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Abstract Frequency diverse array (FDA)-multiple-input and multiple-output (MIMO) radar is character-

ized with a range-angle-dependent transceive beampattern by introducing incremental frequencies among the

transmit array elements and separating the transmitted waveforms with matched filtering in the receiver. In

this respect, the paper aims to control the range-angle-dependent transceive beampattern for FDA-MIMO

radar by designing the weight vector according to the desired response. At the design stage, the weight

vectors to control the beampattern responses of different regions are devised by performing the orthogonal

decomposition technique. Then, a filtering matrix using the oblique projection operator is constructed to

filter the weight vectors for different regions, where two iterative algorithms are developed either considering

concurrent or successive control of multiple regions. In such a way, a desired range-angle-dependent transceive

beampattern is formed with simultaneously broadened nulls and a flat-top mainlobe. At the analysis stage,

the method has been applied to interference mitigation in FDA-MIMO radar, where the mismatch exists both

in the sidelobes and mainlobe. Simulated and measured results are provided to corroborate the effectiveness

of the proposed methods.
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1 Introduction

The frequency diverse array (FDA) radar has been widely studied and applied in many applications
owing to the increased degrees-of-freedom (DOFs) in the range domain, providing more flexibility in
system design and signal processing [1–6]. Different from the phased array radar, where the transmit
beampattern is only angle-dependent, the transmit beampattern of FDA is range-angle-time-dependent,
which has been widely studied during the past few years [7, 8]. However, in standard FDA, frequencies
of elements are increased linearly, which yields a coupled ‘S’-shape beampattern in the joint angle-
range domain, leading to possible ambiguities in the range-angle dimension during the target localization
process [9]. Besides, the time-variant beampattern is not desired for target localization in practice, which
means that any radiation/waveform/peak/null experienced at a certain point of range will travel to any
points along the same direction [10–12]. To overcome these drawbacks, the multiple-input multiple-
output (MIMO) technique is combined with the FDA. In FDA-MIMO radar, the orthogonal waveforms
are transmitted, then, after matched filtering in the receiver, the transmitted waveforms are separated.
Hence, the time-independent beampattern can be obtained, which is different from the coherent FDA.
Hence, the range-angle-dependent transceive beampattern of FDA-MIMO radar is achieved, which can
be used to solve problems that the conventional MIMO radar cannot handle [13–16]. Although many
efforts have been devoted to FDA-MIMO radar by utilizing extra DOFs in various applications, it still
calls for sophisticated transceive beamforming to maintain low sidelobes for interference suppression in
dynamic environments, where the time-varying interferences lead to a mismatch in nulling angles.
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To the best of the authors’ knowledge, the design of the transceive beampattern has only received a
limited attention in the FDA-MIMO context. Specifically, a multisub-FDA scheme was proposed in [17]
to generate range-angle-decoupled equivalent transmit beampattern with low sidelobes. However, it fails
to control the null regions of the beampattern accurately. Artificial interferences with prescribed powers
were added to form a trough-like transceive beampattern in [18], however, the proposed method filed to
control the mainlobe of the beampattern. Hence, it is worth investigating the beampattern synthesis for
exploiting specific peculiarities of the FDA-MIMO radar. The starting point is the inspiration offered by
the plethora of beamforming methods that have been proposed in the open literature, where the weight
vectors are adjusted according to the environment to extract the signal of interest (SOI) while handling the
interferences from surroundings [19–22]. Generally, beamformers can be classified into the data-dependent
beamformers (also known as the adaptive beamformers) and the data-independent beamformers. The
adaptive beamformers using linearly constrained minimum variance (LCMV) [23], second-order cone
programming (SOCP) [24], semidefinite relaxation (SDR) [25], projection beamforming [26], and the
uncertainty set-based techniques [27], were developed to control the array response. Although good
performance has been achieved in stationary state, they have to deal with difficulties such as uncertainties
of directions-of-arrival (DOAs) and covariance matrix estimation.

To overcome the limitations of data-dependent beamforming and fulfill different application require-
ments,the data-independent beamforming techniques are becoming more and more important, especially
in generating a particular beampattern shape without array training data. The adaptive array the-
ory was applied to control sidelobes in [28–31]. Besides, to control the response of arbitrary arrays
accurately, the accurate array response control (A2RC) [32] and the weight vector orthogonal decom-
position (WORD) [33] methods were proposed. However, they cannot always guarantee a satisfactory
performance for a multi-dimensional beampattern. In addition, optimization algorithms, such as genetic
algorithm [34], particle swarm optimization [35], and simulated annealing [36] were proposed to optimize
the weight vectors directly. Nevertheless, they suffer from high computational complexity. Moreover,
most of the beampattern synthesis methods deal with only the array factors without considering practi-
cal factors, which is not realistic in practice. Hence, sophisticated beampattern synthesis methods, with
the FDA-MIMO framework combined, are supposed to be designed.

Aimed at forming a range-angle-dependent transceive beampattern for FDA-MIMO radar with de-
sired response, methods based on beampattern synthesis are developed to control the response of the
beampattern based on the adaptive beamforming theory in this paper. Firstly, the response of each
region is adjusted based on weight vector orthogonal decomposition according to a predefined response.
Then, a filtering matrix is constructed by virtue of an oblique projection operator to control multiple
regions simultaneously. On this basis, two types of iterative algorithms with multiple-response control
based on oblique projection (MRCOP) are developed, including the concurrent MRCOP (C-MRCOP)
and the successive MRCOP (S-MRCOP). At the analysis stage, both simulated and measured data of
the antenna beampattern are used to verify the performance of the designed transceive beampattern and
interference suppression, where the broadened nulls are designed to suppress the interferences adequately
and a flat-top mainlobe to extend receiving areas for the target.

The remainder of this paper is organized as follows. Section 2 presents the signal model of FDA-
MIMO radar. The method to achieve single response control of the transceive beampattern using weight
vector orthogonal decomposition is explored in Section 3. Methods to control multiple regions of the
beampattern based on oblique projection are developed in Section 4. Numerical and measured results in
Section 5 are provided to verify the performance of the proposed methods.

