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Dear editor,

The idea to store information on DNA has gained significant

attention, due to the explosion of the demand for current

data centers and storage techniques in recent years. DNA

molecules are well known for their superior information den-

sity and lifetime [1], which are far beyond what current tapes

and discs could achieve. Notice that the DNA storage prob-

lem is considered as a channel coding problem instead of

a source coding one since the errors in data recovery are

non-negligible in DNA-based storage. Besides the substitu-

tions, these errors include insertions, deletions, permutation

of strands, and loss of ordering information [2]. Hence it

is necessary to develop error-correcting codes for reliable

and efficient storage, such as indexed-based coding [3] to

recover the disordered information, anchor-based coding [4]

against the substitutions. Moreover, several studies con-

cern about an arbitrarily-permuted parallel DNA channel

and corresponding concatenated codes for error correction.

Lenz et al. [5] provided a multi-draw channel, under which

the overall capacity and achievable code rate [6] are stud-

ied. However the achievable error-correcting performance

remains unclear, and it lacks numerical results with engi-

neering competitive error-correcting families like polar and

low density parity check (LDPC) codes.

Inspired by [5], we consider a specific concatenated

codes framework with a pre-decoder and analyze its error-

correcting performance under the DNA-based multi-draw

channel. More precisely, we present the Forney’s error ex-

ponent [7] and the upper bound on the achievable maximal

overall rate of this code concatenation. Furthermore, the

capacity achievability of this concatenated family is verified

through a practical combination with polar codes.

DNA storage channel. As the channel in [5], we model

the DNA multi-draw channel with substitution errors only

to simplify the derivation. The model has an input strands

set XM = {X1,X2, . . . ,XM}, where Xi ∈ F
L
2 , 1 6 i 6 M

represents a binary vector of length L. From the input, a

total of N strands are drawn with replacement, each uni-

formly at random, and received with bit flip rate p, result-

ing in an unordered output set YN = {Y1,Y2, . . . ,YN },

where each output sequence is Yj = XIj ⊕ Ej , where Ij

denotes i.i.d. uniform random draw with P(Ij = i) = 1
M

,

and Ej ∈ F
L
2 denotes independent error vector consisting

of L i.i.d. Bernoulli entries with flip rate p. Furthermore,

the coverage depth is denoted by c = N
M

, i.e., the aver-

age number of times that each sub-block has been drawn.

The exact number of times that the i-th input sequence Xi

has been drawn is denoted by Di with realization d. The

Di sampled sequences, derived from the i-th input Xi, are

clustered into subset Zi according to their ordering informa-

tion. After that the cluster gets retrieved to X̂i by bit-wised

majority decision.

Coding scheme.

• Encoding. The original data sequences come from a

data archive, each of which is a q-ary vector with length

K. A piece of message h ∈ FK
q is first encoded via an

[M,K,dout] maximum distance separable (MDS) code Cout
over Fqz , whose code rate R = K

M
. Secondly, the binary

unique representation of these sequences are encoded via an

[L(1−β), k, din] inner code Cin over F2. Thirdly, passing the

index encoder increases the code length to L and output the

strands set XM , resulting in the inner code rate r = k
L
.

• Clustering. Under the assumption that labels are trans-

mitted error-free, the receiver is able to construct i-th exact

cluster without errors according to the labels Ij = i. The

expectation of the cluster size equals to coverage depth, i.e.,
1
M

∑M
i=1 Di = c.

• Decoding. After clustering, we obtain M clusters and

the distribution of their sizes, dM . We use a minimum dis-

tance decoder which conducts bit-wise majority decision on

i-th cluster if the size satisfies d = |Zi| > θ, and discards

otherwise, where θ is artificially controlled to exclude the

symbols from bad sub-channels. These discarded clusters

are treated as erasures and corrected by the outer MDS code.

Then the estimated output {X̂i}M1 is decoded by indexing,
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inner and outer decoders successively, finally recovered to

the estimated message ĥ.

Error exponent. By combining the above inner and

outer codes, we obtain a specific DNA error-correcting code

[ML,Kk,> doutdin] with overall code rate R = Rr = Kk
ML

,

which we denote as Ccont. With the aforementioned coding

scheme, we give the statement of error exponent of Ccont.

