =
exp(s1b + βh · s1h)

exp(s1b + βh · s1h) + exp(s0b + βh · s0h)
, (11)

where βh is a hyperparameter that controls the balance between the body and head detections. In this
way, the proposed detector can increase the detection score of occluded pedestrians and improve the
detection robustness.

3.5.3 Augmented NMS algorithm

To further explore the role of the head for NMS, this subsection investigates the occlusion cases of the
head and full body with the ground truths of standing humans (w/h<0.5) in CrowdHuman [9]. First,
the approach performs NMS with different IoU thresholds on head and full body ground truths, and the
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Figure 5 (Color online) (a) Recall of the ground truths using the traditional NMS algorithm with different thresholds. (b) False

positive rate of the generated proposals based on the ground truths with different disturbances. 1x: variance of the detections and

the corresponding ground truths.

recall rate under different conditions are reported in Figure 5(a). Even though the detection is perfect,
numerous missing detections persist when only the body bounding boxes are used during evaluation.
Second, to show the abilities of the head-based and body-based NMS algorithms to suppress the false
positives around the ground truths during postprocessing, this approach generates 10 proposals around
each respective head and body ground truth based on a Gaussian distribution with an identical variance.
The variance is computed based on the true body/head detections of MSCNN [3] on the evaluation
subset of CityPersons [17]. The final detections are generated through an NMS process with different IoU
thresholds and evaluated using an IoU threshold (0.5). The false positive rates are shown in Figure 5(b).
The results show that using only the head-based NMS process may introduce more false positives.

To effectively distinguish each individual from nearby persons, this paper proposes an augmented
NMS criterion using both the body and head detections. The traditional NMS algorithm greedily selects
a highest scoring detection and deletes the nearby neighbors with overlap exceeding a threshold. Similarly,
the augmented NMS algorithm firstly selects the highest scoring detection bm = (bmb , bmh , s̃m) with the
fused score. Then, a new measurement is employed to decide whether to delete the close-by detections
bn. Let (bmh , bmb ) specify the head and full body boxes of the m-th pedestrian with highest score and
(bnh , b

n
b ) indicate the close-by n-th pedestrian. The proposed algorithm introduces two thresholds θh and

θb and performs NMS on the head and full body detections with these two thresholds, respectively. The
close-by n pedestrian detection is deleted if

IoU(bmh ,hn
h) > θh or IoU(bmb , bnb ) > θb. (12)

In practice, θb is higher than the threshold in traditional NMS. Considering that there are some
pedestrian boxes with no matched head detection, the traditional NMS algorithm is employed on the
neighbors if any pedestrian among them has no corresponding head detection. These methods can
effectively delete the redundant detections and retain the heavily overlapped detections.

4 Experiments

4.1 Datasets

CityPersons. CityPersons [17] is a pedestrian dataset, which is a subset of the semantic segmentation
dataset CityScapes [50]. It consists of 5000 images recorded on streets from 27 cities and a total of
∼ 35000 annotated persons with an additional ∼ 13000 ignored regions. All of the experiments involving
this dataset are conducted on the training (2975 images)/validation (500 images) sets for training and
testing.

Head annotation on CityPersons. All of the pedestrians in CityPersons [17] are cropped, and the
other categories of persons, for instance, sitting persons, riders, and fake humans, are ignored. Then,
these cropped patches are resized into a uniform shape and presented to the annotators in a random
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Table 1 Evaluation criteria for different conditions

Subset Height Occlusion Occlusion-Peds

Reasonable (Rea.) [50, inf) [0, 0.35] –

Partial [50, inf) (0.1, 0.35] –

Heavy [50, inf) (0.35, 0.8] –

Inter [50, inf) (0.1, 0.35] [0, 0.1)

Crowd [50, inf) (0.1, 0.35] [0.1, 1]

order. The pedestrian head is annotated following the same protocol [51] by drawing a line from the
middle of the head top to the middle of the head bottom. Considering that the aspect ratio of all head
annotations from CrowdHuman [9] is approximately equal to 1, a head bounding box is automatically
generated such that its center coincides with the center point of the drawn line and its width and height
are equal to the vertical height of the drawn line. Finally, these annotated head bounding boxes from
the cropped patches are mapped back to the original images.