Notations. Boldfaced lowercase letters, such as x, represent vectors, and boldfaced uppercase letters,
such as A, denote matrixes. For vector x, we use [x]n to denote the n-th element of vector x. For
matrix A, we use [A]m,n to denote the element of A in the m-th row and the n-th column, [A]m,: to
denote the m-th row vector of A, and [A]:,n to denote the n-th column vector of A. IN , 1N , and 0M×M

denote respectively the N × N identity matrix, N × 1 vector with all elements being one, and M ×M

matrix with zero entries. CN , RN , CN×M , and HN are respectively the sets of N -dimensional vectors of
complex numbers, N -dimensional vectors real numbers, N ×M complex matrices, and N ×N Hermitian
matrices. For any x ∈ C

N , ‖x‖ indicates its Euclidian norm. diag(x) indicates the diagonal matrix
whose i-th diagonal element is the i-th entry of x. For any complex number z, |z| indicates the modulus
of z. The transpose, the conjugate, and the conjugate transpose operators are denoted by the symbols
(·)T, (·)∗, and (·)†, respectively. ⊗, ⊙, and ⊘ represent the Kronecker product, the Hadamard product,
and the division operator for elements from two matrixes. The letter j represents the imaginary unit



Lan L, et al. Sci China Inf Sci May 2022 Vol. 65 152305:3

1

…

exp{−j2̟∆ft}

exp{−j2̟2∆ft}

exp{−j2̟(M−1)∆ft}

ϕ
1
(−t)

ϕ
2
(−t)

ϕ
3
(−t)

ϕ
M
(−t)

*

*

*

*

Figure 1 (Color online) Signal processing at the receiver in FDA-MIMO radar.

(i.e., j =
√
−1). Finally, [a, b] indicates a region of the variable with a being the beginning and b being

the end of the set.

2 Signal model of FDA-MIMO radar

Consider a uniform linear antenna array with M elements spaced by d. The same array is used for
both transmission and reception, where the carrier frequency increases progressively across the transmit
antenna elements with a small frequency increment ∆f , and the frequency of them-th element is expressed
as follows:

fm = f0 + (m− 1)∆f, m = 1, 2, . . . ,M, (1)

where f0 refers to the reference carrier frequency.
For a target located in the far-field at the angle θ0 and range R0, under the narrowband assumption,

the reflected signal received by the n-th (n = 1, 2, . . . ,M) element is expressed as

yn(t, θ0) = ζ

M
∑

m=1

φm(t− τ0)e
j2πfm(t−τm,n)

= ζej2πf0(t−τ0)e
j2π d

λ0
(n−1) sin(θ0)

M
∑

m=1

φm(t− τ0)e
j2π∆f(m−1)(t−τ0)ej2π(m−1)(n−1)∆f d

c
sin(θ0)ej2π(m−1)2∆f d

c
sin(θ0)e

j2π d
λ0

(m−1) sin(θ0)

≈ ζej2πf0(t−τ0)e
j2π d

λ0
(n−1) sin(θ0)

M
∑

m=1

φm(t− τ0)e
j2π∆f(m−1)(t−τ0)e

j2π d
λ0

(m−1) sin(θ0), (2)

where φm(t) is the m-th transmitted waveform, τm,n = τ0 − (m−1)d sin θ0−(n−1)d sin θ0
c

is the round-trip

propagation time delay, τ0 = 2R0

c
indicates the common time delay, ζ is the complex echo amplitude

(accounting for the transmit amplitude, phase, target reflectivity, and channels propagation effects),
λ = c

f0
is the reference carrier wavelength, and the approximation holds when (M − 1)2∆f d

c
≪ 1.

As shown in Figure 1, the received signals are first of all multiplied by e−j2πf0t. Subsequently, on each
receive channel, the echo is digitally mixed with e−j2π(l−1)∆ft. Hence, the time-dependency is eliminated.
Then, the signal on each receive channel is processed through a bank of M matched filters hl(t) = φ∗

l (−t)
(l = 1, . . . ,M). Assume that the transmitted waveforms are orthogonal, after matched filtering with M

waveforms, by stacking the received signals into an M2 × 1 space-time snapshot, the received signal of
the target can be expressed in a simple form as [14]

yS = α0aT(θ0, R0)⊗ bR(θ0), (3)

where α0 = ζe−j2π∆f(m−1)τ0, aT(θ0, R0) ∈ CM , and bR(θ0) ∈ CM denote the transmit and receive
steering vectors, respectively. Note that the owing to the procedure of digitally mixing with e−j2π(l−1)∆ft

in the FDA-MIMO radar, the equivalent transmit steering vector aT(θ0, R0) is time-independent. Please
refer to Appendix A for detailed derivations.
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Consider the pattern vector for each antenna element, the transmit and receive steering vectors can be
written as

aT(θ0, R0)=g(θ0)⊙ (ej2πf(R0) · ejk(θ0)d)=










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g1(θ0)e
−j 2π

λ
· 12 (M−1)d sin(θ0)

...

gm(θ0)e
−j2π∆f(m−1)

2R0
c ej

2π
λ

(− 1
2 (M−1)+(m−1))d sin(θ0)

...

gM (θ0)e
−j2π∆f(M−1)

2R0
c ej

2π
λ

· 12 (M−1)d sin(θ0)
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, (4a)

bR(θ0) = g(θ0)⊙ ejk(θ0)d =





















g1(θ0)e
−j 2π

λ
· 12 (M−1)d sin(θ0)

...

gn(θ0)e
j 2π

λ
(− 1

2 (M−1)+(n−1))d sin(θ0)

...

gM (θ0)e
j 2π

λ
· 12 (M−1)d sin(θ0)


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




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

, (4b)

where f(R0) = [1,−∆f 2R0

c
, . . . ,−∆f(M − 1)2R0

c
]T ∈ C

M refers to the frequency increment vector of
the target, g(θ0) = [g1(θ0), g2(θ0), . . . , gM (θ0)]

T ∈ CM denotes the antenna element pattern vector,
k(θ0) = 2π

λ
sin(θ0) is the wave number of the target, and d ∈ RM is the position vector of elements in

the x-axis with the m-th position being dm = d(− 1
2 (M − 1) + (m− 1)). It can be seen from (4a) that

the transmit steering vector of FDA-MIMO is range-angle-dependent, while the receive steering vector is
angle-dependent. Notice that when ∆f = 0 is considered, the equivalent beampattern degenerates into
that of the conventional MIMO radar. For simplicity, consider an isotropic antenna array, i.e., gm(θ0) = 1,
the transmit and receive steering vectors are respectively expressed as

ãT(θ,R) = aT(θ,R)⊘ g(θ), (5a)

b̃R(θ) = bR(θ) ⊘ g(θ). (5b)

3 Single response control of transceive beampattern

3.1 Motivations

Different from the angle-dependent transceive beampattern in the traditional MIMO radar, the range-
angle-dependent transceive beampattern in FDA-MIMO radar can be utilized in mainlobe interference
suppression, where the interference and the target are located at the same angle but different range. In
this respect, the beampattern distortion occurs because the target is also suppressed when suppressing the
interference with beamforming. However, owing to extra DOFs in the range domain in FDA-MIMO, the
target and interferences can be distinguished in the joint range-angle-dependent transceive beampattern,
and the interferences can be suppressed by nulling at the beampattern of the target [37]. However, under
some mismatch circumstances, the interferences will not be exactly located at the nulls, especially in
dynamic environments, the time-varying interferences lead to mismatches in nulling angles. Moreover,
there will be a deviation from the mainlobe of the target. One feasible way to solve this problem is
to design an appropriate range-angle-dependent transceive beampattern, where the broadened nulls is
desired to suppress the interferences adequately, and a mainlobe with a flat top is required to extend
receiving areas for the target.

