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Dear editor,

Pseudorandom number generator (PRNG) is very important

for the randomness study in some cryptographic algorithms.

A PRNG is a deterministic function that takes a uniform

random bit string as input and outputs a longer bit string.

The pseudorandom sequence cannot be distinguished from

a uniform random string in any polynomial time. H̊astad

et al. [1] showed that PRNGs exist if and only if one-way

functions exist. In what follows, we mainly focus on prov-

ably secure PRNGs. Classical PRNGs are based on the

hardness of the discrete-log problem (DLP) or the integer

factorization problem. Nevertheless, Shor [2] provided an

efficient quantum algorithm to solve the DLP and the inte-

ger factorization problem in polynomial time, which makes

the PRNGs unsafe with the advent of quantum computers,

thus attracting considerable attentions in constructing effi-

cient quantum-resistant PRNGs. Up to now, PRNGs based

on lattices [3] and coding theory [4] have been proposed.

Note that Jao et al. [5] proposed a Diffie-Hellman proto-

col based on supersingular elliptic curve isogenies and Biasse

et al. [6] showed that computing supersingular isogenies over

an extension field Fp2 needs quantum exponential time, it is

interesting to construct the quantum-resistant PRNG based

on supersingular isogenies.

Decisional supersingular product (DSP). Jao et al. [5]

proposed the computational supersingular isogeny problem,

the computational Diffie-Hellman problem and the deci-

sional Diffie-Hellman problem based on supersingular iso-

genies. Galbraith et al. [7] presented a DSP problem, which

is a variant of the Diffie-Hellman assumption. The explicit

description is as follows.

Let G be a polynomial algorithm that takes 1λ as input

and outputs (Fp2 , E0, (PA, QA)) where p = ℓ
eA
A

l
eB
B

f −1 is a

large prime such that ℓ
eA
A

≈ ℓ
eB
B

, and PA, QA are two inde-

pendent points of order ℓ
eA
A

on a random curve E0 over Fp2 .

E0, EB are two supersingular elliptic curves over Fp2 such

that there exists an isogeny φB : E0 → EB of degree ℓ
eB
B

.

Suppose φB(PA) and φB(QA) are the isogenous points for

the generator points PA, QA ∈ E0[ℓ
eA
A

] under the mapping

φB, respectively. Consider the two distributions of pairs

(EA, EAB) and (E′

A
, E′

AB
), respectively. The first distribu-

tion for the pair (EA, EAB) is that sA is chosen at random

in the set {1, . . . , ℓ
eA
A

−1} such that EA
∼= E0/〈PA+sAQA〉

and EAB
∼= EB/〈φB(PA) + sAφB(QA)〉. The second dis-

tribution for the pair (E′

A
, E′

AB
) is that E′

A
is chosen at

random among the curves having the same cardinality as

E0, and φ′ : E′

A → E′

AB is a random ℓ
eB
B

-isogeny.

The problem is given (E0, EB) and the auxiliary

points PA, QA, φB(PA), φB(QA) plus a pair (EA, EAB) (or

(E
′

A, E
′

AB)), to determine from which distribution the pair

is sampled.

The construction of pseudorandom generator based on

supersingular isogenies. The public parameters in Algo-

rithm 1 are a finite field Fp2 with a large prime p =

ℓ
eA
A

ℓ
eB
B

f−1, an initial supersingular curve E0 over Fp2 , and

two pairs of independent points (PA, QA) of order ℓ
eA
A

and

(PB , QB) of order ℓ
eB
B

on E0. Algorithm 1 takes as input

a seed s0 ∈ {0, 1}
λ
2 with ⌈log2 p⌉ = λ, an upper bound N

of pseudorandom numbers such that log2 N 6 log2⌈
p
12

⌉ and

their numbers n, and outputs n pseudorandom numbers,

which are stored in the set L.

Algorithm 1
∑

n :
(

{0, 1}
λ
2 , [0, N − 1], F

E0,PA,QA,ℓ
eA
A

,

FEB,φB(PA),φB (QA),N , s0
)

Require: Fp2 , (E0, PA, QA, PB , QB), s0, N,n.

Ensure: L.

1: r0 ← SHA3(s0, N) mod ℓ
eB
B

;

2: RB = PB + r0 ·QB ;

3: φB : E0 → EB
∼= E0/〈RB〉;

4: Compute φB(PA) and φB(QA);

5: ∅ ← L;

6: for k = 1 to n

7: sk ← F
E0,PA,QA,ℓ

eA
A

(sk−1);

8: rk ← FEB,φB (PA),φB(QA),N (sk);

9: Add rk to L;

10: Return L.
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The standard SHA3 algorithm in Step 1 takes as in-

put s0 and the modulus N , and outputs a secret value r0.

