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Abstract Group encryption (GE), the encryption analog of group signatures, is a fundamental primitive

that offers a privacy-preserving service for a specific receiver concealed within a group of certified users.

Like other cryptographic primitives, GE constructions are always considered relative to the potential danger

of quantum computations. The only existing lattice-based variant appeared in the work of Libert et al.

(Asiacrypt’16). Despite its non-trivial achievement, the construction suffers in terms of efficiency due to the

extensive use of lattice trapdoors. In this paper, we develop an integrated zero-knowledge argument system

that is friendly to both accumulated values and hidden matrices and supports efficient designs from lattices.

Based on this system, we propose efficiency enhancing GE where only group users are required to possess

the lattice trapdoors and the other parties are not. In particular, we utilize lattice-based cryptographic

accumulators to confirm prospective group members and use the dual Regev encryption scheme to provide

privacy for ciphertext recipients. These modifications significantly increase GE efficiency. In addition, under

the intractability assumptions of the standard lattice problems, we prove the security of the proposed scheme

in the standard model (assuming interaction during the proof phase), which retains the strongest level of

security as the only currently available candidate.
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1 Introduction

Group encryption (GE) is a fundamental anonymity primitive introduced by Kiayias, Tsiounis, and Yung
(KTY) [1] to protect the identities of valid users who are allowed to decrypt the well-formed ciphertexts.
In general, GE is known as the natural encryption analog of group signatures [2] that, in a similar
manner, conceal honest signers within a certified population. Except for slight differences, GEs and
group signatures share common design concepts and have similar structures. For salient properties,
such as ciphertext verifiability and user identity privacy, GE is widely applied to intercepting uncertified
encrypted emails, building oblivious retriever storage systems, and hierarchical group signatures [3].

In practice, the most frequently considered goals of GE schemes are security and efficiency. Libert et
al. [4] proposed the first lattice-based construction under the classical assumptions of the standard learning
with errors (LWE) [5] and the short integer solutions (SIS) [6] to withstand quantum attacks. The pro-
posed construction realizes all the specific functionalities defined in [1] via ordinary digital signatures [7]
and Agrawal-Boneh-Boyen (ABB) encryption variants [4], both of which rely heavily on lattice trap-
doors. However, inefficiency was inevitable; the use of lattice trapdoors implies a significant gap between
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theoretical design and practical implementation. The analysis provided in a previous study [8] indicates
that lattice trapdoors, such as Gentry-Peikert-Vaikuntanathan (GPV) trapdoors [9] and Micciancio-
Peikert trapdoors [10, 11], can help construct the most ubiquitous lattice-based cryptographic schemes.
However, designing efficient cryptographic schemes using the currently best trapdoor-generation algo-
rithms [6, 10, 12] is difficult, since the allowed parameters are commonly large.

Eliminating the use of trapdoors is a reliable way to deal with the efficiency issue. Actually, it improves
the practicality of lattice-based schemes in essential. Following this idea, we consider taking several mod-
ification strategies for the scheme [4]: We use lattice-based cryptographic accumulators [13] rather than
the lattice-trapdoor-based digital signatures [7] to verify group membership. In addition, we replace ABB
encryption variants [4] with the double LWE encryption mechanism [13,14] to protect anonymous recipi-
ents. To some extent, these modifications reduce the extreme reliance on lattice trapdoors, significantly
increase the range from which system parameters can be selected, and provide a more efficient scheme.

Our contributions. Motivated by the dramatic efficiency of lattice-based cryptographic schemes
that do not involve trapdoors, we start with the group encryption [4] that involves multiple lattice
trapdoors [9, 15], and employ the techniques shown in [13] to build a variant that only requires a single
trapdoor. Our primary contributions can be summarized as follows:

•We develop a zero-knowledge argument system that is friendly to both the lattice-based accumulators
and the quadratic relation of a matrix-vector with a hidden matrix. It supports the construction of
cryptographic schemes that rely on fewer or even no lattice trapdoors and is further helpful for addressing
the efficiency problem associated with the use of trapdoors.

• Building on the above zero-knowledge argument system and the dual Regev encryption mechanism, we
realize a much more efficient lattice-based group encryption scheme by using fewer trapdoors. Compared
to the strongest security level of the only currently existing scheme [4], our scheme obtains drastically
shorter keys and ciphertexts and lower communication cost; however, as yet it is unpractical.

Related work. The group encryption primitive was first formalized by Kiayias et al. [1]. They offered
a helpful design routine by simultaneously applying zero-knowledge (ZK) proofs, appropriate digital
signatures (e.g., [16]), and anonymous CCA2-secure public-key encryptions (e.g., [17]). Later, Cathalo
et al. [18] improved the initially interactive scheme by developing a non-interactive case using a fresh
public key certification scheme and standard techniques that incurred the smallest amount of interaction.
Working toward a practical implementation, Aimani et al. [19] utilized succinct approaches to hide the
identities of group members over weaker assumptions. To better balance privacy vs. safety, Libert
et al. [20] proposed a variant with public traceability to specific ciphertexts that shared functionality
similar to that of traceable signatures [21]. Further, Izabachène et al. [22] constructed traceable group
encryptions free of subliminal channels, stressing confidentiality, anonymity, and traceability.

All the group encryptions described above are vulnerable to quantum computers in that they were pro-
posed based on the number-theoretic hardness, e.g., factoring or computing composite degree residuosity
classes. To address this, Libert et al. [4] proposed the only currently existing lattice-based construction
via extensive use of lattice trapdoors throughout the design, which made the instantiation suffer low
efficiency and significantly worse parameter choices. Then, to solve the inefficiency problem, we employ
several trapdoor-free cryptographic techniques to construct an efficiency enhancing group encryption that
achieves CCA2-secure encryption [23] and anonymous recipients [1] over the same lattice assumptions.

Organization. In Section 2, we introduce the associated concepts and definitions of group encryptions
and lattice-based cryptography, and recall the Libert-Ling-Nguyen-Wang (LLNW) lattice-based accumu-
lators. Section 3 develops an integrated Stern-like argument system, which is friendly to accumulated
values and hidden matrices, and serves as the underlying protocol for our construction. Our main scheme
is described and analyzed in Section 4. Conclusion and suggestions for future work are provided in
Section 5.

2 Preliminaries

In this section, initially we provide the formal notions and definitions of the group encryption primitive,
and the computationally hard lattice problems to be believed. Then, lattice-based accumulators, which
are used to verify the group membership, are recalled.
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2.1 Group encryptions

We adopt the syntax and security model similar to that of [1] except for some differences1), where the GE
primitive involves several parties (i.e., a sender, a verifier, a group manager (GM) issuing identifiers to
recipients of ciphertexts and an opening authority (OA) who reveals recipients’ identities), and is specified
by the following algorithms and protocols.

• SETUP(λ): This algorithm consists of the following three procedures and generates group public key
gpk = (pp, pkGM, pkOA) as follows:

(1) SETUPinit(1
λ): Given the security parameter λ, the procedure samples public parameters pp.

(2) SETUPGM(pp): Given parameters pp, the procedure returns a key pair (pkGM, skGM) for the GM.
(3) SETUPOA(pp): On input pp, the procedure outputs a key pair (pkOA, skOA) for the OA.

An interaction is occurred between the GM and the OA, successfully creating the group public key gpk

and initializing the registration table reg at its end.
• UKGEN(pp): Given parameters pp, this algorithm returns the user a key pair (pkU, skU).

• 〈JOIN(gpk, pkU, skU), ISSUE(skGM, pkU)〉: This is an interaction run by the GM and a prospective user,
whose successful completion joins the new group member with a membership identifier certU.

• 〈Gr , sampleR〉(pp,R): Given parameters pp and relation R, procedure Gr produces a key pair
(pkR, skR), which allows sampler sampleR to generate a pair (x,w) ∈ R.
• ENC(gpk, pkU, certU,M): This algorithm is executed by the sender to compute a group encryption Ψ

on message M under some public key pkU.

• DEC(skU, Ψ, L): The intended receiver decrypts the ciphertext Ψ .

• OPEN(skOA, info, reg, Ψ, L): This algorithm is run by the OA to return an identity U of a group
member or ⊥ if it fails to trace the receiver.
• 〈P(gpk,R, pkU, certU, Ψ, coinsΨ ),V(gpk, Ψ,πΨ)〉: The sender and verifier carry out the interactive

procedure between them, given inputs, to convince the verifier that the ciphertext Ψ is actually generated
for one of group members.
For the security requirements of our GE scheme, as in [1], correctness, message secrecy, anonymity,

and soundness are considered and analyzed. Here we only give the informal statements, and their formal
definitions are referred to [1].

Correctness asks that a ciphertext generated by a genuine sender is always decrypted successfully
by decryptor DEC, and that procedure OPEN is always able to correctly identify the recipient, while
producing an accepted proof.

Message secrecy demands that, for any probabilistic polynomial-time (PPT) adversary, it is difficult
to distinguish a random ciphertext from a one generated under a specific relation, even if it can corrupt
all parties except the honest receiver, can pick the GM’s key, and is allowed access to the OPEN and
PROVE oracles.