Because the beampattern is formed according to the weight vector, the control of the beampattern
can be accomplished by designing an appropriate weight vector to satisfy practical requirements. For a
two-dimensional (2-D) range-angle-dependent transceive beampattern in FDA-MIMO radar, the optimal
weight vector using the minimum variance distortionless response (MVDR) beamformer is constructed
as follows:

wopt = ΛR−1
j+nu0, (6)

where u0 = ãT(θ0, R0)⊗ b̃R(θ0) ∈ CM2

denotes the transceive steering vector of the FDA-MIMO radar,

Rj+n ∈ CM2×M2

refers to the interference-plus-noise matrix collected with several training samples, and
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Λ = (u†
0R

−1
j+nu0)

−1 denotes a normalization factor. Although the requirements of the responses can
be achieved using the convex optimization with multiple constraints, we focus on the data-independent
beamformers to control the responses in this paper, where the adaptive array theory can be applied into
data-independent beamformers.

3.2 Single response control using weight vector orthogonal decomposition

In this subsection, the control of a single response is considered. Assume that in a scenario with Gaussian
white noise, there is a single interference. Hence, the jammer-plus-noise covariance matrix is described by

Rj+n = σ2
wIM2 + σ2

i uiu
†
i , (7)

where σ2
w and σ2

i refer to the power of noise and interference, respectively. The white Gaussian distributed

noise is assumed with zero mean and variance σ2
w. ui = ãT(θi, Ri) ⊗ b̃R(θi) ∈ C

M2

denotes the steering
vector of the interference with θi and Ri being the angle and range of the interference, respectively. Using
the matrix inversion lemma, the inverse of Rj+n is expressed as

R−1
j+n =

1

σ2
w

[

IM2 − σ2
i

σ2
w + ‖ui‖22σ2

i

uiu
†
i

]

=
1

σ2
w

[

IM2 − P (ui) +
σ2
w

σ2
w + ‖ui‖22σ2

i

P (ui)

]

=
1

σ2
w

[P⊥(ui) + βP (ui)], (8)

where β =
σ2
w

σ2
w+‖ui‖2

2σ
2
i

, P (ui) =
uiu

†
i

‖ui‖2
2
∈ CM2×M2

denotes the projection matrix which is projected onto

the column space of ui, and P⊥(ui) = IM2 − P (ui) ∈ CM2×M2

. Thus, the normalized optimal weight
vector is decomposed as

wopt = Λ0R
−1
j+nu0

=
Λ0

σ2
w

[P⊥(ui) + βP (ui)]u0

= α0

[

w⊥
0 + βw

‖
0

]

, (9)

where w
‖
0 = P (ui)u0 ∈ CM2

, w⊥
0 = P⊥(ui)u0 ∈ CM2

, α0 = Λ0

σ2
w
, and Λ0 =

σ2
w

u
†
0w

⊥
0 +βa

†
0w

‖
0

.

The response of the transceive beampattern at ui is obtained as B(ui|u0) = |w†
optui|2. Hence, for a

fixed response ξ, by substituting the expression of wopt into B(ui|u0), i.e., |w†
optui|2 = ξ, it is obvious

that B(ui|u0) is a function of β. Note that according to the expression of β, it is related to the variances of
the the noise and the interference, which cannot be directively estimated. In contrast, a closed-form of the
solution to β can be obtained according to the prescribed response of the beampattern ξ. Consequently,
the response control of the beampattern can be achieved by adjusting β.

Based on the previous discussions, for a specific single response, it can be accurately controlled by

designing the weight vector which is decomposed as a linear combination of w⊥
0 and w

‖
0 with a key

coefficient β. However, for a given region Θ in the beampattern, multiple responses are supposed to be
controlled together. In this regard, iterative algorithm can be performed to update the weight vector.
Based on [33], it follows (9) that the weight vector in the l-th iteration is formulated as

wl = αl(w⊥ + βlw‖), (10)

where w‖
∆
= P (ul)wl−1 ∈ CM2

, w⊥
∆
= P⊥(ul)wl−1 ∈ CM2

, ul ∈ CM2

denotes the steering vector of the

point which is controlled in the l-th iteration, and αl =
1

u
†
0w⊥+βlu

†
0w‖

. Notice that wl is calculated to ad-

just the current response at ul. Different from [33] with angle-dependent steering vector, ul indicates the
range-angle-dependent transceive steering vector of the FDA-MIMO radar, where the range information
is included. Besides, the weight vector in (10) is normalized.

With the expression of the weight vector, the response of the beampattern can be obtained, where
B(ul|u0) is used to denote a specific response of the beampattern evaluated at ul and pointed towards
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u0. In particular, the former within the bracket, i.e., ul, denotes the steering vector corresponding to the
current response, while the latter, i.e., u0, represents the steering vector corresponding to the mainlobe.
Given a desired beampattern response ξ, then, B(ul|u0) is calculated as

B(ul|u0) = |w†
lul|2 = ξ. (11)

Particularly, in order to control the region Θ in the l-th iteration, the ul, where the response needs
adjustment, should be chosen appropriately. One feasible way is to determine ul according to the
maximum difference between the current response of the beampattern and ξ within Θ, which can be
categorized into two cases, i.e.,

ul = arg
ul∈uΘ

max |B (ul |u0 )− ξ| , Θ = Θm, (12a)

ul = arg
ul∈uΘ

max (B (ul |u0 )− ξ, 0) , Θ 6= Θm, (12b)

where uΘ ∈ CM2

denotes an arbitrary steering vector within the region Θ, and Θm stands for the
mainlobe region.

Substituting (10) into (11), it yields,

y
†
lZlyl = ξ, (13)

where yl
∆
= [1, βl]

T ∈ C2 , Zl ∈ H2×2 is expressed as

Zl = α∗
l [w⊥,w‖]

†ulu
†
lαl[w⊥,w‖]

= α∗
l αl

[

w
†
⊥ulu

†
lw⊥ w

†
⊥ulu

†
lw‖

w
†
‖ulu

†
lw⊥ w

†
‖ulu

†
lw‖

]

=

[

α∗
l αlw

†
⊥ulu

†
lw⊥ α∗

l αlw
†
⊥ulu

†
lw‖

α∗
l αlw

†
‖ulu

†
lw⊥ α∗

l αlw
†
‖ulu

†
lw‖

]

. (14)

Substituting w
†
⊥ul = 0 into (14), then, Eq. (13) can be simplified as

β2
l α

†
lαlw

†
‖ulu

†
lw‖ = ξ. (15)

It will be shown in the following proposition that the solutions can be analytically solved.

