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Target tracking is one of the most important research topics

in the field of computer vision. It has been widely applied

in aerospace, automatic monitoring, navigation, human-

computer interaction, and artificial intelligence.

Target tracking is a common and difficult task. During

the tracking process, target variations are dramatic in terms

of scale and position. Additionally, target signals are sub-

ject to interference such as occlusion, illumination changes,

and background clutter. Therefore, it is of great theoreti-

cal and practical value to study target tracking algorithms

that can handle large amounts of data, adapt to complex

backgrounds, and guarantee real-time performance.

Deep learning can be used to solve the problem of deep

information acquisition. Based on the successful application

of convolutional neural networks (CNNs) in the image pro-

cessing direction, CNNs were successfully applied to video

tracking. Although deep learning performs well at target

tracking, real-time tracking must be improved in terms of

its computational cost. A broad learning system (BLS) was

proposed in [1]. As an alternative to a deep network ar-

chitecture, its calculation speed is very fast. Additionally,

the BLS can extract sparse features from training data and

sparse feature learning models are attractive for exploring

essential characterization. Based on these advantages we

propose a target tracking algorithm based on BLS using

a candidate region search and SURF [2] feature matching

of multiple clues. This represents an attempt at applying

broad learning to target tracking.

The proposed method was evaluated through extensive

experiments and compared to the CT [3], KCF [4], TLD [5],

LeNet-5 [6], C-COT [7], and MDNet [8] methods on four

datasets to verify its effectiveness. Although the accuracy

of our method is not the best on all datasets, it exhibits

good adaptability, which is critical for many applications.

In terms of tracking time, the proposed method provides

the minimal value on various datasets.

Target tracking based on BLS. The detailed process of

the BLS tracking algorithm is defined as follows. (1) The

tracking datasets are processed by BLS to train an evalua-

tor. (2) In the case of multiple continuous frames containing

a target, candidate regions are generated based on the target

positions in previous frames using the search method. (3)

In the case of consecutive frames with a missing target, the

SURF algorithm [2] is adopted for full image feature match-

ing. (4) In either case, the candidate regions are evaluated

by a well-trained BLS evaluator.

The first step in this system is to train the BLS evaluator.

The tracking dataset for training is X, where X ∈ R
N×M ,

N is the number of input samples, and M is the dimension of

each sample. φi is the transformation, and the ith mapped

feature is denoted by Zi. Assume that the number of feature

nodes generated at each time instance is N1. Then,

Zi = φi(XWei + βei), i = 1, 2, . . . , n, (1)

where Wei are random weights and βei is a bias term. One

can obtain the proper corresponding dimensions from input

data, X, and N1. Wei and βei (i = 1, . . . , n) are sam-

pled from a normal distribution in the interval [−1, 1]. The

dimensions of Zi are N × N1. Matrix Zn ≡ [Z1, . . . , Zn]

indicates n groups of feature nodes. Zn is connected to a

layer of enhancement nodes. To extract sparse features from

input training data, the optimization function is defined as

argmin
Ŵ

: ‖ZŴ −X‖22 + λ‖Ŵ‖1, (2)

where Ŵ is a sparse autoencoder solution and Z is the de-

sired output for the given linear equation. The alternat-

ing direction method of multipliers (ADMM) solution to the

problem defined above can be written as follows:

argmin
W

: f(w) + g(o) s.t. w − o = 0, (3)
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Figure 1 (Color online) Tracking performance of different methods. (a) Tracking effectiveness on four datasets; (b) real-time

performance of compared methods.

where w = We. The optimization iteration is defined as















wk+1 : = (ZTZ + ρI)−1(ZTx+ ρ(ok − uk)),

ok+1 : = Sλ
ρ
(wk+1 + uk),

uk+1 : = uk + (wk+1 − ok+1),

(4)

where ρ > 0 and S is the following soft thresholding opera-

tor:

Sk(a) =











a− k, a > k,

0, |a| 6 k,

a+ k, a < −k.

(5)

By optimizing the weights, the information contained the

input data can be retained and sparsified.

The goal of generating enhancement nodes is to increase

the nonlinearity of the network and complement the ran-

dom feature nodes. The jth group of enhancement nodes

is denoted by Hj , and it is assumed that the number of

enhancement nodes is N3. Then, we have

Hj = ξj(Z
nWhj + βhj), j = 1, 2, . . . , m, (6)

where ξj is a nonlinear activation function, Whj are ran-

dom weights, and βhj is a bias term. One can obtain the

appropriate corresponding dimensions based on the input

data Zn and N3. Whj and βhj (j = 1, . . . , m) are sampled

from a normal distribution in the interval [−1, 1]. Matrix

Hm ≡ [H1, . . . ,Hm] is used to denote group m of the en-

hancement nodes.