Anonymity says that, for any PPT adversary, it is impossible to distinguish ciphertexts computed
under two valid public keys it chooses, even when it controls the entire system except OA, and is allowed
for the OPEN oracle.

Soundness requires that, for any PPT adversary, it is quite difficult to produce a convincing valid
ciphertext that can be opened to an unregistered group member or an invalid public key, even if it can
choose OA’s key, and is granted access to the REG oracle.

2.2 Computational lattice problems

The security of our scheme relies on the hardness of the following standard lattice problems, which are
believed difficult to solve in polynomial time.

Definition 1 (SIS). Given parameter n and appropriate positive integers m, q, β, the SISn,m,q,β de-
mands, for any A ←֓ U(Zn×m

q ), to search a vector x ∈ Z
m \ {0} with norm bound β such that A ·x = 0.

By choosing appropriate parameters, the worst-case lattice problem SIVPγ can be reduced to the
average-case one SISn,m,q,β . Such an example follows by setting m,β = poly(n); q >

√
nβ and γ =

Õ(√nβ) (e.g., [6, 9, 24]).

1) The KTY model is defined for dynamic enrollments, which allows the population to grow. Our model does not involve dynamic

enrollments; the group is fixed once all potential users have joined. Although our model is somewhat less dynamic compared to [4],

it is still of interest for use in some realistic scenarios and in terms of efficiency gain.
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Definition 2 (LWE). Given appropriate positive integers n, m, q, and a probability distribution on Z

denoted as χ, for secret s ∈ Z
n
q , define As,χ as the distribution generated by sampling a ←֓ U(Zn

q ) and

e ← χ, and returning (a,aT · s + e) ∈ Z
n
q × Zq. The goal of LWEn,q,χ is to distinguish m samples from

As,χ and m samples from U(Zn
q × Zq), respectively.

For prime power q, one can build a discrete integer distribution χ bounded by B >
√
nω(logn),

for which there exists an efficient reduction from the SIVPÕ(nq/B) problem to the LWEn,q,χ problem

(e.g., [5, 25, 26]).

2.3 LLNW lattice-based Merkle-tree accumulators

Our construction takes the LLNW lattice-based accumulator [13] as a crucial building block to enroll
the prospective users into the group in a free-of-trapdoors manner. The accumulator shares the same
properties as the number-theoretic counterparts [27–30], and is built on the family of hash functions
H = {hA|A ∈ Z

n×m
q } that map any input pair (u0,u1) ∈ ({0, 1}nk)2 to hA(u0,u1) = bin(A0 · u0 +A1 ·

u1 mod q) ∈ {0, 1}nk and have the collision resistance property based on the SIS problem. Additionally,
the accumulator supports the zero-knowledge argument of knowledge (ZKAoK). Here, we set integers
k = ⌈log q⌉,m = 2nk and take the matrix A = [A0|A1] ∈ Z

n×m
q consisting of two same-size blocks, and

yet use the notation bin(·) to represent the binary decomposition function.

Informally, the accumulator is described via a tuple of algorithms (TSetup,TAcc,TWitness,TVerify).
Namely, given a Merkle-tree with N = 2ℓ leaves, algorithm TSetup samples a random matrix A for hash
function hA; algorithm TAcc accumulates all given values R = {d0 ∈ {0, 1}nk, . . . ,dN−1 ∈ {0, 1}nk} on
leaves into the root u via a recursive computation ub1,...,bi = hA(ub1,...,bi,0,ub1,...,bi,1) for any node at
depth i ∈ [ℓ] with (b1, . . . , bi) ∈ {0, 1}i, given the initial definition u = hA(u0,u1) for the root u; and
algorithm TWitness returns ⊥ if d /∈ R or the witness w = ((j1, . . . , jℓ), (uj1,...,jℓ−1,j̄ℓ , . . . ,uj1,j̄2 ,uj̄1)) ∈
{0, 1}ℓ×({0, 1}nk)ℓ that demonstrates that d ∈ R for some j ∈ [0, N−1] with binary form (j1, . . . , jℓ) such
that d = dj , where b̄ denotes the bit 1−b for any bit b; finally, given witness w = ((j1, . . . , jℓ), (wℓ, . . . ,w1))
∈ {0, 1}ℓ × ({0, 1}nk)ℓ, and set vℓ = d, algorithm TVerify computes the path vℓ−1, . . . ,v0 ∈ {0, 1}nk in
the recursive fashion by using the formula vi = j̄i+1 · hA(vi+1,wi+1) + ji+1 · hA(wi+1,vi+1) for any
j ∈ [0, N − 1] and i ∈ [ℓ− 1] with initial setting u = v0. It is proved that the accumulator is secure under
the infeasibility assumption of the SISn,m,q,1 problem.

3 The supporting zero-knowledge argument system

We first recall the decomposition, extension, and permutation techniques applied in [4, 13] and build

several sophisticated permutation techniques (special permutations F
(t)
b,π(·) and F

(t)
π (·)). Then, we build

our statistical ZKAoK that plays a crucial role in our GE scheme.

Before this section, it should be first noted that, as in [4], our argument system is also Stern-type statical
zero-knowledge [31] that can produce a simulated transcript having a negligibly statistical distance to that
produced from the interaction carried out by honest prover and any verifier, and is further Σ-protocols
in the generalized sense [32, 33] where extraction needs 3 instead of just 2 valid transcripts. More
recently, numerous cryptographic constructions based on lattice problems [34–36] or code problems [33]
are designed with the help of these protocols.

3.1 Decompositions, extensions, and permutations

Decompositions. For any integer number B ∈ Z+, by setting δB: = ⌊log2 B⌋ + 1 and computing

the sequence {B1, B2, . . . , BδB} via Bj = ⌊B+2j−1

2j ⌋, ∀j ∈ [1, δB], we can decompose any integer i ∈
[0, B] into i =

∑δB
j=1 ij · Bj , which directly gives a desired bit vector as idecB(i) = (i1, . . . , iδB )

T ∈
{0, 1}δB . The decomposition method can be executed in a deterministic manner as shown in [4], and
can further be adapted to decomposing vectors and matrices after combining with the matrix Hm,B =
Im ⊗ (B1 B2 · · · BδB ) ∈ Z

m×mδB
q , as follows:

– vdecm,B: decomposes m-size vector v = (v1, . . . , vm)
T with vi ∈ [0, B] for each i = 1, . . . ,m, into

(idecB(v1)
T‖ · · · ‖idecB(vm)T)T ∈ {0, 1}mδB , holding that v = Hm,B · vdecm,B(v).
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– vdec′
m,B: maps any vector w = (w1, . . . , wm)

T ∈ [−B,B]m to the vector (σ(w1) · idecB(|w1|)T‖ · · ·
‖σ(wm) · idecB(|wm|)T)T ∈ {−1, 0, 1}mδB , where σ(·) is the sign(·) function which outputs −1, 0 or 1
according to negative, 0 or positive inputs, respectively. Similarly, this gives that w = Hm,B ·vdec′m,B(w).
– mdecn,m,q: decomposes a given matrix X = [x1| · · · |xn] ∈ Z

m×n
q with {xi}ni ∈ Z

m
q , to a binary

vector (vedcm,q−1(x1)
T‖ · · · ‖vedcm,q−1(xn)

T)T ∈ {0, 1}nmδq−1. In the framework of Stern-type zero-
knowledge argument system, the generalized matrix decomposition is applied in proving knowledge of a
lattice relation with hidden matrices, and we defer the involved statement to the following discussion of
expansion operator expand⊗(·, ·).
Extensions. For simplicity, we use Bt

2t to denote the set of all length-2t binary vectors with exact
Hamming weight t, and use Bt

3t to represent the set of length-3t vectors that share the equal t’s number
for each entry of {−1, 0, 1}, then start with the simple encoding techniques.