Steps 2 and 3 compute a kernel generated point RB and

an ℓ
eB
B

-isogeny φB which corresponds to the kernel 〈RB〉.

Step 4 evaluates two points PA and QA under the isogeny

φB . Steps 1–4 can be precomputed, because these steps are

not included in the iterative process described in Steps 6–

9. Furthermore, EB, φB(PA) and φB(QA) are only used as

the fixed parameters of function FEB,φB(PA),φB(QA),N (sk)

in Step 8. Step 5 creates a set L storing pseudorandom

numbers. Steps 6–9 first iteratively generate each inter-

nal state sk by the function F
E0,PA,QA,ℓ

eA
A

(sk−1), and

compute each pseudorandom number rk by the function

FEB ,φB(PA),φB(QA),N (sk), and then add it into the set

L. The function F
E0,PA,QA,ℓ

eA
A

(sk−1) is defined by tak-

ing as input an internal state sk−1 and public parame-

ters E0, PA, QA, ℓ
eA
A

, computing the kernel generated point

RA = PA + sk−1 · QA and the isogeny φA : E0 → EA

which corresponds to the kernel 〈RA〉, and then outputting

sk such that sk = a′||b′ mod ℓ
eA
A

where j(EA) = a′ + b′ · i.

The computation of function FEB ,φB(PA),φB(QA),N (sk) is

similar to that of F
E0,PA,QA,ℓ

eA
A

(sk−1). The difference is

that the function F
E0,PA,QA,ℓ

eA
A

(sk) is used to change the

internal state while the function FEB,φB(PA),φB(QA),N (sk)

is used to generate pseudo-random numbers (thus we can

also call it output function). Both of them are based on

computational supersingular elliptic curve isogenies prob-

lem which lays the security foundation of the PRNG
∑

n.

Nevertheless, the security of the PRNG can be based on the

weaker assumption, i.e., the DSP assumption, which will be

proved later.

Remark 1. Note that the assumption log2 N 6 log2⌈
p
12

⌉

above is necessary, which can ensure that these numbers

represented j-invariants with length of 2 log2 p bits, are ap-

proximately uniformly distributed in the set {0, . . . , N − 1}

under the action of modulo N , because there are about

log2⌈
p
12

⌉ supersingular j-invariants over Fp2 . On the condi-

tion of log2 N > log2⌈
p
12

⌉, there might be some numbers

in the set {0, . . . , N − 1} that have no corresponding j-

invariants mapping to themselves under the action of mod-

ulo N . Upon log2 N > 2 log2 p, our PRNG is easily broken

by the adversary distinguishing the random numbers gener-

ated by the scheme
∑

n from those chosen randomly in the

set {0, . . . , N − 1} by the supersingularity.

Indistinguishability. For the convenience of the proof

of the scheme
∑

n :
(

{0, 1}
λ
2 , [0, N − 1], F

E0,PA,QA,ℓ
eA
A

,

FEB ,φB(PA),φB(QA),N , s0
)

, we first consider the sub-

scheme Πn of
∑

n that outputs random supersingular

curves, namely,

Πn : ({0, 1}
λ
2 , [0, N − 1], F

E0,PA,QA,ℓ
eA
A

,

GEB ,φB(PA),φB(QA), s0),

where the output function GEB ,φB(PA),φB(QA) can be de-

fined by computing RABk = φB(PA) + skφB(QA), φABk :

EB → EABk
∼= EB/〈RABk〉, and rk = EABk, for k =

1, . . . , n. We first consider the indistinguishability of Πn,

then show the indistinguishability of Σn.

Theorem 1. If there exists a polynomial time algorithm

that distinguishes the output of Πn from the sequence which

is generated by choosing n random curves with the same car-

dinality as the initial curve in Πn and computing random

l
eB
B

-isogenies with the advantage of ε, then the DSP prob-

lem can be solved in polynomial time with the advantage

of ε
n
.

Proof. Denote the sequence Z0 = (E∗

AB1,0, . . ., E
∗

ABn,0)

which is generated by choosing n random curves with

the same cardinality as the initial curve in Πn and com-

puting random l
eB
B

-isogenies, and the sequence Zn =

(E∗

AB1,1, . . . , E
∗

ABn,1) which is generated by Πn. If there

exists a polynomial time algorithm D that distinguishes Zn

from Z0 with the advantage of ε, that is,

|Pr[D(Z0) = 1]− Pr[D(Zn) = 1]| > ε.