CrowdHuman-Ped. Considering that the human instances in CrowdHuman [9] are in different
postures and recorded from different camera poses, to evaluate different pedestrian detectors, we select
a subset from CrowdHuman that only consists of pedestrians and define it as CrowdHuman-Ped. For
convenience, we select the subset from CrowdHuman using two simple criteria and add all of the remaining
humans into the ignore regions. The criteria are as follows:

(1) The aspect ratio w/h of each full body box should be smaller than 0.5.

(2) The area of the head box should be smaller than 1/10 of the area of the full body box.

Finally, we collect 19370 images and 273000 pedestrian instances with an additional 293000 ignore
regions. In the CrowdHuman-Ped dataset, more than 62.75% of pedestrian annotations are overlapped
by other annotations with IoU above 0.3. In the following experiments, the detectors are trained and
evaluated on the training/validation sets with the new annotations.

4.2 Evaluation metric

For evaluation, this paper follows the standard Caltech evaluation metric [52]: log-averagemiss rate (MR),
which is computed by averaging the miss rate over nine false-positive-per-image rates evenly spaced in
log-space in the range of [10−2, 100]. To analyze the performance of pedestrian detectors under different
conditions, different evaluation protocols [6, 52] are also adopted based on the pedestrian height and
occlusion level. Our method mainly focuses on the people with height greater than 50 pixels in an image.
Following the usual approach [52], the cases are subdivided between partial occlusion (1%–35% of area
occluded) and heavy occlusion (35%–80% occluded). More details are shown in Table 1.

4.3 Implementation details

The original images are resized into multiple scales, and multiple patches (640×640) are randomly cropped
from the resized images as the training samples. Multiple scales and multiple patches are commonly used
by most of the related methods. It will not bring huge impact to our performance, but can be the icing
on the cake. The parameters of the backbone are initialized with VGG16 [45]. HNets and PNets are first
trained with randomly sampled negative samples and fine-tuned by performing bootstrapping in negative
selection. λh and λb are both set to 1. During joint optimization, αh is set to 1, and αaff is set to 0.1.
Stochastic gradient descent is used to optimize the model, with 10000 iterations for the first training
procedure and 25000 for fine-tuning. Another 25000 iterations are employed for the joint optimization.
The learning rates in all processes are initialized as 0.0001 and decay 10× after every 10000 iterations.

While training the three branches, different measurements of ignore regions [52] are adopted. For the
body detection branch, the regions of sitting persons, riders, fake humans, etc. are treated as ignored
pedestrian regions. During the training of the head detection branch, in addition to the ignored pedestrian
regions, the regions of the pedestrians with no annotated heads are also added into the ignored regions.
For the affinity prediction branch, an ignored region selection strategy identical to that for the head
detection task is adopted.
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Table 2 Body detection evaluation on CityPersons

Method Rea. Partial Heavy Crowd Inter

Adapted FRCNN [17] 15.14 16.31 54.89 16.49 14.99

B-Net-D 14.72 13.56 55.48 14.29 10.06

Head⇒Ped(Res) 42.44 44.04 66.90 42.94 38.92

Head⇒Ped(Anchor) 43.62 36.62 67.96 33.94 28.19

Table 3 Head detection evaluation on CrowdHuman

Head height [0, inf) [0, 20] (20, 40] (40, inf)

H-Net-D 61.55 74.18 42.44 25.04

RetinaNet [40] 60.64 – – –

FPN [31] 52.06 – – –

4.4 Ablation study

4.4.1 Different branches

We evaluate the effectiveness of different branches on CityPersons [17] and CrowdHuman [9] datasets.
In addition, we measure the influence of the head score for pedestrian detection and evaluate different
head-body assignment methods. B-Net-D denotes a pedestrian detector that includes only the full body
detection branch. It is treated as the baseline for evaluating the proposed detector. H-Net-D represents
a head detector with only the head detection branch.

