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Abstract In this paper, two new blind adaptive identification and equalization algorithms based on second-

order statistics are proposed. We consider a practical case where the noise statistics of each transmission

channel is unknown. Resorting to the technique of antennas array, a single-input double-output channel

can be obtained. We further convert the problem of blind identification into an errors-in-variables (EIV)

parameter estimation problem, then we apply the normalized least-mean squares (NLMS) algorithms to

tackle the problem. To improve the performance of the NLMS algorithms, we also develop a variable step-

size NLMS (VSS-NLMS) algorithm that ensures the stability of the algorithm and faster convergence speed at

the beginning of the iterations process. Under various practical scenarios, noise affects transmission channels;

it is necessary to estimate the variance and remove the bias. By modifying the cost function, we present

a bias-compensated NLMS (BC-NLMS) algorithm and a bias-compensated NLMS algorithm with variable

step-size (BC-VSS-NLMS) to eliminate the bias. The proposed algorithms estimate the variances of the noise

online, and therefore, the noise-induced bias can be removed. The estimate of the channel characteristics is

available for equalization. Simulation results are presented to demonstrate the performance of the proposed

algorithms.
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pensation, errors-in-variables
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1 Introduction

Equalization technology is an effective method to tackle the problem that wireless communication systems
suffer from channel distortion due to inter-symbol interference (ISI) and noise [1]. Training-based methods
restrict the transmission efficiency of the communication channel due to its high dependence on training
sequence or prior information about the channel, which may not be available in practical cases, e.g.,
acoustic dereverberation, wireless communications, and time delay estimation [2]. By contrast, without
requiring training or prior knowledge of channels, blind equalization, which only uses the output signals
to equalize the channel, was proposed by Sato in the 1970s [3].

Approaches that employ high-order statistics (HOS) are first used to estimate the channel and calcu-
late the equalizer [4–6], of which the constant-modulus algorithm (CMA) [7–11] is a typical one. It is
known that HOS-based methods can effectively eliminate the influence of Gaussian noise. However, HOS
methods experience a slow rate of convergence and high computation complexity [9, 12]. Exploiting the
structure of the single-input multiple-output channel with the techniques of sensor array or time oversam-
pling, second-order statistics (SOS) methods have been developed [13–18]. Batch-based SOS approaches
requiring the computation of the eigendecomposition of channel matrix still have high computation com-
plexity and unable to track time-varying channels [19, 20].

To overcome the abovementioned problem, adaptive methods have been proposed [21–23]. Ref. [23]
developed adaptive approaches implemented using the recursive least squares (RLS) algorithm and least
mean squares (LMS) algorithm to track time-varying channels. Among the adaptive filtering algorithms,
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LMS and RLS algorithms are two typical algorithms. The RLS algorithm is suitable when a fast rate of
convergence is required but suffers from a complex computation. Unlike the RLS algorithm, the compu-
tational cost of the LMS algorithm is much lower, and it is widely used in many industrial applications.
However, the LMS algorithm suffers from a gradient noise amplification problem when the input power
is large [24]. This signal-dependent instability can be overcome by using a normalized LMS (NLMS)
algorithm. As there is a conflict between the rate of convergence and steady-state error in stochastic
gradient algorithm, it is significant to choose an appropriate step size to ensure steady-state mean square
error approaches to the least mean square error. Many variable step-size adaptive algorithms have been
proposed to solve this tradeoff issue by changing the step size dynamically [25–29], where the key idea is
to use a large step-size initially for a fast rate of convergence and reduce the step size gradually to a small
value for an improved performance at the steady-state. The NLMS algorithm with power normalization
in [30] dynamically changed the step size by estimating the power of the input sequence iteratively, which
effectively reduced the computational complexity of the NLMS algorithm.

To further improve convergence accuracy of traditional adaptive algorithms under the condition of
noise environment, Refs. [31–36] presented a series of bias-compensated adaptive methods of parameter
estimation of distributed network. The bias-compensated-based algorithms can effectively eliminate the
noise-induced bias and be implemented with good estimation performance under noisy conditions. In [36],
a bias-compensated NLMS (BC-NLMS) algorithm was developed. Compared with the traditional NLMS
algorithm, BC-NLMS had a better performance of convergence in distributed networks. Ref. [37] applied
a bias-compensated RLS algorithm to the field of blind identification, which can well-estimate the channel
characters under a noisy environment and has a significant improvement in accuracy at the cost of high
computational complexity due to matrix inversion in the RLS algorithm.

In this paper, we propose a BC-NLMS blind adaptive equalization algorithm to tackle the problem of
blind equalization with additive noise. In addition, a BC-NLMS with a variable step-size blind adaptive
equalization algorithm is developed. By receiving signals with two antennas, we obtain a single-input
double-output system. Further, we convert the system to a model in which the input and output signals
are both corrupted by additive noise. Therefore, the problem of blind equalization turns into a problem
of parameter estimation in errors-in-variables (EIV) model [38]; then, the second ordered adaptive algo-
rithms can be applied to tackle the problem of blind equalization. By modifying the cost function, we
propose a BC-NLMS algorithm for blind equalization. An on-line noise variance estimation method is also
developed, and the noise-induced bias in the NLMS algorithm can be estimated and removed. We also
developed the variable step-size NLMS algorithm (VSS-NLMS) proposed in [30] to further improve the
stability of the algorithm and applied a bias compensated algorithm to improve the convergence accuracy.
Simulation results demonstrate that the proposed algorithms performed well in blind equalization.