Owing to the classical hybrid argument as in [8],

|Pr[D(Zk) = 1]− Pr[D(Zk+1) = 1]| >
ε

n
,

where Zk = (E∗

AB1,0, . . . , E
∗

AB(k−1),0
, E∗

ABk,1,

E∗

AB(k+1),1
, . . . , E∗

ABn,1) and Zk+1 = (E∗

AB1,0, . . .,

E∗

AB(k−1),0
, E∗

ABk,0, E
∗

AB(k+1),1
, . . . , E∗

ABn,1). The prob-

ability is taken not only over internal coin flips of D but

also over the choice of k.

Now, we show how to solve the DSP problem us-

ing the distinguisher D as the building block. Let

((E0, E∗

B), (PA, QA, φ∗

B(PA), φ∗

B(QA)), (E∗

A, E∗

AB,b
)) be a

DSP instance. The distribution of the pair (E∗

A
, E∗

AB,1) is

that sA is chosen by computing the j-invariant j(E) = a+bi

of a random supersingular curve E and performing the

modular operation sA = a||b mod ℓ
eA
A

such that E∗

A
∼=

E0/〈PA+sAQA〉 and E∗

AB,1
∼= E∗

B
/〈φ∗

B
(PA)+sAφ∗

B
(QA)〉.

The distribution of the pair (E∗

A, E∗

AB,0) is that E∗

A is cho-

sen at random among the curves having the same cardinality

as E0, and E∗

AB,0 is a random ℓ
eB
B

-isogeny curve. A solver

for the DSP problem decides from which distribution the

pair (E∗

A, E∗

AB,b
) is sampled as Algorithm 2.

Algorithm 2 is given ((E0, E∗

B
), (PA, QA, φ∗

B
(PA),

φ∗

B
(QA)), (E∗

A
, E∗

AB,b
)) as input.

Algorithm 2

1: Select k← {1, . . . , n};

2: Select random curves E∗

AB1,0, . . . , E
∗

AB(k−1),0 as the way

above;

3: Set sk ← ak ‖ bk mod ℓ
eA
A

such that j(E∗

A) = ak + bk · i;

4: for t = k + 1 to n do

5: Set st ← F
E0,PA,QA,ℓ

eA
A

(st−1);

6: Set E∗

ABt,1 ← GEB,φB(PA),φB (QA)(st);

7: end for

8: Set Z ← (E∗

AB1,0, . . . , E
∗

AB(k−1),0, E
∗

AB,b,

E∗

AB(k+1),1, E
∗

AB(k+2),1, . . . , E
∗

ABn,1);

9: Return D(Z).

If there exists sA such that E∗

A
∼= E0/〈PA + sAQA〉

and E∗

AB,b
∼= E∗

B/〈φ∗

B(PA) + sAφ∗

B(QA)〉 then b = 1, and

E∗

AB,1 = E∗

ABk,1, so Z is distributed as Zk. Otherwise,

if E∗

A is chosen at random among the curves having the

same cardinality as E0, and E∗

AB,b
is a random ℓ

eB
B

-isogeny

curve, then b = 0, and E∗

AB,0 = E∗

ABk,0, so Z is distributed

as Zk+1. Therefore, the above algorithm solves the DSP

problem in polynomial time with the advantage of ε
n
.

We have proved that the scheme Πn has the property of

indistinguishability. The scheme
∑

n that translates every

output curve EABt,1 into a random number rt ∈ {0, . . . , N−

1} by computing j(EABt,1) = at + bt · i, Rt = at||bt, and

rt = Rt mod N for t ∈ {1, . . . , n} also has the property.

Because log2 N 6 log2⌈
p
12

⌉ 6 log2⌈Rt⌉, it follows that rt is

approximately random in the set {0, . . . , N−1}. Hence, the

scheme
∑

n has the property of indistinguishability.
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Conclusion. We proposed a PRNG based on supersingu-

lar elliptic curve isogenies for the first time and presented the

security analysis under the assumption of the DSP assump-

tion. Whether the PRNG based on supersingular elliptic

curve isogenies is more efficient compared with other post-

quantum PRNGs is a topic we will study further. Besides,

the randomness can further be tested by the statistical tests

such as the optimized discrete Fourier transform way [9].
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