Body detection. As shown in Table 2, compared with the state-of-the-art two-stage detector
(Adapted FRCNN [17]), B-Net-D achieves better performance overall in various conditions, which demon-
strates the effectiveness of our full body detection branch. Additionally, we attempt to research whether
the head detection is adequate for pedestrian detection. We generate the body detections using the head
detections in two ways. Head⇒Ped(Res) denotes that the pedestrian bounding box is generated with a
preset transformation from a detected head box. Head⇒Ped(Anchor) represents that we select the pedes-
trian proposals based on the detected head through the anchor-pair as the final pedestrian detections.
The detections generated by these two methods are all scored using the corresponding head scores. As
shown in Table 2, both of these methods perform worse (42.44 and 43.62 vs. 14.72 MR under reasonable
conditions) than the straightforward pedestrian detector. The reason for this is that the head detection
module is insufficient to detect relatively small objects and easily generates false positives. In short, the
transformation from head to body is too weak to generate a reliable pedestrian detection. Considering
that building a fine pedestrian detector is our primary goal, we treat B-Net-D as our baseline and refine
the pedestrian detection through the head.

Head detection. Considering that the head appearance of humans in CrowdHuman is similar to
that of the pedestrians in CrowdHuman-Ped, the CrowdHuman dataset enables some evaluation of head
detection in previous studies. Therefore, we perform the head detection evaluation on the CrowdHuman
validation set. The results are shown in Table 3. In the CrowdHuman benchmark [9], FPN [31] and
RetinaNet [40] are used as two baseline detectors to represent the two-stage algorithms and single-stage
algorithms with ResNet-50 [53]. At first sight, one may be surprised at the difference between the two-
stage method and the one-stage method. However, it is normal. The two-stage method mainly functions
through region proposal to generate a large number of potential bounding boxes, which may contain
objects to be detected, and then uses the classifier to determine whether each bounding box contains
objects. The one-stage method treats the object detection task as a regression problem and does not
use sliding windows or region proposal. Actually, the classifier can acquire the local information of
the image, while the one-stage method obtains information from the whole image during training and
testing, which is more prone to error in object location. Thus, the results of small objects would not be
good, especially for dense pedestrian heads. Compared with the one-stage method, our head detector
achieves similar performance (61.55 MR) as RetinaNet [40] (60.64 MR) under the overall conditions.
Additionally, we also show the performance of the head detector under different scale conditions. As
shown in Table 3, the performance of the head detector is promoted rapidly when detecting larger-scale
heads. An important reason for this is that the smaller heads lack effective features for reliable detection
because of the smaller receptive fields. To alleviate the erroneous guidance for pedestrian detection, we
ignore the head detections with height smaller than 20.
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(a) (b) (c)

Figure 6 (Color online) Head and full body detections and head-side affinity predictions. The red dashed boxes indicate the

missing detections. The red solid box indicates the false detection. The green boxes represent the body detections by B-Net-D.

The yellow boxes are the head detections by H-Net-D. The color in (c) represents the orientation of the regressed vector in the

head-side affinity field. Red: left orientation. Blue: right orientation.
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Figure 7 (Color online) Pedestrian detection performance under different validation subsets with different βhs.

Affinity map prediction. We show the predicted affinity fields in Figure 6(c). The predicted affinity
field can effectively represent the location relationship between the head and body detections. It works
well under various scale conditions and indifferent occlusion cases. However, it inevitably fails when the
pedestrian is too small or under excessively heavy occlusion conditions.

We show the complementarity of these three tasks in Figure 6. In the first row, there are some missing
detections due to occlusion or the NMS process. However, the head detections provide a good guide to
recognize them, and the head-side affinity map provides a cue to associate the detected head with the
corresponding full body box. When the head detection branch fails, as shown in the second row, the
body detector can still provide reliable detection.

Fused score. We use an affinity-based method to assign the head and body detections and fuse the
detection scores with different βhs. The detection performance on CityPersons under different conditions
is shown in Figure 7. Increasing βh means that the final detection relies more on the head detection.
Larger βh is therefore good for detecting occluded pedestrians. However, an overly large βh decreases
the performance. Considering the performance under different conditions, we choose βh = 0.2 and adopt
this value in the following experiments.