Proposition 1. The solutions to (15) are obtained as

⌣

β
1

l =
(a3 + a4) +

√
∆

2 (a1 − a2)
, (16a)

⌣

β
2

l =
(a3 + a4)−

√
∆

2 (a1 − a2)
, (16b)

where a1
∆
= w

†
‖ulu

†
lw‖, a2

∆
= ξw

†
‖u0u

†
0w‖, a3

∆
= ξw

†
⊥u0u

†
0w‖, a4

∆
= ξw

†
‖u0u

†
0w⊥, a5

∆
= ξw

†
⊥u0u

†
0w⊥,

and ∆ = (a3 + a4)
2 + 4a5(a1 − a2).

Proof. Please refer to Appendix B.
To maintain the responses of the beampattern according to the previous iterations maximally, a selec-

tion function is defined where the expression in the l-th iteration, Fwl,wl−1
(βl) is written as

Fwl,wl−1
(βl) =

∥

∥

∥

∥

P
(

wl−1

) wl

‖wl‖2

∥

∥

∥

∥

2

2

=

∥

∥

∥

∥

∥

wl−1w
†
l−1wl

∥

∥wl−1

∥

∥

2
‖wl‖2

∥

∥

∥

∥

∥

2

2

. (17)

In other words, it is supposed to minimize the difference between B (ul |u0 ) and B (ul−1 |u0 ). Hence, βl

is picked from
⌣

β
1

l and
⌣

β
2

l by maximizing the similarity between the previous and the current iterations as

βl = arg
⌣
β

1

l ,
⌣
β

2

l

max

(

Fwl,wl−1

(

⌣

β
1

l

)

, Fwl,wl−1

(

⌣

β
2

l

))

. (18)
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Hence, to evaluate the average difference between the response of the beampattern and the desired
level ξ within the region Θ, a difference function is defined as

Dl =



























1

Q

Q
∑

l=1

|B (ul |u0 )− ξ|, Θ = Θm,

1

Q

Q
∑

l=1

max (B (ul |u0 )− ξ, 0), Θ 6= Θm,

(19)

where Q denotes the steering vectors within the region Θ, namely, the number of responses within the
region Θ.

It is required that the iteration continues when Dl > ε. Notice that ε > 0 is a sufficiently small scalar.
Thus, the ultimate weight vector is designed, and the proposed method is summarized in Algorithm 1.
The main computational complexity lies in calculation of the projection matrix, which is O(M4).

Algorithm 1 Weight vector orthogonal decomposition algorithm

Require: M , ε, σ2
w, ξ, Θ, Θm, D1 > ε, u0.

Initialization: l = 1;

while Dl > ε do

1. Determine ul using Eq. (12);

2. Calculate Zl using Eq. (14), and determine
⌣
β

1

l and
⌣
β

2

l using Eq. (16);

3. Substitute
⌣
β

1

l and
⌣
β

2

l into Eq. (17) to obtain βl;

4. Update wl using Eq. (10);

5. Calculate B(ul|u0) = |w†
l
ul|2 and Dl according to Eq. (19);

6. l = l + 1;

end while

Ensure: the weight vector wl.

4 Multiple response control of transceive beampattern

4.1 Motivations and preliminary of oblique projection

From the previous discussions, a single response of the transceive beampattern of the FDA-MIMO
radar can be accurately controlled by orthogonally decomposing the weight vector. However, in each
iteration, only one specific response is adjusted, which means that only the current response B(ul|u0) is
precisely controlled. Moreover, when multiple responses are adjusted successively, the current response
will have an influence on the previously-controlled responses. To circumvent these deficiencies and control
multiple responses simultaneously, the oblique projection is utilized, where the preliminary is provided
as follows.

Assume that G ∈ Cm×p and H ∈ Cm×q are matrices with full column rank. The subspaces spanned
by the columns of G and H , respectively denoted as 〈G〉 and 〈H〉, are disjointed, i.e., p + q 6 m.
Different from the orthogonal projector1), oblique projections refer to projection matrices that are not
orthogonal [38]. The orthogonal projection onto the linear subspace 〈H G〉 can be decomposed with
EG|H ∈ Cm×m, and EH|G ∈ Cm×m as

P〈H G〉 = (H G )

(

H†H H†G

G†H G†G

)−1(

H†

G†

)

= EG|H +EH|G , (20)

where the oblique projectors EG|H and EH|G are respectively defined as

EG|H = (G 0m×m )

(

H†H H†G

G†H G†G

)−1(

H†

G†

)

= G
(

G†P⊥
HG

)

G†P⊥
H , (21a)

1) The orthogonal projector onto 〈G〉 is constructed as PG = G(G†G)−1G† ∈ C
m×m. The orthogonal projector onto the

orthogonal complementary space of 〈G〉 is P⊥
G

= Im×m − P
G

∈ C
m×m. Similarly, PH = H(H†H)−1H† ∈ C

m×m and P⊥
H

=

Im×m − P
H

∈ C
m×m.
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Figure 2 (Color online) Illustration of oblique projection.

EH|G = ( 0m×m H )

(

H†H H†G

G†H S†G

)−1(

H†

G†

)

= H
(

H†P⊥
GH

)

H†P⊥
G . (21b)

As shown in Figure 2, EG|H projects vectors onto 〈G〉 along the direction parallel to 〈H〉, and EH|G
projects vectors onto 〈H〉 along the direction parallel to 〈G〉. To complete the null space, define S to
span the perpendicular space to 〈H G〉. Since P⊥

GS = S and G†S = 0m×m, we have

EG|H S = G
(

G†P⊥
HG

)

G†P⊥
HS

= G
(

G†P⊥
HG

)

G†S

= 0m×m. (22)

According to (22), the range and the null space of EG|H are 〈G〉 and 〈H S〉, respectively. It is seen
that 〈S〉 is also in the null space of EG|H . As all available dimensions have been accounted, the null
space of EG|H is 〈H S〉. Hence, it can be verified that EG|H G = G, EG|H H = 0m×m, EH|GH = H ,
and EH|GG = 0m×m.