– enc(·, ·): {0, 1}× {0, 1}m → {0, 1}2m extends a size-m vector bit v to a vector of the form z = ( b̄ · v
b · v )

for a choice of bit b.
– enct(·): {0, 1}t → {0, 1}2t maps any bit vector x = (x1, . . . , xt)

T to a double-size bit vector of
form enct(x) = (x̄1, x1, . . . , x̄t, xt)

T ∈ {0, 1}2t. Given a random bit x, a trivial example is shown as
enc1(x) = (x̄, x)T.
– ext2(·): {0, 1}t → Bt

2t. Extend length-t bit vector x with Hamming weight hw to the double-length
vector x′ = [xT‖(1(t−hw))T‖(0(hw))T]T.
– ext3(·): {0, 1}t → Bt

3t. Getting y with exact ni entries i, ∀i ∈ {−1, 0, 1} as input, it gives
y′ = [yT‖((−1)(t−n−1))T‖(0(t−n0))T‖(1(t−n1))T]T. This function is mainly used in extending the de-
compositions of vectors with infinity norms bounded by some integer B (see, e.g., [4, 7]).
– Ext(·, ·): {0, 1}2 → {0, 1}4 encodes a bit pair (e1, e2) ∈ {0, 1}2 to a four-bit multiplication vector

(ē1 · ē2, ē1 · e2, e1 · ē2, e1 · e2)T.
– expand⊗(·, ·): {0, 1}nmk × {0, 1}nk → {0, 1}4nmk2

. By imposing the function Ext(·, ·) on all pos-
sible pairs of the form (xi,j , si,t), where the index i, j, t runs through [n], [mk], [k], respectively,
this operator maps two bit vectors X0 = (x1,1, . . . , x1,mk, . . . , xi,1, . . . , xi,mk, . . . , xn,1, . . . , xn,mk)

T and
s0 = (s1,1, . . . , s1,k, . . . , si,1, . . . , si,k, . . . , sn,1, . . . , sn,k)

T to vector z of the form

(
ExtT(x1,1, s1,1)‖ · · · ‖ExtT(x1,1, s1,t)‖ · · · ‖ExtT(x1,1, s1,k)‖ · · · ‖ExtT(xi,j , si,1)‖ · · · ‖ExtT(xi,j , si,t)‖
· · · ‖ExtT(xi,j , si,k)‖ · · · ‖ExtT(xn,mk, sn,1)‖ · · · ‖ExtT(xn,mk, sn,t)‖ · · · ‖ExtT(xn,mk, sn,k)

)T
,

which defines z = expand⊗(X0, s0).
We note that the last above extension expand⊗(·, ·) is crucial in representing the matrix-vector product

for hidden matrices. By combining with the above decompositions for vectors and matrices, we can
equally write the matrix-vector product with hidden matrices as the matrix-vector product where the
matrices are public. Namely, let {q1, . . . , qk} be the sequence of integers computed by function idecq−1(·),
set g = (q1, . . . , qk) and g′ = (0, 0, 0, q1, . . . , 0, 0, 0, qk) ∈ Z

4k
q , then for X ∈ Z

m×n
q and s ∈ Z

n
q , one can

obtain

X · s mod q = Q · expand⊗
(
X0, s0

)
mod q,

where X0 = mdecn,m,q(X), s0 = vdecn,q−1(s), and Q = Hm,q−1 · Q̂ ∈ Z
m×4nmk2

q , Q̂ = [

n times︷ ︸︸ ︷
Q0| · · · |Q0] ∈

Z
mk×4nmk2

q , and Q0 := Imk ⊗ g′ ∈ Z
mk×4mk2

q . This equally allows writing the equation b = X ·
s + e mod q with the secret input (X, s, e) ∈ Z

m×n
q × Z

n
q × [−β, β]m as the common equation b =

Q · z+Hm,β · e0 mod q, where the secret vectors are given by z = expand⊗(X0, s0) ∈ {0, 1}4nmk2

,X0 =
mdecn,m,q(X) ∈ {0, 1}nmk, s0 = vdecn,q−1(s) ∈ {0, 1}nk, and e0 = vdec′m,β(e) ∈ {−1, 0, 1}mδβ .
Permutations. Before the following statement, it is first noted that we abuse the notation of trans-

position in the first three definitions, and denote by Si the symmetric group consisting of all possible
permutations for i elements. The involved permutations are given as follows.

– T
(t)
b (·) : (Zm

q )2t → (Zm
q )2t. For any vector b = (b1, . . . , bt)

T ∈ {0, 1}t, it transforms a vector

z = (z
(0)
1 , z

(1)
1 , . . . , z

(0)
t , z

(1)
t )T into the vector T

(t)
b (z) = (z

(b1)
1 , z

(b̄1)
1 , . . . , z

(bt)
t , z

(b̄t)
t )T. As a special case,

set x = (x1, . . . , xt)
T ∈ {0, 1}t and y = enct(x), this holds the following equivalence:

y = enct(x)⇐⇒ T
(t)
b (y) = enct(x⊕ b). (1)
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– F
(t)
b,π(·) : (Zm

q )2t → (Zm
q )2t. Given a random bit vector b = (b1, . . . , bt)

T ∈ {0, 1}t and a set of

permutations π = (π1, . . . ,πt), it transforms a vector z = (z
(0)
1 , z

(1)
1 , . . . , z

(0)
t , z

(1)
t )T into the vector

F
(t)
b,π(z) = (π1(z

(b1)
1 ),π1(z

(b̄1)
1 ), . . . ,πt(z

(bt)
t ),πt(z

(b̄t)
t ))T. Namely, F

(t)
b,π first arranges the each block of

the targeted vector z according to bit vector b, then permutes the corresponding block under πi for each

i ∈ [t]. A trivial example is given by F
(1)
b,π(z) = (π(zT

b ),π(z
T
b̄
))T under taking t = 1, b ∈ {0, 1} and a

permutation π. As a special case, set z = (encT(c1,v1), . . . , enc
T(ct,vt)) where vectors vi ∈ Bt

2t and

πi ∈ S2t, ∀i ∈ [t], we obtain that: F
(t)
b,π(z) = (encT(c1⊕ b1,π1(v1)), . . . , enc

T(ct⊕ bt,πt(vt)))
T. The result

is applicable in the construction of our ZKAoK system.

– F
(t)
π (·) : (Zm1

q × · · · × Z
mt
q ) → (Zm1

q × · · · × Z
mt
q ). Given a set of permutations π = (π1, . . . ,πt),

it transforms a vector z = (z1, . . . , zt)
T into the vector F

(t)
π (z) = (π1(z1), . . . ,πt(zt))

T. Namely, F
(t)
π

arranges each block of z according to the corresponding entry of π for each i ∈ [t].
– Tb1,b2(·) : Z

4 → Z
4, where b1, b2 ∈ {0, 1}. It transforms any integer vector of the form v =

(v0,0, v0,1, v1,0, v1,1)
T ∈ Z

4
q into the vector of the form (vb1,b2 , vb1,b̄2 , vb̄1,b2 , vb̄1,b̄2)

T, which supports the
following equation:

z = Ext(c1, c2)⇐⇒ Tb1,b2(z) = Ext(c1 ⊕ b1, c2 ⊕ b2). (2)

– Pa,b(·) : Z4nmk2 → Z
4nmk2

. Given the length-nmk binary vector a and the length-nk binary vector

b consisting of {ai,j}i,j and {bi,t}i,t, respectively, it transforms an integer vector v ∈ Z
4nmk2

q consisting

of nmk2 vectors vi,j,t of the form (v
(0,0)
i,j,t ,v

(0,1)
i,j,t ,v

(1,0)
i,j,t ,v

(1,1)
i,j,t )

T according the lexicographic order for all
(i, j, t) ∈ [n] × [mk] × [k], to the same-size vector w consisting of wi,j,t via the basic transformation
wi,j,t = Tai.j ,bi,t(vi,j,t). This leads the following equivalence:

z = expand⊗(X0, s0)⇐⇒ Pa,b(z) = expand⊗(X0 ⊕ a, s0 ⊕ b). (3)

It is remarked that the above permutation F
(t)
b,π(·) is crucial for proving accumulated values in the ZK

manner. Actually, the key component of the proof is what concerns the algorithm TVerify(·) given by

vi = j̄i+1 · hA(vi+1,wi+1) + ji+1 · hA(wi+1,vi+1)

⇐⇒ A · enc(ji+1,vi+1) +A · enc(j̄i+1,wi+1) = G · vi mod q, (4)

where we use G to denote the “powers-of-2” matrix G = In ⊗ (1 2 · · · 2k−1). After making the modifica-
tions: employ operators ext2(·) and enc(·, ·) to extend the targeted vectors {vi}i and {wi}i, respectively.
Then, extend all the involved public matrices accordingly, which allows equally rewriting equation (4) as
one that is appropriate for Stern-like zero-knowledge proof [31]. Finally, the desired proof for this system

is achieved in ZK by imposing the permutation F
(t)
b,π(·) on the extended secret vectors.

3.2 Integrated stern-type zero-knowledge argument system

In this subsection, we first construct the integrated zero-knowledge argument system named as ΠGE

that is adaptive to both accumulated values and hidden matrices, then the system will be applied in
the construction of our group encryption scheme in Section 4. In order for the argument system to be
more general, we take the unifying strategy for equations used in [4, 7] to run our system. In particular,
we still write the unified equation involved with two distinct primes p and q as M · t = u mod Q for
simplicity, i.e., the presented general equation implicitly consists of two components M1 · t1 = u1 mod p
and M2 · t2 = u2 mod q unless otherwise specified. Based on the specifications, we consider the following
system with 10 modular equations:





u1 = M1,1 · t1 +M1,2 · t2 + · · ·+M1,13 · t13 mod p,
...

u6 = M6,1 · t1 +M6,2 · t2 + · · ·+M6,13 · t13 mod p,

u7 = M7,1 · t1 +M7,2 · t2 + · · ·+M7,13 · t13 mod q,
...

u10 = M10,1 · t1 +M10,2 · t2 + · · ·+M10,13 · t13 mod q.