Assignment evaluation. We assign the head detections to the body detections from B-Net-D using
three different modes and evaluate the effectiveness of these assignment methods on the CrowdHuman-
Ped validation dataset. The “Greedy-based” mode represents assignment of the detected head to the
body with the minimum distance from the preset head box. The position and size of the preset head
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Table 4 Different assignment modes on CrowdHuman-Ped

Method Accuracy Recall Rea. Heavy Crowd

B-Net-D – – 14.31 29.58 13.14

+Greedy-based 0.70 0.64 14.64 26.70 13.02

+Aug-NMS – – 14.32 25.29 11.97

+Anchor-pair-based 0.60 0.55 15.23 28.08 13.39

+Aug-NMS – – 15.05 26.78 12.53

+Affinity-based 0.96 0.56 13.65 26.46 12.14

+Aug-NMS – – 12.95 24.74 11.32

(a) (b) (c)

Figure 8 (Color online) Instance results of different assignment methods. Red box: missing or poorly assigned associations

of head and body. Green box: pedestrian detection. Yellow box: head detection. Blue dashed line: head-body assignment.

(a) Greedy-based; (b) Anchor-pair-based; (c) Affinity-based.

box are relative to the corresponding body box and calculated according to the value of the head and
full body ground truths in CrowdHuman-Ped. The performance under different conditions is reported in
Table 4. Considering that the head detection performance is poor for small-scale heads, we only consider
the pedestrian instances in which heads are larger than 20 pixels when measuring the accuracy and recall.

In Table 4, we can observe that the head-body assignment gains more obvious improvements in oc-
clusion cases. Among the three different assignment modes, the “Anchor-pair-based” mode performs the
worst. This is because the head detection from the corresponding anchor always results in a low score
and easily causes confusion with the heads of nearby pedestrians. This also can be seen from the low
accuracy score in Table 4. If the deviation of the body and the corresponding head is too great, then the
“Greedy-based” mode encounters difficulty in assigning the detection head box to the right body. Some
unsuccessfully assigned instance results are shown in Figure 8. The “Affinity-based” mode can accurately
assign the body and the corresponding head (as shown in Figure 8) and achieve better detection perfor-
mance under different conditions (as shown in Table 4). Moreover, when the augmented NMS algorithm
is used in the postprocessing, benefiting from the better alignment results, the “Affinity-based” mode
achieves more improvement under the heavy occlusion case.

4.4.2 Augmented NMS

We aim to find the best thresholds θh and θb for the pedestrian detector. We adopt the “Affinity-based”
pedestrian detector and calculate the MR on a subset selected from the CrowdHuman-Ped training set.
Considering that the annotated visible region in the subset is confused, we re-define the occluded region
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Table 5 Augmented NMS with head and body IoU thresholds

θh
θb

0.4 0.5 0.6 0.7 0.8

0.05 0.4041 0.3752 0.3666 0.3713 0.3716

0.10 0.3996 0.3658 0.3565 0.3616 0.3646

0.15 0.3984 0.3625 0.3534 0.3608 0.3660

0.20 0.3976 0.3611 0.3542 0.3649 0.3728

0.25 0.3975 0.3605 0.3553 0.3727 0.3857

Figure 9 (Color online) Comparison of different NMS algorithms. First row: traditional NMS approach. Second row: augmented-

NMS approach. Green box: body detection. Yellow box: head detection. Blue dashed line: head-body assignment.

of a pedestrian according to the region of maximum overlap with nearby pedestrians. The performance
is evaluated on the occluded subset wherein the pedestrians are occluded by more than 35%.

Considering that there are some body detections with no corresponding head detections, we adopt two
steps to carry out the augmented NMS process. (1) If one or two pedestrians in an instance pair have no
head detections, then we use the traditional NMS algorithm with a threshold 0.5 on the body bounding
box to suppress the nearby detections. (2) If both the pedestrians have head detections, then we adopt
the augmented NMS algorithm to reject the nearby detections. The results are shown in Table 5.

As shown in Table 5, θb = 0.6 and θh = 0.15 are the best configurations for the pedestrian detector.
Increasing or decreasing the thresholds will worsen the detection performance. θh is much smaller than θb
because the head is less occluded than the whole body. In the following experiments, we use the two-step
augmented NMS approach to acquire the final detections with the best threshold configuration. Some
instance results with different NMS approaches are shown in Figure 9.