4.2 MRCOP algorithms to control multiple responses simultaneously

Consider a region set {Θk}Kk=1 and its corresponding predefined response set {ξk}Kk=1. To control multiple
regions simultaneously, a feasible way is to adjust K points from their corresponding regions concurrently,
i.e., the C-MRCOP method. Define a response control matrix by collecting all steering vectors from K

regions as

Ã
∆
= [u0,ul,1, . . . ,ul,K ] ∈ C

M2×(K+1), (23)

where ul,k ∈ CM2

denotes the steering vector of the response in the k-th region which is supposed to be

adjusted in the l-th iteration. Removing ul,k and u0 from Ã respectively, the matrices containing the
surplus steering vectors are defined as

Ãk−
∆
= [u0,ul,1, . . . ,ul,k−1,ul,k+1, . . . ,ul,K ] ∈ C

M2×K , (24a)

Ã0−
∆
= [ul,1,ul,2, . . . ,ul,K ] ∈ C

M2×K . (24b)

Subsequently, oblique projectors based on (24) are defined as

E
k|Ãk−

∆
= ul,k

(

u
†
l,kP

⊥
Ãk−

ul,k

)−1
u
†
l,kP

⊥
Ãk−

∈ C
M2×M2

, k = 1, 2, . . . ,K, (25a)

EÃ0−|0
∆
= Ã0−

(

Ã
†
0−P

⊥
u0
Ã0−

)−1
Ã

†
0−P

⊥
u0

∈ C
M2×M2

. (25b)

Moreover, the projections onto u0 are obtained as

E
k|Ãk−

u0 = 0M2×1, k = 1, 2, . . . ,K, (26a)

EÃ0−|0u0 = 0M2×1. (26b)
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In addition, according to the properties of the oblique projection, for a steering vector from an arbitrary
region, i.e., ul,i, k, i = 1, . . . ,K, it satisfies

E
k|Ãk−

ul,i =

{

ul,i, i = k,

0M×1, i 6= k,
(27a)

EÃ0−|0ul,i = ul,i. (27b)

Furthermore, for the k-th region in the l-th iteration, we can construct a filtering matrix Tl,k ∈ C
M2×M2

which passes the ul,k and blocks the components from other regions. The final weight vector is obtained
by filtering sub-weight vectors from K regions using the filtering matrix Tl,k, which is expressed as

⌣

wl =

K
∑

k=1

Tl,kwl,k, (28)

where wl,k ∈ CM2

denotes the weight vector, obtained using Algorithm 1, which controls the response of
the k-th region in the l-th iteration. In particular, the formulation of Tl,k in the l-th iteration is expressed
as follows:

Tl,k = αkIM2 + βkE
†
Ã0−|0 + γlE

†
k|Ãk−

,

s.t.



























⌣

w
†
lu0 =

K
∑

k=1

w
†
l,kT

†
l,ku0 = 1,

⌣

w
†
lul,k =

K
∑

i=1

w
†
l,iT

†
l,kul,k = w

†
l,kul,k, k = 1, 2, . . . ,K,

(29)

where αk ∈ R1, βk ∈ R1, and γk ∈ R1 are the coefficients to be determined. Notice that Tl,k is identical

for different iterations. Recall that w
†
l,ku0 = 1. By substituting (28) into (29), the coefficients in (29)

are calculated as
K
∑

k=1

αk = 1, αk + βk = 0, γl = 1. (30)

For k = 1, 2, . . . ,K, it is verified that

⌣

w
†
lul,k =

K
∑

i=1

w
†
l,i

(

αiIM2 + βiEÃ0−|0
)

ul,k

+ γl

K
∑

i=1

w
†
l,iE

†
i|Ãi−

ul,k

i=k
=

K
∑

k=1

w
†
l,k (αk + βk)ul,k + γlw

†
l,kul,k

= γlw
†
l,kul,k = w

†
l,kul,k, (31a)

⌣

w
†
lu0 =

K
∑

k=1

w
†
l,k (αku0 + βk0M2×1 + γk0M2×1)

=

K
∑

k=1

αkw
†
l,ku0 = 1. (31b)

Define Dk,l as the average difference between the response of the beampattern and ξk within the region
Θk. For non-mainlobe and mainlobe regions, it can be respectively expressed as

Dk,l =



























1

Qk

Qk
∑

l=1

max |B (ul,k |u0 )− ξk|, Θk = Θm,

1

Qk

Qk
∑

l=1

max (B (ul,k |u0 )− ξk, 0), Θk 6= Θm,

(32)
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Figure 3 (Color online) The proposed C-MRCOP method.

where B(ul,k|u0) = |⌣w†
lul,k|2, and Qk denotes the number of responses within Θk.

Consider that the response adjusted in the current iteration will influence other responses within Θk,
hence, in order to avoid excessive control, if Dk,l < ε is satisfied for Θk, uk,q is supposed to be omitted.

Define a diagonal selecting matrix Sl ∈ CM2×M2

. The matrix consists of a sequence of 1 and 0, where
0 represents the indexes of regions satisfying Dk,l < ε, and 1 denotes the remaining regions. The updated
response control matrix is written as

Ā = Ã · Sl = [u0,ul,1, . . . ,ul,K̃ ] ∈ C
M2×K̃ , (33)

where K̃ 6 K denotes the actual number of regions which need to be controlled.

Hence,
⌣

wl fulfills the task of concurrently controlling multiple responses. Algorithm 2 is presented to
summarize the proposed C-MRCOP method. Figure 3 demonstrates the proposed C-MRCOP method.

Algorithm 2 C-MRCOP algorithm

Require: M , K, ε, σ2
w, {ξk}K

k=1, {Θk}K
k=1, Θm, u0, Q, w0,k = u0.

Initialization: l = 1.

1. Calculate Dk,1 according to Eq. (32), and determine the maximum value maxk Dk,1;

while maxk Dk,l > ε do

2. Calculate Dk,l using Eq. (32) to determine the diagonal selecting matrix Sl;

3. Obtain the response control matrix Ā according to Eq. (33) and K̃;

4. Determine {wl,k}K̃
k=1 from K̃ regions according to Algorithm 1 with wl.k = αg(w

⊥
l−1,k + βlw

‖
l−1,k);

5. Calculate {Tl,k}K̃
k=1 for K̃ regions using Eq. (29);

6. Construct
⌣
wl =

∑

K̃
k=1 Tl,kwl,k according to Eq. (28);

7. Obtain the current beampattern B(ul,k|u0) = |⌣w
†

lul,k|2 and Dk,l according to Eq. (32);

8. l = l + 1;

9. Denote wl−1,k =
⌣
wl;

end while

Ensure: the final weight vector
⌣
wl.

Moreover, another way to control multiple regions successively, termed as the S-MRCOP method, is
proposed. This method is performed by successively controlling K regions. In the S-MRCOP algorithm,
Gk is the number of response points to be controlled within the k-th region, and we have a set {Gk}Kk=1.
For the k-th region, the matrices in (24) are defined as

Ãg−
∆
= [u0,ul,1, . . . ,ul,g−1,ul,g+1, . . . ,ul,Gk

] ∈ C
M2×Gk , g = 1, 2, . . . , Gk, (34a)

Ã0−
∆
= [ul,1,ul,2, . . . ,ul,Gk

] ∈ C
M×Gk . (34b)

For each point ug,l ∈ CM2

in the k-th region, the sub-weight vector wl,g = αg(w
⊥
l−1,g + βlw

‖
l−1,g) ∈

CM2

is calculated using Algorithm 1 with αg = 1

u
†
0w

⊥
l−1,g

+βlu
†
0w

‖
l−1,g

.
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Subsequently, the ultimate weight vector in the k-th region is formulated using oblique projection,
which is expressed as

⌣

wk =

Gk
∑

g=1

Tg,lwl,g, (35)

where Tl,g ∈ CM2×M2

is expressed as

Tl,g = αkIM + βkE
†
Ã0−|0 + γkE

†
g|Ãg−

, (36)

where Eg|Ãg−

∆
= ul,g(u

†
l,gP

⊥
Ãk−

ul,g)
−1u

†
l,gP

⊥
Ãg−

. Hence, the response requirement for Gk responses of

the beampattern is satisfied.