(5)
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In the above, the matrices and vectors shown as {Mi,j}(i,j)∈[10]×[13], {ui}i∈[10] are publicly known, and
some of their choices are possibly zero. Our task is to provide the proof for secret vectors t1, . . . , t13 in
ZK, which satisfies (5) while obeying the following constraints:

(1) t1 ∈ {0, 1}nm̄k2 , t2 ∈ {0, 1}nk2, and expand⊗(t1, t2) ∈ {0, 1}4nm̄k2
2 . (These vectors are generated

via the use of technologies shown in Subsection 3.1).

(2) Vectors t4, . . . , t10 are binary, where t4 and t5 respectively have complicated representations like
(encT(j1,v1), enc

T(j̄1,w1), . . . , enc
T(jℓ,vℓ), enc

T(j̄ℓ,wℓ))
T and (uT,v1

T, . . . ,vT
ℓ−1)

T constructed in equa-
tion system (15).

(3) Vectors t11, t12, t13 are provided in infinity form.

Towards achieving our goal, we perform the following operations.

– Firstly, employ the decompositions shown in Subsection 3.1 to decompose all vectors that possess
norm bigger than 1 into norm-1 ones.

– Secondly, extend the above fresh norm-1 vectors into those invariants under random permutations
given in Subsection 3.1. As a necessary step, the public matrices {Mi,j} are accordingly changed to
maintain these equations.

– Thirdly, build M · t = u mod Q that unifies all the present equations, where t is obtained via the
concatenation of newly generated witness-vectors and Q is adaptively taken as p and q according to the
above system (5).

– Finally, utilize a composite permutation and perform a Stern-type protocol, then the proof for the
general equation M · t = u mod Q is accomplished.

In essence, the above 4-step strategy is an abstraction of the central idea of running Stern-type protocols
for relations from lattices [35, 36]: performing appropriate preprocess to witness-vectors to make the
generated vectors have invariant weights under any randomly chosen permutations, rewriting these vectors
into a unified form, and finally running Stern-like protocol as usual. The concrete steps are seen below.

The first step imposes function vdec′(·) shown in Subsection 3.1 on vectors t11, t12, and t13, then vec-
tor ti with dimension mi and infinity norm bound βi is decomposed into t′i = vdec′

mi,βi
∈ {−1, 0, 1}miδβi .

This holds that Hmi,βi
· t′i = ti.

The second step executes the following encoding and extending operations.

– Encode t1, t2, and t8: First, compute t′′1 = encnm̄k2(t1) and t′′2 = encnk2(t2) followed by t′′3 =
expand⊗(t1, t2), then, compute t′′8 = encℓ(t8), whose knowledge is preserved by the “one-time pad”
permuting techniques in (1) and (3).

– Extend {0, 1}-vectors t4, . . . , t10 (excluding t8) and t′11, t
′
12, t

′
13. For each i ∈ [6, 10] but i = 8, extend

the vector ti to t′′i = ext2(ti) ∈ Bmi

2mi
assuming dimension mi. Similarly, vector t′′i = ext3(t

′
i) ∈ B

miδβi

3miδβi

with dimension miδβi
is obtained for each i ∈ [11, 13]. By permutations shown in Subsection 3.1,

proving the knowledge of vectors {t′′i }13i=6 (except for i = 8) in ZK is achieved. But for i = 4, 5,
we need a much more sophisticated treatment: set t6 = vℓ, and extend {vj}ℓj=1, {wj}ℓj=1 via ext2(·)
to {v′′

j }ℓj=1, {w′′
j }ℓj=1 ∈ Bnk1

m1
, respectively, then build t′′4 = (encT(j1,v

′′
1 ), enc

T(j̄1,w
′′
1 ), . . . , enc

T(jℓ,v
′′
ℓ ),

encT(j̄ℓ,w
′′
ℓ ))

T and t′′5 = (uT,v′′T
1 , . . . ,v′′T

ℓ−1)
T by these newly computed vectors.

To construct permutations suitable to vectors t′′4 and t′′5 , we use ComMix1 to represent the set of all size-
2m1ℓ bit vectors that meanwhile possess the form (encT(j1,v

∗
1), enc

T(j̄1,w
∗
1), . . . , enc

T(jℓ,v
∗
ℓ ), enc

T(j̄ℓ,
w∗

ℓ ))
T, and similarly set ComMix2 as that of vectors in {0, 1}(2ℓ−1)nk1 with the form (uT,v∗T

1 , . . . ,v∗T
ℓ−1)

T

for {v∗
i }ℓi=1, {w∗

i }ℓi=1 ∈ Bnk1
m1

. It is trivial to check that vectors t′′4 ∈ ComMix1 and t′′5 ∈ ComMix2,
respectively. Now, for i ∈ [1, ℓ], pick random bi ∈ {0, 1}; πi, φi ∈ Sm1 respect to vectors {vi}i and {wi}i,
respectively, and set b = (b1, b1, . . . , bℓ, bℓ)

T, π(1) = (π1, φ1, . . . ,πℓ, φℓ), then former is closed under the

permutation F
(2ℓ)

b,π(1)(t
′′
4 ) shown as in Subsection 3.1. For the latter, we define a composed permutation

π
(2) := (ε,π1, . . . ,πℓ−1) where the symbol ε is used to represent the identity permutation, then the

targeted vector is also closed under the permutation F
(ℓ)

π
(2)(t

′′
5 ) given in Subsection 3.1. All of this gives

that

t′′4 ∈ ComMix1 ⇐⇒ F
(2ℓ)

b,π(1)(t
′′
4 ), t′′5 ∈ ComMix2 ⇐⇒ F

(ℓ)

π
(2)(t

′′
5 ). (6)

– Like the above discussion, dimensions of the witness-vectors are changed, which makes it necessary
to perform some modifications on the public matrices {Mi,j} to maintain the original equations (5). This
can be readily achieved by imposing simple operations on primitive public matrices.
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By the above statements, we are provided with the following system which is actually equal to the
system (5): 




u1 = M ′′
1,1 · t′′1 +M ′′

1,2 · t′′2 + · · ·+M ′′
1,13 · t′′13 mod p,

...

u6 = M ′′
6,1 · t′′1 +M ′′

6,2 · t′′2 + · · ·+M ′′
6,13 · t′′13 mod p,

u7 = M ′′
7,1 · t′′1 +M ′′

7,2 · t′′2 + · · ·+M ′′
7,13 · t′′13 mod q.

...

u10 = M ′′
10,1 · t′′1 +M ′′

10,2 · t′′2 + · · ·+M ′′
10,13 · t′′13 mod q.

(7)

The final step aims to prove secret witness-vectors in ZK and only involves simple algebra knowledge.
Let

M =




M ′′
1,1 M ′′

1,2 . . . M ′′
1,13

...
...

...

M ′′
6,1 M ′′

6,2 . . . M ′′
6,13

M ′′
7,1 M ′′

7,2 . . . M ′′
7,13

...
...

...

M ′′
10,1 M ′′

10,2 . . . M ′′
10,13




, t =




t′′1

t′′2
...

t′′7
...

t′′13




, u =




u1

...

u6

u7

...

u10




,

which directly results into the unified system M · t = u mod Q.
After making the preparations above, we perform the final step to put forth our protocol. For the

targeted vector t, we first denote its dimension by D quantified as D = 2nm̄k2 + 2nk2 + 4nm̄k22 +
10nk1ℓ+2m2+2ℓ+4m̃+6m2δB +3m̄δβm2B, then we define the set of all dimension-D vectors that have
the form z = (zT

1 ‖ · · · ‖zT
13)

T consisting of {−1, 0, 1} entries as VALID, where
(1) z1 = encnm̄k2(y1), z2 = encnk2(y2), and z3 = expand⊗(y1,y2) and z8 = encℓ(y8), for (y1,y2,y8) ∈
{0, 1}nm̄k2 × {0, 1}nk2 × {0, 1}ℓ.
(2) zi ∈ Bmi

2mi
for i ∈ [6, 10] (but i = 8); while for i ∈ [11, 13], zi ∈ B

miδβi

3miδβi
.

(3) Vectors z4 ∈ ComMix1 and z5 ∈ ComMix2.
It is clear that the unified vector t is one of the possible elements of the fresh tailored set VALID. By

the above construction, the task that one performs a proof to convince verifiers that he knows vectors
t1, . . . , t13 satisfying these specific constraints and system (5) is equal to that demonstrating his possession
of vector t ∈ VALID satisfies the unified system M · t = u mod Q. To achieve this goal in ZK, we will
execute a Stern-type ZK protocol in which we employ masking techniques shown as uniformly random
chosen vectors as well as permutations to hide the targeted t. This makes it convenient to define the
permutations that are applicable to t. Let

S = {0, 1}nm̄k2 × {0, 1}nk2 ×
ℓ times︷ ︸︸ ︷

Sv2m1
× · · · × Sv2m1

×
ℓ times︷ ︸︸ ︷

Sw2m1
× · · · × Sw2m1

× S2m6 × S2m7 × {0, 1}ℓ × S2m9 × S2m10 × S3m11δβ11
× S3m12δβ12

× S3m13δβ13
. (8)

Set π(1)= {πv
i , φ

w
i }ℓi=1, π

(2)= {ε, {πv
i }ℓ−1

i=1}, π6 = π
v
ℓ , b8=(b

(8)
1 , . . . , b

(8)
ℓ )T, b′8=(b

(8)
1 , b

(8)
1 , . . . , b

(8)
ℓ , b

(8)
ℓ )T.