Theorem 1. There exists Ccont with overall rate R, inner

rate r, rate loss β due to index coding, coverage depth c and

a pre-decoding parameter θ, whose probability of decoding

error Perr (Ccont) is upper bounded by

−
logq Perr (Ccont)

LM
> ED(p⋆,R)− o(1), (1)

where p⋆ =
∑θ

i=θ/2 Bθ,p(i) and

ED(p⋆,R)=max
r6C

1

2
EG(p⋆, r(1−β))





∑

d>θ

pc(d) −
R

r(1 − β)



,

C =
∞
∑

d=0

pc(d)Cd − β
(

1− e−c
)

,

Cd = 1 +
d

∑

i=0

Bd,p(i)log

(

Bd,p(i)

Bd,p(i) +Bd,p(1− i)

)

.

EG(p, r) is Gallager error exponent of bit flip rate p and

code rate r. C is the upper bound of the capacity of

the DNA multi-drawing channel, and the capacity of sub-

channel only concerns about the drawing times d, hence

we denote it by Cd. Meanwhile pc(d) = e−ccd/d! and

Bθ,p(i) =
(θ
i

)

pi(1−p)θ−i refer to the probability mass func-

tion of Poisson and binomial distribution, respectively.

Remark 1. Notably ED(p⋆,R) describes the performance

of the pre-decoding threshold θ on the error exponent. As

follows we obtain the corollary on the optimal code rate

choices intuitively by satisfying ED(p⋆,R) > 0. If we use

some optimal pre-decoder process, i.e., the threshold of clus-

ter size at the decoder is set to θ = min {d ∈ N : Cd > r},

the corollary coincides with the Theorem 1 in [6] without

consecutive strands.

Corollary 1. Consider the setting of Theorem 1, there

exists a kind of concatenated codes with overall rate R, in-

ner rate r, rate loss of indexing β, and coverage depth c,

whose maximum achievable code rate is given by

R 6
∑

d>θ

pc(d)r(1 − β). (2)

Numerical results. To verify the capacity-achievable ca-

pability of the concatenated codes in such a DNA multi-

drawing channel, we compare the channel capacity from [5]

with the theoretical upper bound of code rate given in Corol-

lary 1. Furthermore, the numerical results of the maxi-

mum achievable rate of the RS-polar codes are also pre-

sented. In [8], this family is provably capacity-achievable in

arbitrarily-permuted parallel channels.

We fix p = 0.1, β = 0.03, optimal θ in Remark 1, and an

RS-polar family with adjustable inner rates which combines

27-length RS and 26-length interleaved polar codes. In Fig-

ure 1 the overall rates/capacity are plotted over the inner

code rates under different coverage depth c. The dashed line

stands for the theoretical achievable overall rate R and the

circle line represents the rate of simulation results RRS-polar.

The channel capacity is illustrated by the dash-dotted lines.

In both cases of c, the achievable rates of RS-polar codes are

close to (2). Besides, the RS-Polar codes present a faster

descent than the theoretic bound on code rates, due to the

finite code length and non-negligible errors in sub-blocks.

Given larger c, the overall rate increases obviously, e.g., with

c = 10, RRS-polar approaches 0.8. Furthermore, the achiev-

able code rate of code concatenation appears a large gap in

comparison to the channel capacity when c is small, while

the gap converges to 0 with increasing coverage depth. We

conclude the upper bound on maximal achievable overall ra-

tes can approach the channel capacity with large enough c.

0.8

0.6

0.4

0.2

0.0

O
v
er

al
l 

ra
te

 R

0.2 0.4 0.6 0.8 1.0

Inner rate r

Capacity (c=3) Capacity (c=10)

R (c=3) R (c=10)

R
RS-polar

 (c=10)R
RS-polar

 (c=3)

Figure 1 (Color online) Comparison between capacity, theo-

retical, and specific achievable code rates.

Conclusion. Under this multi-drawing channel model,

we present the upper bound on the error probability and the

maximal achievable overall rate of this concatenated scheme.

Moreover, given large enough coverage depth, the achievable

overall rate of Ccont is tight enough in comparison with the

channel capacity.
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