We start the algorithm from the first region. Iterations are performed to update the weight vector
successively. To retain the response results maximally from the previous iteration , the optimal weight
vector obtained in the (k − 1)-th region is assigned as the previous weight vector in the k-th iteration.
Algorithm 3 is presented to summarize the proposed S-MRCOP method. The S-MRCOP algorithm
shares the advantage of easy operation. However, the number of controlled points within each region is
limited to DOFs. Besides, the selection of ul,g will influence the performance, and the currently-controlled
responses may have influence on the previously-controlled region.

Algorithm 3 S-MRCOP algorithm

Require: M , K, {Gk}K
k=1, ε, σ

2
w , {ξk}K

k=1, {Θk}K
k=1, Θm, u0, w0,g = u0, Q.

Initialization: l = 1.

for k = 1, 2, . . . ,K do

1. Determine {wl,g}
Gk
g=1 for Gk responses in the k-th region according to Algorithm 1 with wl,g = αg(w

⊥
l−1,g + βlw

‖
l−1,g);

2. Calculate {Tl,g}Gk
g=1 for Gk points using Eq. (29);

3. Construct
⌣
wk =

∑Gk
g=1 Tg,lwl,g according to Eq. (35);

4. Denote wl−1,g =
⌣
wk;

end for

Ensure: the final weight vector
⌣
wK .

4.3 Performance analysis

It is obvious that the resulting final weight vector
⌣

wl fulfills the task of concurrently controlling multiple
responses. On the one hand,

⌣

wl keeps the responses adjusted in the previous iteration using orthogonal
decomposition of the weight vector. On the other hand, based on the oblique projection, multiple
responses are controlled simultaneously using the filtering matrix Tl,k in each iteration. Actually, for
the k-th region, the designed filtering matrix ‘selects’ the sub-weight vector corresponding to the k-th
region, while it ‘blocks’ the sub-weight vectors from other regions. Moreover, the matrix Tl,k keeps the
previously-controlled responses. In other words, the response for each region can be controlled separately
because only the response corresponding to the current iteration is adjusted. Closed-form expressions of
the ultimate weight vectors are obtained using either the C-MRCOP or S-MRCOP algorithms. The main
computational complexity lies in the calculations of oblique projectors Ek|Ãk−

and EÃ0−|0. Particularly,

the computational complexity for each oblique projector is O(M6). As a result, the computational
complexities for both the C-MRCOP and S-MRCOP are O(M6).

5 Numerical and measured results

In this section, numerical and measured results are performed to evaluate the beampattern control meth-
ods in FDA-MIMO radar. The proposed algorithms are firstly applied to the one-dimensional (1-D)
slice of the equivalent transmit beampattern in the equivalent angle domain, which is performed in the
receiver side. Subsequently, experimental results with real antenna data are shown to demonstrate the
performance of controlling the range-angle-dependent 2-D transceive beampattern in the joint range-angle
domain. Simulation parameters are listed in Table 1.
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Table 1 Simulation parameters of FDA-MIMO

Parameter Value

Transmit elements 16

receive elements 16

Wavelength 0.0187 m

reference carrier frequency 10 GHz

Bandwidth 2 MHz

Frequency increment 3750 Hz

Range of the target 10 km

Angle of the target 30◦

5.1 Equivalent transmit beampattern with simulated results

In this subsection, the proposed algorithms are implemented to control the 1-D transmit beampattern in
the equivalent angle domain with the FDA-MIMO radar. Notice that, owing to the frequency increment
introduced in the transmit array, an offset −∆f 2R0

c
is introduced. In this respect, the mainlobe of the

equivalent transmit beampattern of the FDA-MIMO radar is different from that of the MIMO radar. For
instance, in FDA-MIMO radar, the corresponding transmit spatial frequency of a target, which is located
at θ0 = 30◦, is calculated as f s

T = −∆f 2R0

c
+ d

λ0
sin(θ0) = 0 [37], hence, the equivalent angle is defined

as θ̃0 = arcsin(f s
T

λ0

d
) = 0◦.

Figure 4(a) demonstrates the 1-D plot of the equivalent transmit beampattern with two controlled
nulls. Assume that the predefined depths are ξ1 = −50 dB and ξ2 = −55 dB, respectively. The regions
in the angle domain are assumed to be [−50◦,−40◦] and [30◦, 40◦], respectively. It is observed that
the beampattern with two broadened notches is achieved with the proposed C-MRCOP and S-MRCOP
methods. Notice that we have G1 = 4 and G2 = 5. However, the sidelobes with the S-MRCOP method
are not a desired result, because the currently-controlled response will influence the previously-controlled
ones. Moreover, the LCSS [39] and LCMV [40] methods, which are used for conventional array radars,
are compared. Although the LCSS and LCMV methods can obtain a beampattern with broadened and
deep notches, the response cannot be controlled. In contrast, the beampattern with broadened notches is
obtained with the C-MRCOP method. In Figure 4(b), the equivalent transmit beampatterns are plotted
versus different numbers of iterations, where ε = 0.01. It can be seen that after 80 steps, the synthesized
beampattern is close to the desired one, and a satisfactory beampattern is obtained after 150 iterations.