We associate each element π = (b1, b2,π
(1),π(2),π6,π7, b8, b

′
8,π9, . . . ,π13) with the permutation Γπ,

which transforms vector t = (tT1 , . . . , t
T
13)

T ∈ Z
D where each block ti has the same length as t′′i for all

i ∈ [13] into vector

Γπ(t) =
(
T

(nm̄k2)
b1

(t1)‖T (nk2)
b2

(t2)‖Pb1,b2(t3)‖F
(2ℓ)

b′

8,π
(1)(t4)‖F (ℓ)

π
(2)(t5)

‖π6(t6)‖π7(t7)‖T (ℓ)
b8

(t8)‖π9(z9)‖ · · · ‖π13(t13)
)
.

It is trivial that, by the permutations shown in Subsection 3.1, the following relation holds for any sampled
π ∈ S.

t ∈ VALID⇐⇒ Γπ(t) ∈ VALID.
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Figure 1 Our zero-knowledge argument of knowledge for the GE.

In addition, given any t ∈ VALID and π ←֓ S, we will find that Γπ(t) ∈ VALID, which is sufficient to
provide a ZK proof for t ∈ VALID under the Stern’s protocol. Furthermore, proving the secret vector t
satisfying M · t = u mod Q will be accomplished by showing that M · (t + rt) − u = M · rt mod Q to
the verifier.

For clarity, we depict the interaction executed between prover P and verifier V in Figure 1 by specifying
their respective executions. Prior to the interaction, both parties will get the public matrix M and vector
u from the public inputs. Here, P constructs the desired vector t using the secret inputs, as described
above. The protocol plays the central role under the string commitment scheme COM proposed in [37]
that has a few appealing properties.

For completeness, we summarize our protocol’s properties in Theorem 1, whose concrete statements are
found in the subsequent discussion and lemmas. Note that the proof of Stern-like ZKAoK for a unified
system is trivial, similar to that of [4, 7] by adopting some techniques from [13]. Thus, due to space
limitations, we do not address in detail.

Theorem 1. Given a string commitment scheme COM that both has the statistically hiding and
computationally binding properties, then the interactive protocol provided above is a statistical ZKAoK
that shares perfect completeness, soundness error 2/3, and communication cost Õ(D logQ).

Completeness and communication cost. By the previous sections, it is easily checked that the
present protocol is complete, and V outputs 1 if P honestly follows the protocol. In addition, it is also
observed that the communication cost is Õ(D logQ) bits.

Lemma 1 (Zero-knowledgeness). Suppose that the COM has the statistically hiding property, then
there is an efficient simulator that takes the (M ,u) as input, and produces an accepted transcript that
keeps the negligible statistical distance to that generated by the real prover.

Lemma 2 (Argument of knowledge). Assume the COM having the computationally binding property,
given the commitment CMT, then there is a polynomial-time knowledge extractor K that gets 3 valid
responses (RSP1,RSP2,RSP3) to the corresponding challenge values Ch = 1, 2, 3 as input, respectively,
and generates a t′ ∈ VALID satisfying the equation M · t′ = u mod Q.

4 Our proposed group encryptions from lattices

In this section, we show how to apply the LLNW Merkle-tree accumulators [13, 14] and the Stern-type
argument system described in Subsection 3.2 to construct our group encryption scheme over lattice
assumptions. In terms of efficiency, the proposed scheme is comparable to the previously proposed
scheme [4] since only one lattice trapdoor is required. Indeed, the presented scheme does not use the
signature technique any longer to identify the group membership, and it hides the targeted group users’
identities via the multi-bit version of the Regev encryption scheme, all of which eliminate the need to use
lattice trapdoors.
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4.1 Description of the scheme

As in [4], our GE scheme also allows encrypting witness for the Inhomogeneous SIS relation RISIS given
by ((AR,uR),m) ∈ (Zn×m2

q ×Z
n
q )× {0, 1}m2 with uR = AR ·m mod q, which is a lattice version in the

same spirit as that of [1]. Given the maximum number of prospective members N = 2ℓ = poly(λ), we
make steps to build the GE scheme.

• SETUPinit (1
λ): This procedure conducts the following.

(1) Select integer n = O(λ) and primes p = Õ(n1.5) and q = Õ(n4) followed by k1 = ⌈log p⌉, k2 =
⌈log q⌉, respectively. Then, for each i ∈ {1, 2}, set mi = 2nki, m̃ = 2(n+ ℓ)k1 and m2 = 2m̄, and build a
discrete distribution χ bounded by B =

√
nω(logn) over the integer ring Z.

(2) Select positive σ = Ω(
√
n log q logn) to build a discrete Gaussian distribution DZ,σ of which samples

are bounded by β = σ · ω(logn).
(3) Choose the public parameters parCOM for the string commitment scheme [37] that serves as the

construction of the ZKAoK system used in 〈P ,V〉, and take κ = ω(logλ) as the repetition times of
protocol.
(4) Sample a one-time signature scheme OT S = (Gen, Sig,Ver) with strong unforgeability whose veri-

fication key lives in Z
n
q .

(5) Take FRD: Zn
q → Z

n×n
q as the full-rank difference operator [38].

(6) Choose a matrix F ←֓ U(Zn×nm̄k2
p ) which hashes the public keys of group users from Z

n×m̄
q to Z

n
p .

(7) Set basic matrices Gi = In ⊗ [1 2 · · · 2ki−1] for each i ∈ {1, 2}. Choose a matrix A = [A0|A1] ←֓
U(Zn×m1

p ) consisting of two same-size blocks that will be used in the construction of accumulator, and

select matrices Ā, U ←֓ U(Zn×m2
q ) used in encrypting messages.

Output pp = {λ, n, q, k1, k2,m1,m2, B, χ, σ, β,N, κ,OT S, parCOM,FRD,A, Ā,G1,G2,F ,U}.
• SETUPGM(pp): Sample a one-time signature with verification/signing key pair (pkGM, skGM) ∈ (Zn

p ×
{0, 1}m1)m1 for the GM, where skGM consists of m1 binary vectors sk

(i)
GM ∈ {0, 1}m1, each of which matches

that of pkGM over Zn
p under the mapping pk

(i)
GM = A · sk(i)GM.

• SETUPOA(pp): This procedure picks a matrix B ←֓ U(Zn×m̃
p ), also does Si ←֓ U(Zn×ℓ

p ) and Ei ←
χℓ×m̃ for i ∈ {1, 2}, and computes Pi = ST

i · B + Ei ∈ Z
ℓ×m̃
p , resulting a key pair (pkOA, skOA) =

((B,P1,P2),S1) for the OA.
When GM receives pkOA sent from the OA, it executes the following:
(1) Build table reg: = (reg[0], . . . , reg[N − 1]) initialized as reg[i] = 0nk for each i ∈ [0, N − 1]. It

will write the records of the registered public keys.
(2) Build a Merkle tree T based on the records of the table reg. It is noted that all reg[i]’s are zero

at the outset and are changed with users’ public keys by the GM when one successfully joins the group.
(3) Set the counter as c := 0.
Later on, the GM builds and publishes the group public key gpk=(pp,pkGM,pkOA), while T as well as c

is kept by himself.
• UKGEN(pp): For each j ∈ [0, N − 1], user Uj samples Tj ← Dm̄

Zm2 ,σ and computes a statistically

uniform matrix Bj = Ā · T
j
∈ Z

n×m̄
q , resulting into a key pair (pkj , skj) = (Bj ,Tj) with an associated

binary hash value pj = bin(F · mdecn,m̄,q(Bj)) ∈ {0, 1}nk1. We say that w.l.o.g. all honestly generated
pkj ’s are non-zero and pairwise distinct, since the probability that one takes Tj = 0, or Tj = Tj′ for some
j 6= j′, or finds a solution to the average-case lattice problem SISn,m1,p,1 underlying the Merkle tree is
negligible.
• 〈JOIN(gpk, pkj , skj); ISSUE(skGM, pkj)〉: When one having a key pair (pkj , skj) with the hash value pj

wants to become a valid group user, he transmits pj to the GM who proceeds the following procedures
with him after the request is accepted:
(1) GM sets a member identifier uid = bin(c) = bin(j) ∈ {0, 1}ℓ for the user, and executes the following:
– Write the valid hash value into the table reg as reg[c] := pj.
– Increase the counter c := c+ 1 till the maximum expected N − 1.
(2) When c = N−1, the GM runs the algorithm TAccA(R) to build T based on R = (p0, . . . ,pN−1) and

obtains the root value u ∈ {0, 1}nk1. Then, for each j ∈ [0, N−1], invoke the procedure TWitnessA(R,pj)
to generate the corresponding witness

w(j) =
(
(j1, . . . , jℓ), (w

(j)
ℓ , . . . ,w

(j)
1 ) ∈ {0, 1}ℓ × ({0, 1}nk1)ℓ

)
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that demonstrates pj is actually accumulated in u. Finally, issue the signature σu on root u under skGM,
as well as u and witnesses {w(j)}Nj=1.