4.5 Comparisons with state-of-the-art methods

4.5.1 CityPersons

We compare our detector with the state-of-the-art detectors under different occlusion levels. Table 6
summarizes the results on the CityPersons validation dataset. We mark our method as HAPNet†. All
the results refer to the corresponding papers or their result files. According to the MR results for subsets
with different occlusion degrees, our VGG16-based HAPNet achieves the best performance. Taking a
closer look, there is remarkable improvement for the Partial subset, Heavy subset and Crowd subset,
especially in the second bar. The algorithms in the second bar show the performance of the state-of-the-
art pedestrian detection under occlusion. OR-CNN [7] yields lower MR; however, our method offers a
value only 0.1% higher. Our method yields better results with respect to heavy occlusion: 1.4% lower
than that of OR-CNN. Moreover, although AdaptiveNMS [41] produces the same MR as our method,
the performance of our method on the Heavy subset is better than that of this method.
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Table 6 Pedestrian detection results for different conditions on the CityPersons validation set

Method Backbone Reasonable Partial Heavy Crowd

ATT-part [20] VGG16 16.0 – 56.7 –

Adapted FRCNN [17] VGG16 15.1 16.3 54.9 16.5

RepLoss [6] ResNet-50 13.2 16.8 56.9 13.5

OR-CNN [7] VGG16 12.8 – 55.7 –

AdaptiveNMS [41] VGG16 12.9 – 56.4 –

HAPNet†(ours) VGG16 12.9 13.6 54.3 12.6

Table 7 Results for different conditions on CrowdHuman-Ped

Method Reasonable Heavy Crowd

B-Net-D 14.31 29.58 13.14

HAPNet 12.95 24.74 11.32

(a) (b)

Figure 10 (Color online) Instance results of different detectors. (a) Results of B-Net-D (first row) and HAPNet on the

CrowdHuman-Ped dataset; (b) results of Adapted FRCNN [17] (first row) and HAPNet on CityPersons. Red dashed box: missing

detection. Green box: pedestrian detection. Yellow box: head detection. Blue dashed line: head-body assignment.

With regard to inference time, we get the result of 120 ms per image. Inference time (ms) is measured
on scale ×1 images, and the testing time was performed on GTX 1060. Although we use a three-branch
structure and propose corresponding modules, we rarely use per-element multiplication which reduce a
lot of expenses. Most of the time may be consumed in the head detection, because the one-stage method
is not robust enough to the small-scale object. PRNet [29] performs the experiments on 2 GTX 1080Ti
with 220 ms per image, and the BGCNet [33] is tested on the Tesla V100 with 156 ms per image. Our
proposed HAPNet performs well in the occlusion pedestrian detection, which is in accordance with our
intention that HAPNet is specifically designed to address the occlusion problem.

4.5.2 CrowdHuman-Ped

We have also evaluated HAPNet on our proposed CrowdHuman-Ped dataset. The results are shown in
Table 7. The fact that CrowdHuman-Ped consists of numerous crowd scenes makes it a challenge for
pedestrian detection. Compared with the baseline B-Net-D, our HAPNet achieves improvement with
respect to a reasonable subset (+1.36 MR) and achieves more significant improvement for occlusion cases
(+4.84 and +1.82 MR for heavy and crowd conditions, respectively).

4.6 Instance results

We show some instance results of different pedestrian detectors on CrowdHuman-Ped and CityPersons.
As shown in Figure 10, B-Net-D and Adapted FRCNN [17] easily miss the heavily occluded ground truths.
One reason for this is that the occluded pedestrians cause low detection scores, and another reason is that
the detections nearby are easily suppressed by the traditional NMS algorithm. Due to the introduction
of head detection and the augmented NMS algorithm, our detector exhibits better performance during
detection of occluded pedestrians.
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5 Conclusion

In this paper, we explore the connection between the head and the body by proposing HAPNet. The net-
work is designed for the pedestrian detection task, especially for occluded cases. Through a three-branch
detection structure with a shared backbone, we show the robustness and the validity on CityPersons and
CrowdHuman-Ped. Specifically, the proposed head-side affinity module exploits the inherent structure of
the head-body pair, effectively expressed as the association between the two parts. Moreover, during the
postprocessing, the re-scoring module and the augmented NMS algorithm are both designed for matching
the head-body pair in order to achieve an effective trade-off of reducing false positives and retaining the
overlapped pedestrians. In summary, the proposed method represents an innovation in the network and
postprocessing, and its effectiveness is proven by the experimental results.
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