Figure 4(c) demonstrates the 1-D equivalent transmit beampattern with two broadened notches and
low sidelobes. The desired sidelobe level is −20 dB, and the depths of notches are −45 and −40 dB,
respectively. In order to simplify the synthesis procedure, we employ the Chebyshev weight with a −20 dB
of sidelobe attenuation as the initial weight vector. For comparison, the resulting beampatterns using the
A2RC [32], WORD [33], and the artificial interferences based method [18] are also displayed. The result
of the S-MRCOP method is omitted, because the performance of this approach degrades. It is due to
the fact that the currently-controlled response will influence the previously-controlled ones when multiple
responses are controlled successively. It can be seen that the C-MRCOP method has a satisfactory
beampattern. The A2RC and WORD methods can also generate a beampattern with broadened nulls
and low sidelobes. The beampattern with a flat-top mainlobe within [−8◦, 8◦], two broadened notches,
and low sidelobes are obtained in Figure 4(d). The sidelobe level is set as −25 dB, and depths for two
null regions are −55 and −50 dB, respectively. It is shown that a desired beampattern with controlled
responses is synthesized using the C-MRCOP method. Moreover, it is also seen from the enlarged figures
that a more precious beampattern with the minimum fluctuation in the mainlobe is obtained using the
C-MRCOP method. The corresponding weight vectors obtained with C-MRCOP are listed in Table 2.
Moreover, the SDR [23], A2RC [32], and WORD [33] methods are implemented for comparison. Note
that, the method using artificial interferences in [18] fials to control the mainlobe. Terms, including
runtimes, average difference, and iteration numbers, are listed in Table 3. It is seen from Table 3 that
the C-MRCOP converges faster with reduced runtimes and less iteration numbers compared with the
other methods. The runtimes of WORD, A2RC, artificial interferences based, and C-MRCOP methods
are 2.89, 2.91, 0.29, and 0.61 s, respectively. Furthermore, the average maximum difference for multiple
regions between the resultant beampattern and the desired response is smaller. Besides, methods such
as the WORD and A2RC update the weight vector in a point-by-point manner, which fail to control
multiple points simultaneously. Therefore, the C-MRCOP method outperforms the other methods in the
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Figure 4 (Color online) Equivalent transmit beampattern in the transmit spatial domain. (a) Beampattern with two accurately

controlled nulls; (b) beampattern versus number of iterations; (c) beampattern with two accurately controlled notches and low

sidelobes; (d) beampattern with a flat-top mainlobe, two accurately controlled notches and low sidelobes.

Table 2 Weight vectors obtained with C-MRCOP

Element Weight vector Element Weight vector

1 0.0268e+j2.0332 9 0.2177e−j0.5228

2 0.0487e+j1.8918 10 0.1706e−j0.4363

3 0.0697e+j1.7327 11 0.1176e−j0.4363

4 0.0538e+j1.0652 12 0.0644e+j0.3527

5 0.0640e+j0.3328 13 0.0555e+j1.0865

6 0.1151e−j0.2575 14 0.0701e+j1.7569

7 0.1677e−j0.4341 15 0.0494e+j1.8931

8 0.2160e−j0.5196 16 0.0266e+j2.1132

Table 3 Comparisons of different methods

Method Runtime (s) Average difference (dB) Iteration number

C-MRCOP 1.01 0.1026 200

SDR 78.16 0.2649 8

WORD 3.47 0.3895 2000

A2RC 3.37 0.4904 2000

following aspects: (1) less processing time; (2) lower sidelobes; (3) a flatter mainlobe.
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Figure 5 (Color online) Element response of 16 elements.

Table 4 Actual positions of the antenna elements

Elemen1 Elemen2 Elemen3 Elemen4 Elemen5 Elemen6 Elemen7 Elemen8

x-axis (mm) 2.2149 2.7459 −1.3841 0.9269 −1.2631 −0.6691 −0.9791 0.0519

y-axis (mm) −70.1975 −61.2545 −52.5485 −42.1855 −32.2045 −23.0975 −13.8915 −4.5835

z-axis (mm) −0.0690 2.3700 3.2260 3.1760 2.1360 3.4760 2.6850 1.7530

Elemen9 Elemen10 Elemen11 Elemen12 Elemen13 Elemen14 Elemen15 Elemen16

x-axis (mm) −0.7341 1.0639 0.4679 0.3639 −1.9191 −0.4341 −0.3681 −0.0841

y-axis (mm) 4.7365 14.2225 22.6145 33.2375 42.6655 51.7785 61.1615 71.0435

z-axis (mm) 1.9650 1.3300 1.8000 2.5380 3.3230 0.5070 1.0560 1.1640

5.2 Range-angle-dependent transceive beampattern with measured results

In this subsection, measured results are provided to verify the effectiveness of the proposed methods. In
specific, the antenna measurement is carried out, where an FDA with 16 antenna elements is employed. In
this respect, the practical antenna element pattern, i.e., g (θ0), is considered in the beampattern design,
where the element responses for 16 elements are presented in Figure 5, and the actual positions of the
antenna elements in the descartes coordinate system are listed in Table 4, where the phase center is the
middle of the 8th and 9th elements.

Figure 6 compares the original 2-D transceive beampatterns between the conventional MIMO radar
and FDA-MIMO radar, where the target is located at R0 = 10 km and θ0 = 0◦. Different from the
conventional MIMO radar, the transceive beampattern of FDA-MIMO radar is range-angle-dependent,
while the transceive beampattern is only angle-dependent for conventional MIMO radar.

Figure 7 demonstrates the designed 2-D range-angle-dependent transceive beampattern in FDA-MIMO
radar. Assume that the null depth for both two null regions is −45 dB, and the sidelobe level is −20 dB.
Figure inspirations in Figure 7(a) highlights the effectiveness of the proposed methods in forming a range-
angle-dependent transceive beampattern with a desired shape, where two rectangular null regions and a
flat-top mainlobe are obtained. The range and angle regions of the mainlobe are assumed as [−7◦, 7◦] and
[9, 11] km, respectively. As for the first null region, the range and angle regions are assumed as [−7◦, 7◦]
and [25, 30] km, respectively. The range and angle regions of the second null region are assumed as
[−50◦,−40◦] and [9, 11] km, respectively. As shown by the 1-D range-dependent beampatterns at θ0 = 0◦

in Figure 7(b), the measured results coincide with the simulated ones, which verifies the effectiveness of
the proposed method. Figure 7(c) demonstrates the 1-D angle-dependent beampatterns at R0 = 10 km.
Notice that the null depth cannot be as low as desired due to system errors with measured data.
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Figure 6 (Color online) Comparison of original transceive beampatterns. (a) Conventional MIMO radar; (b) FDA-MIMO radar.
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Figure 7 (Color online) Designed range-angle-dependent transceive beampatterns with measured data. (a) Resultant 2-D beam-

pattern; (b) 1-D range-dependent beampattern at θ0 = 0◦; (c) 1-D angle-dependent beampattern at R0 = 10 Km.