(3) User checks the validity of σu and w(j) and outputs ⊥ if they are unaccepted. Otherwise, set
certj = w(j) as the certificate of pkj .
• 〈Gr , sampleR〉: Algorithm Gr outputs (pkR,skR)= (AR, ε), then the sampler sampleR takes pkR as

input to output a tuple ((AR,uR),m) satisfying uR = AR ·m.
• ENC(gpk, pkj , certj ,m, L): To encrypt message m obtained from algorithm sampleR, parse pkOA as

(B,P1,P2) and certj as w(j) for some j ∈ [0, N − 1].
(1) Select a key pair (SK,VK)← Gen(1λ) with VK ∈ Z

n
q for the one-time signature.

(2) Obtain the full-rank-difference result HVK = FRD(VK) ∈ Z
n×n
q of the above generated VK ∈ Z

n
q .

(3) Encrypt a message m ∈ {0, 1}m2 under the user Uj ’s public key pkj ∈ Z
n×m̄
q as follows.

(a) Sample srec ←֓ U(Zn
q ),Rrec ← Dm2×m̄

Z,σ , and xrec,yrec ← χm2 , then compute zrec = RT
rec · yrec ∈ Z

m̄.
(b) Compute 




c(1)rec = ĀT · srec + yrec mod q,

c(2)rec = (Bj +HVK ·G2)
T · srec + zrec mod q,

c(3)rec = UT · srec + xrec +
⌊q
2

⌉
·m mod q,

(9)

then set crec = (c
(1)
rec , c

(2)
rec , c

(3)
rec ) ∈ Z

m2
q × Z

m̄
q × Z

m2
q , which results an ABB ciphertext [38] associated with

the given tag VK.
(4) Use the dual Regev encryption mechanism to encrypt j = (j1, . . . , jℓ)

T ∈ {0, 1}ℓ. For each i ∈ {1, 2},
sample r

(i)
oa ←֓ {0, 1}m̃ and compute c

(i)
oa = (c

(i,1)
oa , c

(i,2)
oa ) as follows:

c(i,1)oa = B · r(i)
oa mod p,

c(i,2)oa = Pi · r(i)
oa +

⌊p
2

⌉
· j mod p,

(10)

which leads coa = (c
(1)
oa , c

(2)
oa ) ∈ (Zn

p × Z
ℓ
p)

2.
(5) Compute a one-time signature Σ = Sig(SK, (crec, coa, L)).
Return the final ciphertext as

Ψ =
(
VK, crec, coa, Σ

)
, (11)

and the secret state information coinsΨ = (srec,Rrec,xrec,yrec, r
(1)
oa , r

(2)
oa ).

• DEC(skj , Ψ, L): The decryptor takes the following executions:
(1) Return ⊥ if Ver(VK, Σ, (crec, coa, L)) = 0. Otherwise, parse the secret key skj as Tj ∈ Z

m2×m̄ and
the ciphertext Ψ as in (11), meanwhile define a fresh matrix BVK = Bj + FRD(VK) ·G2 ∈ Z

n×m̄
q .

(2) Decrypt crec with the sampled key below associated with the specific VK:

(a) Set Bj,VK = [Ā|BVK] = [Ā|Ā · Tj + FRD(VK) · G2] ∈ Z
n×(m2+m̄)
q . Utilize Tj and the publicly

known trapdoor TG2 of G2, then invoke the SampleRight algorithm in [38] to sample a small norm matrix

EVK ∈ Z
(m2+m̄)×m2
q that satisfies Bj,VK ·EVK = U mod q.

(b) Compute

m =

⌊(
c(3)rec −ET

VK ·
[
c
(1)
rec

c
(2)
rec

])/⌊q
2

⌉⌉
, (12)

and return the obtained m ∈ {0, 1}m.

• OPEN(skOA, info, reg, Ψ, L): Decrypt the ciphertext c
(1)
oa = (c

(1,1)
oa , c

(1,2)
oa ) by preforming the following

steps:
(1) Check Ver(VK, Σ, (crec, coa, L)), return ⊥ if the value is 0. Otherwise, parse the secret key skOA as

S1 ∈ Zq
n×ℓ and the ciphertext coa as in (10).

(2) Compute (j′1, . . . , j
′
ℓ) = ⌊(c

(1,2)
oa − ST

1 · c
(1,1)
oa )/(p/2)⌉ ∈ {0, 1}ℓ, and output an integer j ∈ [0, N − 1]

if the integer has the freshly computed binary representation, and the group information info contains
w(j) with reg[j] 6= 0nk1 .
• 〈P ,V〉: Both parties take gpk, (AR,uR) and the ciphertext Ψ as the public input, and the prover

gets the set of a message m ∈ {0, 1}m2, pkj = Bj , certj , and the random coins coinsΨ used to generate Ψ
as input, as specified above.



Pan J, et al. Sci China Inf Sci May 2022 Vol. 65 152304:12

The goal of the prover is to carry out a ZK proof to convince the verifier that the secret inputs he made
satisfy the following:

(1) AR ·m = uR mod q.

(2) G1 · pj = F ·mdecn,m̄,q(Bj) mod p and TVerifyA(u,pj , w
(j)) = 1.

(3) Vectors xrec,yrec have infinity B-bounded norms, zrec has βm2B-bounded norm, as well as r
(i)
oa lives

in {0, 1}m̃ for each i = 1, 2.

(4) Eqs. (9) and (10) hold.

In order to achieve this aim, P performs the following executions:

(1) Perform decomposition on matrices and vectors, respectively. Map the matrix Bj ∈ Z
n×m̄
q into

bj = mdecn,m̄,q(B
T
j ) ∈ {0, 1}nm̄k2 , and the vector srec into s0,rec = vdecn,q−1(srec) ∈ {0, 1}nk2, resulting

into zΨ = expand⊗(bj , s0,rec) ∈ {0, 1}4nm̄k2
2 . Set

Q = Hm̄,q−1 · [
n times︷ ︸︸ ︷

Q0| · · · |Q0] ∈ Z
m̄×4nm̄k2

2
q , (13)

where the composite matrix Q0 = Im̄k2 ⊗ g′ ∈ Z
m̄k2×4nm̄k2

2
q is shown as in Subsection 3.1.

(2) Produce a ZKAoK of the following set of relations:





j = (j1, . . . , jℓ)
T ∈ {0, 1}ℓ,

(pj , (w
(j)
ℓ , . . . ,w

(j)
1 )) ∈ {0, 1}nk1 × ({0, 1}nk1)ℓ,

bj ∈ {0, 1}nm̄k2 , s0,rec ∈ {0, 1}nk2,

zΨ = expand⊗(bj , s0,rec) ∈ {0, 1}4nm̄k2
2 ,

‖xrec‖∞, ‖yrec‖∞ 6 B, ‖zrec‖∞ 6 βm2B,

m ∈ {0, 1}m2, r(1)
oa , r(2)

oa ∈ {0, 1}m̃,

(14)

which demonstrates the following system of equations (in appropriate order) holds:





A · enc(j1,v1) +A · enc(j̄1,w1) = G1 · u mod p,

i ∈ [ℓ− 1] : A · enc(ji+1,vi+1) +A · enc(j̄i+1,wi+1) = G1 · vi mod p,

0 = G1 · pj + (−F ) · bj mod p,vℓ = pj ,

c1,1 = B · r(1)
oa mod p, c1,2 = P1 · r(1)

oa +
(⌊p

2

⌉
· Iℓ
)
· j mod p,

c2,1 = B · r(2)
oa mod p, c2,2 = P2 · r(2)

oa +
(⌊p

2

⌉
· Iℓ
)
· j mod p,

c(1)rec = (ĀT ·Hn,q−1) · s0,rec + Im2 · yrec mod q,

c(2)rec = Q · zΨ + (GT
2 ·HT

VK ·Hn,q−1) · s0,rec + Im̄ · zrec mod q,

c(3)rec = (UT ·Hn,q−1) · s0,rec + Im2 · xrec +
(⌊q

2

⌉
· Im2

)
·m mod q,

uR = AR ·m mod q.