The output is set to Y (Y ∈ R
N×C), where C is the

dimension of the corresponding outputs. Then, the broad

learning system can be written as

Y =[Z1, . . . , Zn|ξ(Z
nWh1+βh1), . . . , ξ(Z

nWhm+βhm)]Wm

=[Z1, . . . , Zn|H1, . . . ,Hm]Wm

=[Zn|Hm]Wm, (7)

where Wm = [Zn|Hm]+Y and Wm are the connection

weights of the BLS. Wm are computed using the ridge re-

gression approximation. After setting [Zn|Hm] to A, for the

pseudoinverse we have that

A+ = lim
λ→0

(λI + AAT)−1AT. (8)

The computation of Wm is extremely rapid through the

approximation equation (8), where λ is a regularization pa-

rameter set to 10−8. In this manner, the entire broad learn-

ing network is trained.

The second step in this system is to obtain effective can-

didate regions. According to different scenarios of object
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loss and occlusion, the tracking process is conducted un-

der the framework by selecting the candidate region search

method or the SURF feature matching algorithm. Case 1:

If the object is not occluded or lost for a long period of time,

to consume less resources, the positions around the target

object are selectively searched. The search boxes are set to

different sizes for different tracking targets. At the target lo-

cation and its surroundings, nine windows of equal size with

a step length of four pixels are generated. After removing

any windows intersecting the image border, the remaining

windows are selected as candidate regions. Because the can-

didate regions for evaluation are only selected within a small

range, the number of calculations is reduced. Case 2: If the

target is occluded or lost for a long time (five frames), then

the feature matching based on the SURF algorithm and a

full-image target search are performed to ensure accuracy.

If the number of identified points is greater than four, then

the target is considered to be found and a weighted average

is calculated to represent the center of the feature points.

Therefore, the proposed method can adapt to target track-

ing with deformation, occlusion, and significant loss while

maintaining acceptable tracking speed.

The third step in our method is to evaluate the candidate

regions and select the window with the highest evaluation

score as the position of the target. However, if the scores of

all candidate regions are very low (less than a predetermined

threshold), then our method judges that the target is lost

and counts the number frames in which the target is lost.

Experiments and analysis. One tracking dataset “Car-

chase” from TLD [4] and three tracking datasets “Coke”,

“Dog1”, and “Girl” from OTB [9] were used to evaluate the

efficiency of our method. Target occlusion, loss, illumina-

tion, and scale variations exist in these video sequences. In

our experiments, the structure of the BLS consisted of 10×6

feature nodes and 150 enhancement nodes. The tracking

performance is presented in Figures 1(a) and (b). Because

of a lack of relevant data support for C-COT, there were no

data for comparison for this method at training time. The

tracking effectiveness is shown in Figure 1(a). The training

and the tracking times are presented in Figure 1(b).

As shown in Figure 1(a), the proposed algorithm provides

good tracking performance in terms of accuracy and adapt-

ability. In Figure 1(b), the training time and tracking time

of our method for different datasets are significantly lower

than those obtained by the other methods. This demon-

strates that our method not only has good adaptability, but

also good real-time tracking performance.

Conclusions and discussion. Based on our experimen-

tal results, the following two aspects will be discussed.

(1) Tracking adaptability: First, we trained an accurate

information evaluator. BLS is the process of acquiring

sparse features. Sparse feature learning models are attrac-

tive for exploring the essential characteristics of tracking

data. Based on statistical target occlusion and loss, we can

adjust the candidate region search and SURF feature match-

ing. By using such a tracking strategy, we can effectively

enhance tracking adaptability. (2) Time consumption: Our

method has a small time overhead because BLS has few pa-

rameters and is solved using ridge regression. Experimental

results demonstrated the effectiveness of the proposed al-

gorithm, but it still has some deficiencies. Taking tracking

speed as an example, there is still room for further improve-

ment. Robustness to long-term occlusion and loss, as well

as scale variation, must be improved. Additionally, online

tracking must be implemented. Follow-up research will fo-

cus on these issues and additional studies will be required to

develop faster and more robust online target tracking sys-

tems.
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