5.3 Application of interference mitigation

In this subsection, the mitigation of mainlobe interferences in the dynamic environment is evaluated,
where the interferences are regarded as point scatterers. As considered in [37], the interferences can be
suppressed by nulling at the range-angle-dependent beampattern. However, when time-varying interfer-
ences are considered, the mismatches exist in both mainlobe and nulling angles, leading to a failure of
interference suppression. In this respect, using the proposed C-MRCOP method, the received echoes of
the target and interferences can be suppressed through a 2-D data-independent beamformer, where the
weight vector is obtained by using the output of Algorithm 2, that is

wC−MRCOP =
⌣

wl. (37)

Figure 8 investigates the interference suppression performance, where two interferences exist. The the
range and angle of the first interference is θj1 = −45◦ and Rj1 = 10 km, respectively. For the second
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Figure 8 (Color online) Nonstationary interference suppression results with the C-MRCOP method. (a) Capon distribution;

(b) matched filtering result in the range-angle domain; (c) matched filtering result at θ0 = 0◦.

interference, the angle θj2 = 0◦ and range Rj2 = 28 km are assumed. The moving environment leads
to mismatches both in mainlobe and nulling angles. Assume that the mismatched angle is 3◦. Shown
in Figure 8(a), there are deviations of the positions for the target and interferences in the range-angle
domain. Figures 8(b) and (c) illustrate the output of the transmit-receive 2-D matched filtering, where
the weight vector is previously devised to obtain the beampattern in Figure 7(a). Assume that the number
of range bins is 500, and the range bins of the target and the interferences are 334, 334, and 434. It can be
seen in Figure 8(b) that the target is easily detected with the maximum power in the range-angle domain
after the transmit-receive 2-D matched filtering, and interferences with angle mismatches are effectively
suppressed. The output result in the presence of angle mismatch is presented in Figure 8(c). It is shown
that the output power of the interference is high when angle mismatch exists, which in turn generates a
high false-alarm ratio. In contrast, by using the C-MRCOP method, the broadened nulls are obtained
to suppress the moving interferences adequately, where the output power of interferences can be reduced
to a small level. Besides, a flat-top mainlobe is aquired to extend receiving areas for the target, where
the response of the target is still constrained to be unity, i,e., w†

C−MRCOPu0 = 1. The measured result
shows good agreement with the simulated one, as shown in the Figure 8(c).

6 Conclusion

In this paper, the design of range-angle-dependent transceive beampattern in FDA-MIMO radar has
been investigated. At the design stage, methods have been developed to control the responses of the
beampattern. In specific, a single response can be adjusted based on weight vector orthogonal decompo-
sition according to a predefined level. Then, for multiple responses, a filtering matrix has been designed
by virtue of an oblique projection operator. In this way, iterative algorithms have been proposed by
controlling multiple responses either concurrently or successively, termed as C-MRCOP and S-MRCOP,
respectively. As a result, the range-angle-dependent transceive beampattern can be formed with a flat-top
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mainlobe, multiple broadened quasi-nulls, and low sidelobes. At the analysis stage, a comparison of the
beampattern performance among different methods including the SDR, the WORD and A2RC has been
done. Moreover, the C-MRCOP method has been applied to the suppression of mainlobe interferences,
where angle mismatches both in mainlobe and nulls are involved. Real array antenna measurements have
been collected, demonstrating good performance of the designed transceive beampattern and mainlobe
interference suppression.

Possible future research studies include designing the weight vector exploiting other methods and
accounting for the presence of some specific jammer scenarios.
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Appendix A Derivations of the received signals after matched filtering

The received signals in (2) are firstly multiplied by e−j2πf0t. Then, on each receive channel, the echo is digitally mixed with

e−j2π(l−1)∆ft, it yields,

ȳn(t, θ0) = α0e
j2π d

λ
(n−1) sin(θ0)e−j2π∆f(l−1)t

M
∑

m=1

φm(t − τ0)e
j2π∆f(m−1)(t−τ0)ej2π

d
λ

(m−1) sin(θ0)
. (A1)

Then, it passes through a bank of matched filters, where the output of the n-th received signal from the l-th filter, i.e.,

hl(t) = φ∗
l (−t), is expressed as

ŷn(t, θ0) =

∫ ∞

−∞

ȳn(t, θ0)hl (t − τ) dτ

= α0e
j2π d

λ
(n−1) sin(θ0)

M
∑

m=1

e
j2π d

λ
(m−1) sin(θ0)

∫

∞

−∞

φm(τ − τ0)φ
∗
l (τ − t) e

j2π∆f(m−1)(τ−τ0)
e
−j2π∆f(l−1)τ

dτ

s=τ−τ0
= α0e

j2π d
λ

(n−1) sin(θ0)e−j2π∆f(l−1)τ0

M
∑

m=1

ej2π
d
λ

(m−1) sin(θ0)
χl,m (t − τ0, (m − l)∆f), (A2)

where the cross-ambiguity function is defined as

χl,m (t − τ0, (m − l)∆f) =

∫

∞

−∞

φm(s)φ
∗
l (s − (t − τ0)) e

j2π∆f(m−l)s
ds

≈
∫

Tp

0

φm (s)φ∗
l (s)ds = Rl,m, (A3)

where the approximations rely on the use of pulses whose cross-ambiguities is Doppler tolerant, i.e., the ambiguity function exhibits a

flat behavior in a neighbourhood of the origin (0,0). Assume that the transmitted waveforms are orthogonal, i.e., Rl,m =
{

1,m = l,

0,m 6= l,

the n-th signal after matched filtered with the l-th waveform is expressed as

ŷn(t, θ0) = α0e
j2π d

λ
(n−1) sin(θ0)e−j2π∆f(l−1)τ0 ej2π

d
λ

(l−1) sin(θ0)
. (A4)

It can be seen that ŷn(t, θ0) is time-independent. Subsequently, the received signals from the n-th element can be expressed in

an M × 1-vector form as

yn,m = [ŷn,1 (t, θ0) , ŷn,2 (t, θ0) , . . . , ŷn,M (t, θ0)]
T = α0aT (R0, θ0) e

j2π d
λ

(n−1) sin(θ0)
. (A5)

Hence, the overall received signal is obtained by stacking the output of the correlators into an M2 × 1-dimensional vector as

ys = [y1 (t, θ0) ,y2 (t, θ0) , . . . ,yM (t, θ0)]
T

= α0bR (θ0) ⊗ aT (R0, θ0) . (A6)

Appendix B Proof for proposition 1

Substituting αl = 1

u
†
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⊥
+βlu
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into (15), we have the equation as
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We find that Eq. (44) is a quadratic equation about βl. For simplicity, define a1
∆
= w

†
‖
ulu

†
l
w‖, a2

∆
= ξw
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u0u
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0w‖, a3
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=
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0w‖, a4

∆
= ξw

†
‖
u0u

†
0w⊥, and a5

∆
= ξw

†
⊥u0u

†
0w⊥. Eq. (44) is further abstracted into a mathematical problem as

β
2
l (a1 − a2) − βl (a3 + a4) − a5 = 0. (B2)

Calculating the discriminant in (45), it is expressed as

∆ = (a3 + a4)
2 + 4a5 (a1 − a2)

= 4ξw†
‖
ulu

†
l
w‖w

†
⊥u0u

†
0w⊥

= 4ξ|w†
‖
ul|2|w†

⊥u0|
2
> 0. (B3)

Hence, the solutions to (47) are derived as

⌣
β

1

l =
(a3 + a4) +

√
∆

2 (a1 − a2)
, (B4a)

⌣
β

2

l =
(a3 + a4) −

√
∆

2 (a1 − a2)
. (B4b)
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