(15)

Let t1 = bj , t2 = s0,rec, t3 = expand⊗(t1, t2), t4 = (encT(j1,v1)‖encT(j̄1,w1)‖ · · · ‖encT(jℓ,pj)‖encT(j̄ℓ,
wℓ))

T, t5 = (uT‖vT
1 ‖ · · · ‖vT

ℓ−1)
T, t6 = pj , t7 = m, t8 = j, t9 = r

(1)
oa , t10 = r

(2)
oa , t11 = xrec, t12 = yrec,

t13 = zrec. Accordingly, set M1,4 = Iℓ ⊗ [A|A], M1,5 = Iℓ ⊗ (−G1), M2,1 = −F , M2,6 = G1,
M3,9 = M5,10 = B, M4,8 = M6,8 = ⌊p2⌉ · Iℓ, M4,9 = P1, M6,10 = P2, M7,2 = ĀT ·Hn,q−1, M7,12 =
M9,11 = Im2 , M8,2 = GT

2 ·HT
VK ·Hn,q−1, M8,3 = Q, M8,13 = Im̄, M9,2 = UT ·Hn,q−1, M9,7 = ⌊ q2⌉·Im2 ,

M10,7 = AR, and u3 = c1,1, u4 = c1,2, u5 = c2,1, u6 = c2,2, u7 = c
(1)
rec , u8 = c

(2)
rec , u9 = c

(3)
rec , u10 = uR

and also set the left public matrices {Mi,j} and vectors {ui} as being zero, which allows writing the
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system (15) as: 



u1 = M1,1 · t1 +M1,2 · t2 + · · ·+M1,13 · t13 mod p,
...

u6 = M6,1 · t1 +M6,2 · t2 + · · ·+M6,13 · t13 mod p,

u7 = M7,1 · t1 +M7,2 · t2 + · · ·+M7,13 · t13 mod q,
...

u10 = M10,1 · t1 +M10,2 · t2 + · · ·+M10,13 · t13 mod q.

(16)

We note that the present argument system is achieved by performing the protocol constructed in
Subsection 3.2, whose negligibly soundness error is obtained after repeating it κ times.
Correctness. The correctness of the proposed group encryption follows from correctly decrypting the

ABB ciphertext and the ordinary LWE ciphertext, which may cause some decryption errors. To decrypt
the ciphertext crec, by utilizing procedure DEC(skj, Ψ,L), we obtain

c(3)rec −ET
VK ·

[
c
(1)
rec

c
(2)
rec

]
= xrec −ET

VK ·
[
yrec

zrec

]
+m ·

⌊ q
2

⌉
. (17)

Note that ‖xrec‖∞ and ‖yrec‖∞ both have upper bound B, resulting ‖zrec‖∞ = ‖RT
rec ·yrec‖∞ 6 βm2B =

Õ(n2). In addition, observing that the matrix EVK is generated by using Gaussian preimage sample

technique, it will be similarly considered due to its elements bounded by Õ(√n). Therefore, the norm

of error term of (17) will be not beyond Õ(n3.5), which shows that the discussed error can be negligible
when divided by ⌊ q2⌉ and performed with rounding operation. All of this ensures that the decryption
algorithm will be exactly performed and finally return the desired m with high probability. This gives
the correctness of DEC(skj, Ψ,L).
For OPEN(skOA, info, reg, Ψ, L), a similar analysis is performed, where we only need to consider the

case i = 1 as follows:

c(1,2)oa − ST
1 · c(1,1)oa =

(
ST
1 ·B +E1

)
· r(1)

oa +
⌈p
2

⌋
· j − ST

1 ·B · r(1)
oa

= E1 · r(1)
oa +

⌈p
2

⌋
· j. (18)

Note that, for the specific parameters setting, the decryption procedure will return j = (j1, . . . , jℓ)
T if

‖E1 · r(1)
oa ‖∞ < p/4 with overwhelming probability. This closes the desired correctness.

In the end, we argue that, since our argument system constructed in Subsection 3.2 has the perfect
completeness, if a certified group member genuinely executes all prescribed algorithms, then he can
compute the valid witness-vectors that are applicable in the proof protocol to generate accepted proofs
by the verifier.

4.2 Efficiency analysis

It is observed that the implementations of the presented group encryption can be completed in polynomial
time since all the algorithms involved are polynomially effective. For clarity, evaluations for bit-sizes of
keys, ciphertexts, and communication cost of protocol between prover and verifier, will be given as follows.
– The size of public key of GM is dominated by the one-time signature scheme it chooses, and bit-size
Õ(λ2) is available. The public key of OA consists of a set of matrices having total bit-size Õ(λ2 + ℓ2λ),

and user’s public key is provided with a matrix of size Õ(λ2).

– The secret keys of GM and users are given by bit string and trapdoors of bit-size Õ(λ2), along with

cert of size Õ(ℓλ), while OA’s secret key is shown with Õ(ℓ2λ) bits.
– The generated ciphertext Ψ contains three components, i.e., one ABB ciphertext of size (2m2 +

m̄)⌈log q⌉, and one ordinary LWE ciphertext of size 2(n+ ℓ)⌈log p⌉ as well as a one-time signature Σ for

the first two components, resulting the total bit-size Õ(λ) + |Σ|.
– The communication cost of the ZKAoK heavily relies on the size of zΨ = expand ⊗ (bj , s0,j) ∈
{0, 1}4nm̄k2

2 and its bit-size is quantized as Õ(λ2).
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Table 1 Comparison between scheme [4] and oursa)

Scheme GM PK GM SK OA PK OA SK User’s PK User’s SK Ciphertext Communication

LLMNW [4] 68.60 GB 482.55 GB 2.37 GB 38.86 GB 2.37 GB 38.86 GB |Σ|+8.67 MB 3728.00 TB

Ours 71.75 MB 148.49 MB 74.12 MB 21.18 KB 192.38 MB 2.67 GB |Σ′|+1.06 MB 255.81 TB

a) We remark that, in the above, |Σ| = 2.36 TB and |Σ′| = 82.99 GB, which directly follows from the use of one-way function

of the form M · x = y mod q in OT S scheme, where M ∈ U(Zn×m
q ), x ∈ {0, 1}m, and m = n⌈log q⌉.

To better understand the efficiency advantage, we also provide a simple comparison between our scheme
and the LLMNW scheme [4], which is the only currently available group encryption instantiation over
lattices. We consider 80-bit security and a 2−80 soundness error (implying that the repetition number
of the protocol described in Subsection 3.2 is specified as κ = 137) under the same group size N = 210.
We adopt the same approach as in [39–41] to estimate the security of the schemes. Following the specific
routine, we run the BKZ cost estimator2) with lattice sieving algorithms [42, 43] (which are expected to
be significantly faster than enumeration algorithms [44, 45]), to obtain the root Hermite factor (RHF)
1.0048 corresponding to 80-bit security. Then, by the relations between RHF and lattice problems shown
in [39], we adopt suitable parameters as: (n, q) = (2795, 1125899906842679 ≈ 250) in scheme [4] and
(n, p, q) = (913, 262147 ≈ 218, 8796093022237 ≈ 243) in this work3). The results are summarized in
Table 1.

It is evident that our proposed scheme is essentially comparable to scheme [4]. Although our scheme
represents dramatic improvements, it is still far away from practical implementation. Cryptographic
components with trapdoors are always inefficient due to the excessive limitations on the chosen parame-
ters. We note that the GE will obtain dramatic improvements in terms of efficiency when its design does
not rely on any trapdoor. The most significant advantage of our scheme is to reduce the use of lattice
trapdoors, which consequently mitigates the efficiency dilemma in the sense of heavy trapdoors.

4.3 Security analysis

We provide positive provable security analysis for our scheme under SIS and LWE hardness assumptions
with the help of classical reduction methods as follows.

Theorem 2. Suppose that the Stern-like argument systems shown in Subsection 3.2 are simulation-
sound and the one-time signature OT S possesses the strong unforgeability. Then, the scheme provides
anonymity and message secrecy under the LWEn,q,χ assumption.

Proof. We provide the proofs of Lemmas 3 and 4 in the following, respectively, which together construct
our desired proof for this theorem.

Lemma 3. The scheme provides anonymity if the LWEn,q,χ assumption holds and the one-time signature
OT S is strongly unforgeable.

Proof. The proof is similar to [46] and is proceeded via the following sequence of games in which the first
one conducts the experiment Expanon-0

A (λ) and the final one is executed as the experiment Expanon-1
A (λ).

By demonstrating that any two consecutive games are indistinguishable, this proof will be completed.
For simplicity, hereunder we take PPT algorithms A and B as the adversary and challenger, respectively,
and denote by Wi the result of the adversary in game i.
Game 1. This is exactly the game Expanon-0

A (λ) where after the challenger B publicizes the parameters
pp, the opening authority OA sends its public key pkOA = (B,P1,P2) to A who introduces the group
members into the group on behalf of the GM via access to the USER oracle.
Specially, A selects two registered public keys pkU,0, pkU,1 ∈ Z

n×m̄
q given by the challenger, and outputs

((AR,uR),m, L) for which uR = AR ·m mod q, with AR ∈ Z
n×m
q , uR ∈ Z

n
q , and m ∈ {0, 1}m. Later

on, the challenger takes b ←֓ {0, 1} and computes a challenge ciphertext Ψ∗ = (VK∗, c∗rec, c
∗
oa, Σ

∗) of the
message m under pkU,b = BU,b. Then, generate the corresponding proof π∗

Ψ∗ and execute the prescribed
queries and responses. When A halts, it returns the result b′ ∈ {0, 1}, which gives the success probability
Pr[Expanon-0

A (λ) = 1].
Game 2. The challenger aborts this experiment when A makes the opening query to the ciphertext

Ψ = (VK, crec, coa, Σ) such that VK = VK∗ and Σ is valid (assuming that VK∗ is generated in advance).

