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Dear editor,

Recently, finite-dimensional systems with infinite-

dimensional actuator or sensor dynamics have drawn the at-

tention of researchers worldwide. Many real-world systems

can be modeled as ordinary differential equation (ODE)-

partial differential equation (PDE) cascade systems, such

as traffic flows, chemical reactor processes, heat exchangers,

and oil well drilling. In this study, we consider the problem

of compensating the actuator dynamics modeled by the

Euler-Bernoulli beam (EBB) equation.

Compared with existing results, such as those in [1–3],

the considered problem is more challenging because the con-

trols act only on the beam equation. As stated in [4], PDE

backstepping is hard to apply to an EBB except for the spe-

cial case where the EBB equation with a proper boundary

can be converted into a Schrödinger equation [5]. There-

fore, conventional PDE backstepping that was used in [6–8]

cannot be directly used for beam dynamics compensation.

Herein, we find a novel transformation to compensate for

the EBB dynamics. In contrast to the conventional PDE

backstepping method, the kernel of the proposed method

always satisfies an ODE, which is much easier than PDE

and is analytically solvable. The problem is described by

the system:



























Ẋ(t) = AX(t) + B(wx(0, t), w(0, t))T,

wtt(x, t) +wxxxx(x, t) = 0,

wxxx(0, t) = 0, wxx(0, t) = 0,

wxx(1, t) = u1(t), wxxx(1, t) = u2(t),

(1)

where x ∈ (0, 1), t > 0, A ∈ Rn×n, u1 and u2 are

the two scalar control inputs for the entire system, and

B = [B1 B2] ∈ Rn×2 represents the interconnection. This

model has wide practical engineering applications, such as

in helicopter rotor blades, space aircraft, space structures,

and turbine blades. The system (1) can describe the sta-

bilization problem of a finite-dimensional system through a

communication medium such as a flexible robotic arm. The

controls act on one end of the robotic arm and the other end

is connected to the control plant. Thanks to the boundary

conditions, the connection at the left end x = 0 can move

freely. This configuration is more in line with practice.

Our objective is to stabilize the cascade system exponen-

tially in the state space Rn×H2(0, 1)×L2(0, 1) via feedback

controls u1 and u2. To this end, we propose the following

transformation:

X̃(t) = X(t) +H3w(1, t) +H4wx(1, t)

+

∫

1

0

H1(x)w(x, t) +H2(x)wt(x, t)dx, (2)

where H1, H2 : [0, 1] → Rn are vector-valued functions and

H3, H4 ∈ Rn are vectors. All of these are unknown and will

be determined later. Finding the derivative of X̃(t) along

the control plant (1) and selecting H1 and H2 specially such

that














H2xxxx +AH1 = 0, H1 −AH2 = 0,

H2xxx(1) = c2H2(1) + AH3,

H2xx(1) = −c1H2x(1) −AH4,

(3)

we have

˙̃
X(t) = AX̃(t) −H2(1)[u2(t) − c2w(1, t)]

+H2x(1)[u1(t) + c1wx(1, t)] +H3wt(1, t)

+H4wxt(1, t) + [B1 +H2xx(0)]wx(0, t)

+ [B2 −H2xxx(0)]w(0, t). (4)

Furthermore, assume that

{

H3 = k2H2(1), H4 = k1H2x(1),

B1 +H2xx(0) = 0, B2 −H2xxx(0) = 0.
(5)

Eq. (4) is thus

˙̃
X(t) = AX̃(t) −H2(1)[u2(t) − c2w(1, t)− k2wt(1, t)]

+H2x(1)[u1(t) + c1wx(1, t) + k1wxt(1, t)]. (6)

Thus, the controllers can be designed by stabilizing the X̃-

system as

{

u1(t) = KT

1 X̃(t) − c1wx(1, t) − k1wxt(1, t),

u2(t) = KT

2 X̃(t) + c2w(1, t) + k2wt(1, t),
(7)
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where ci, ki > 0, i = 1, 2 and K1, K2 are column vectors

such that the matrix A + H2x(1)KT

1
− H2(1)KT

2
is a Hur-

witz matrix. It follows from Lemma 1 in Appendix A that

system (3) and (5) admits a unique solution. Consequently,

we obtain the following system:


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








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















˙̃
X(t) = [A+H2x(1)KT

1
−H2(1)KT

2
]X̃(t),

wtt(x, t) + wxxxx(x, t) = 0,

wxx(0, t) = 0, wxxx(0, t) = 0,

wxx(1, t) = u1(t), wxxx(1, t) = u2(t),

u1, u2 are given by (7),

(8)

which is a cascade system of two exponentially stable sys-

tems (see [9]). In Lemma 4 of Appendix B, we show that this

cascade system is exponentially stable in Rn × H2(0, 1) ×

L2(0, 1). In terms of the transformation (2), we obtain the

control laws:
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




































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























u1(t) = KT

1

[

X(t) +

∫

1

0

H1(x)w(x, t)dx

+

∫

1

0

H2(x)wt(x, t)dx+H3w(1, t)

+H4wx(1, t)

]

− c1wx(1, t) − k1wxt(1, t),

u2(t) = c2w(1, t) + k2wt(1, t) +KT

2

[

X(t)

+

∫

1

0

H1(x)w(x, t)dx+H3w(1, t)

+

∫

1

0

H2(x)wt(x, t)dx+H4wx(1, t)

]

.

(9)

Theorem 1. Let ci, ki > 0, i = 1, 2, A ∈ Rn×n and

B = [B1 B2] ∈ Rn×2. Suppose that Hj , j = 1, . . . , 4 sat-

isfy (3) and (5). Suppose that the pair (A,B) is control-

lable and σ(A) ⊂ {λ ∈ C | Reλ > 0}. Then, there exists a

[K1 K2] ∈ Rn×2 such that the matrix A + H2x(1)KT

1
−

H2(1)KT

2
is Hurwitz matrix. Moreover, for any initial

state (X(0), w(·, 0), wt(·, 0)) ∈ Rn ×H2(0, 1)×L2(0, 1), the

closed-loop system (1) and (9) admits a unique solution

(X,w,wt) ∈ C([0,∞);Rn ×H2(0, 1)×L2(0, 1)) that decays

to zero exponentially in Rn × H2(0, 1) × L2(0, 1) as time t

goes to infinity.

The proof of Theorem 1 and numerical simulations are

provided in Appendixes B and D, respectively.

Conclusion. In this study, a new approach is proposed

for the stabilization of a finite-dimensional system with PDE

actuator dynamics by stabilizing an ODE-EBB cascade sys-

tem. Different from the conventional PDE backstepping

method, the kernel function of the proposed method is gov-

erned by an ODE, which is typically much simpler than a

PDE. As a result, we obtain the feedback laws explicitly.

We will apply the new approach to compensations for wave

dynamics and time delay dynamics in future studies.
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