2) Schanck J. Estimator. https://github.com/jschanck/estimator.

3) Here we take two suitable moduli for our scheme rather than only using a modulus. This action follows from the observation

that using a mechanism that does not involve trapdoors facilitates a more efficient choice of parameters.

https://github.com/jschanck/estimator
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At this case, it requires that the security of OT S is broken by A, which means that there exists an
efficient forger B for OT S such that |Pr[W2] − Pr[W1]| 6 Advots(λ). This leads that, assuming OT S
having strong unforgeability, the Gmae 2 is like Game 1.
Game 3. This game is the same as Game 2 except for one modification that adds S2 to skOA. It

makes no difference in the view of A, leading Pr[W3] = Pr[W2].
Game 4. This game modifies the oracle query of OPEN by using S2 to substitute S1. At this point,

the view of A is identical to in Game 3 except for the event F1, where a query to the OPEN oracle for

a valid ciphertext Ψ = (VK, crec, coa, Σ) with coa = (c
(1)
oa , c

(2)
oa ) encrypting distinct bit strings, happens.

However, this clearly means that the soundness of the ZKAoK considered in Subsection 3.2 is broken,
giving |Pr[W4]− Pr[W3]| 6 Pr[F1] 6 Advsound(λ) = negl(λ).
Game 5. Here we modify Game 4 in the generation of proofs π

∗
Ψ∗ via appealing the simulator of

the ZKAoK of Subsection 3.2, instead of computing proofs by the real witnesses r
(1)
oa , r

(2)
oa . Note that,

assuming that public parameters are generated in a trust manner, simulated proofs trivially follow from
the statistical zero-knowledge simulator (employing, e.g., Damg̊ard’s technology [47]). Then, by the
statistical zero-knowledgeness of the ZKAoK, this game is statistically indistinguishable to Game 4 in the
A’s view, which leads Pr[W5] = Pr[W4].

Game 6. This game has a slight modification in coa by taking c
(1)
oa as the encryption of bin(j1) while

pertaining c
(2)
oa still for bin(j0) for the challenge ciphertext Ψ∗. Note that this change is negligible to

A since the Regev encryption shares the semantic security for public key (B,P1), and it further incurs
|Pr[W6 = 1]− Pr[W5 = 1]| = negl(λ) by the fact that the OPEN queries are proceeded by S2.
Game 7. This game makes one change by switching back to the application of S1 for the OPEN queries

with discarding S2, and the modification is invariant to the adversary except the event F2, where the

queries to the OPEN for a valid ciphertext Ψ containing c
(1)
oa , c

(2)
oa encrypting distinct identities, happens.

But, the occurrence of F2 implies that the simulation soundness of the underlying ZKAoK system used
to generate ΠGE is broken. This results into |Pr[W7 = 1]− Pr[W6 = 1]| 6 Advss

ΠGE
(λ) = negl(λ).

Game 8. Here, this experiment performs a modification to the Game 7 only by taking c2 as the
encryption of bin(j1) for the challenge ciphertext Ψ∗. Note that this change is unnoticed to A due to the
semantic security the encryption shares for public key (B,P2), and also for the application of S1 to the
OPEN, we have |Pr[W8 = 1]− Pr[W7 = 1]| = negl(λ).
Game 9. Here, this experiment generates a real proof for ciphertext Ψ∗ instead of using simulated

proof, which is the only modification different to Game 8. The statistical zero-knowledgeness of the
underlying ZKAoK system makes the difference between Game 8 and Game 9 negligible, i.e., Pr[W8 =
1] ≈ Pr[W9 = 1]. This is actually the experiment Expanon-1

A (λ), which directly leads that Pr[W9 = 1] =
Expanon-1

A (λ). By these above games, we have

|Expanon-1
A (λ) −Expanon-0

A (λ)| = negl(λ). (19)

This provides anonymity.

Lemma 4. The scheme provides message secrecy if the LWEn,q,χ assumption holds and the one-time
signature OT S is strongly unforgeable.

Proof. This proof is similar to Theorem 3 of [4] in that similar security definition and encryption mech-
anism (i.e., ABB scheme [38]) are employed. We complete it by using a sequence of statistically indis-
tinguishable games where the first game is exactly the real experiment in (i.e., the case in which the
challenger chooses the bit b = 1, and the ciphertext and corresponding proof are generated from the real
encryption and the PROVE(·) oracle). Whereas, the last game is the simulated experiment where the
encryption is performed for some random plaintext and the associated proofs are produced by a simulator
P ′. For simplicity, we denote the event that the adversary A returns b′ = 1 by Wi in game i.
Game 1. By the security model, in this game, the public parameters pp including Ā,U ∈ Z

n×m
q are fed

to A by the challenger. Then the adversary generates public keys pkOA = (B,P1,P2) ∈ Z
n×m̃
q × (Zℓ×m̃

q )2

and pkGM, which means that both the OA and the GM are in its whole control, and it can execute
operations on behalf of them. The JOIN protocol between the challenger and A is run to register the
certified public key pkU = BU ∈ Z

n×m̄
q which is chosen by challenger for some genuine receiver. After that,

the adversary A makes a polynomial number of queries to DEC(·) oracle, and the challenger faithfully
handles by the private key skB = TB ∈ Z

m̄×m satisfying BU · TB = 0n×m. Then, A provides a triple
((AR,uR),m, L) satisfying uR = AR ·m with AR ∈ Z

n×m
q , uR ∈ Z

n
q , and m ∈ {0, 1}m. Later on, the
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challenger computes Ψ∗ = (VK∗, c∗rec, c
∗
oa, Σ

∗) for the real message m using pkU = BU as the encryption
key, as well as a polynomial number of proofs π∗

Ψ∗ associated with this ciphertext to A. Then, A is given
the access to the DEC(·) oracle with the prescribed restrictions. When the game is over, it returns a bit
b′ ∈ {0, 1}.
Game 2. This experiment imposes some modification on the DEC(·) oracle to reject any ciphertext

Ψ = (VK, crec, coa, Σ) which satisfies VK = VK∗ (here, we assume that VK∗ can be produced before
this game w.l.o.g.). It can be seen that Game 2 is like Game 1 except that it denies the ciphertext
that is accepted in Game 1. We note that it can only occur when A breaks the OT S that has strong
unforgeability. Thus, we have |Pr[W2]− Pr[W1]| 6 Advots(λ), which is negligible under the assumption
that OT S is strongly unforgeable.
Game 3. This experiment modifies the generation of proofs π∗

Ψ∗ . Namely, we apply the zero-knowledge
simulator presented in Subsection 3.2 rather than the witness used for Ψ∗ to compute proof at each access
to PROVEb

P,P′ (note that, given the trusted choice of parameters, the statistically perfect simulation can
be achieved by the techniques [47] without requiring considerable rounds). Here, the statistical zero-
knowledges ensures that the change is unnoticed, even if the adversary has an unbounded computation
power: |Pr[W3] − Pr[W2]| ∈ negl(λ). Hereunder, the PROVE oracle has never longer used the random

coins coins∗Ψ = (s∗rec,R
∗
rec,x

∗
rec,y

∗
rec, r

(1)∗
oa , r

(2)∗
oa ).

Game 4. In this game, we modify the generation of Ψ∗ by encrypting a random element in Z
m
q as c∗rec

where we no longer use the random coins as in Game 3. By the Lemma 9 in [4], it shows that any any
noticed variation in A′s view will imply the existence of a selective adversary that breaks the the ABB
encryption. Further, by the theorem 25 of [38], we obtain that, based on the hardness of LWE problem,
Game 4 is the same as Game 3: |Pr[W4]− Pr[W3]| 6 AdvLWE(λ).
Game 5. Now we make a final change on the decryption oracle DEC(·) and remove the rejection

rule of Game 2. By the assumption that OT S is strongly unforgeable, we have |Pr[W5] − Pr[W4]| 6
Advots(λ) 6 negl(λ). We note, in the last game, no any witness is known for the oracle PROVE(·), which
mirrors the experiment where bit b = 0 is chosen by challenger. Based on the above games, we have
|Pr[W5]− Pr[W1]| ∈ negl(λ). This completes the proof.
Put the above proofs together, we finally achieve the desired proof.

Theorem 3. The scheme is sound under the SIS assumption.

Proof. The proof is the same as that of [4] except for the differences of verifying group membership via
lattice-based accumulators and computing the ciphertext coa by the dual Regev encryption mechanism,
and the procedure of proof directly follows the similar idea and is omitted here, where we additionally
need to apply the property of SIS-based Merkle-tree accumulators to complete our result.

5 Conclusion

In this paper, we constructed a ZKAoK system that is both friendly to accumulated values and hidden
matrices. Based on this system, we apply the lattice-based accumulators and the dual Regev encryption
technique, neither of which involves lattice trapdoors, to propose a more efficient group encryption scheme
over lattices than [4]. Our proposed scheme achieves drastic gains in efficiency while not suffering any
loss in security.
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