The rest of this paper is organized as follows. In Section 2, the problem of blind identification is
formulated. In Section 3, a BC-NLMS blind identification algorithm is proposed. A BC-NLMS with
variable step-size blind adaptive identification algorithm is developed in Section 4. Section 5 presents an
application of the proposed algorithms to blind channel equalization. Some simulations are presented to
demonstrate the effectiveness of the proposed algorithms in Section 6. Finally, conclusion is drawn in
Section 7.

Notation. In this paper, we use boldface letters to denote vectors and matrices. The normal font
is used for scalars. The superscript H, and T denote the Hermitian and matrix transpose operations,
respectively. Besides, (·)

∗
denotes the complex conjugate transpose. E(·) stands for the expectation

operator, and (̂·) stands for an estimator.

2 Problem statement

Consider a discrete-time communication system obtained by technique of sensor array or time oversam-
pling as follows:

yi(k) =

M−1∑

n=0

hi(k)s(n− k) + vi(k), i = 0, 1, . . . , N, (1)

where s(k) denotes the transmitted symbol, h(k) denotes the impulse response of the continuous-time
channel, and v(k) is the additive noise. y(t) denotes the output. M is the order of the N subchannels.

The objective of blind channel equalization is to recover the input sequence s(k) from the output y(k).
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Figure 1 Single-input double-output system. Figure 2 EIV model.

By receiving signals with two antennas, a single-input double-output system can be obtained as shown
in Figure 1.

The model for each transmitted symbol s(k) can be expressed as

y1(k) =H1(q
−1)s(k) + v1(k) = x1(k) + v1(k),

y2(k) =H2(q
−1)s(k) + v2(k) = x2(k) + v2(k),

(2)

where H1(q
−1) and H2(q

−1) are transfer functions of the two channels, which are coprime polynomials.
q−1 denotes a unit delay operator, x1(k) and x2(k) are the noise-free measurements. v1(k) and v2(k) are
assumed to be uncorrelated zero-mean white processes with unknown variance σ2

1 and σ2
2 respectively

and they are independent of s(k). As the signals are received by means of two antennas, different noises
are added to each channel, i.e., σ2

1 6= σ2
2 .

Then we have

H1(q
−1) = h1,0 + h1,1q

−1 + · · ·+ h1,Lq
−L,

H2(q
−1) = h2,0 + h2,1q

−1 + · · ·+ h2,Lq
−L,

(3)

where h is the system parameter to be estimated and L > 0 is the channel order, which is known.
From (2), we have

y1(k)− v1(k) = H1(q
−1)s(k),

y2(k)− v2(k) = H2(q
−1)s(k).

(4)

Then

H2(q
−1)(y1(k)− v1(k)) = H2(q

−1)H1(q
−1)s(k)

= H1(q
−1)H2(q

−1)s(k)

= H1(q
−1)(y2(k)− v2(k)). (5)

Therefore, the single-input double-output system can be equivalent to an EIV model as shown in
Figure 2.

According to (5), we can write

H1(q
−1)y2(k) = H2(q

−1)y1(k) +H1(q
−1)v2(k)−H2(q

−1)v1(k). (6)

Eq. (6) can be expressed as

h1,0y2(k) + h1,1y2(k − 1) + · · ·+ h1,Ly2(k − L)

= h2,0y1(k) + h2,1y1(k − 1) + · · ·+ h2,Ly1(k − L) +H1(q
−1)v2(k)−H2(q

−1)v1(k). (7)

Define

θ =
1

h1,0
[h1,1, . . . , h1,L, h2,0, h2,1, . . . , h2,L]

H
, (8)

φy,k = [−y2(k − 1),−y2(k − 2), . . . ,−y2(k − L), y1(k), y1(k − 1), . . . , y1(k − L)]T, (9)

φx,k = [−x2(k − 1), . . . ,−x2(k − L), x1(k), x1(k − 1), . . . , x1(k − L)]T, (10)
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φv,k = [−v2(k − 1), . . . ,−v2(k − L), v1(k), v1(k − 1), . . . , v1(k − L)]T. (11)

Then we have

φy,k = φx,k + φv,k. (12)

According to (6)–(8), we have

y2(k) = θHφy,k + n(k) (13)

with

n(k) = v2(k)− θHφv,k. (14)

Similarly, we have

x2(k) = θHφx,k. (15)

Eq. (8) shows that once the θ are estimated, the characteristics of the transmission channels can be
obtained.

3 Blind adaptive identification based on bias-compensated NLMS method

We first consider the noise-free outputs, i.e., φv,k = 0. The system can estimate the channel parameter
θ by minimizing the following normalized mean-square error cost function:

Jx(θ) =
E
∣∣x2(k)− φH

x,kθk

∣∣2

ǫ + φH
x,kφx,k

, (16)

where ǫ is regularization parameter. Then we can obtain the optimal solution as

θo = R−1
x rx2x, (17)

where Rx = E[φx,kφ
H
x,k] and rx2x = E[φH

x,kx2(k)].
As x2(k) and φx,k are not available, we replace them by y2(k) and φy,k respectively, i.e., φv,k 6= 0.

The cost function can be written as

Jy(θ) =
E
∣∣y2(k)− φH

y,kθk

∣∣2

ǫ + φH
y,kφy,k

. (18)

Then the optimal solution is obtained as

θb = R−1
y ry2y, (19)

where Ry = E[φH
y,kφy,k] and ry2y = E[φH

y,ky2(k)].
Since the noise vector φv,k is independent of φx,k and y2(k), then we have

Ry = Rx +Rv, (20)

ry2y = rx2x, (21)

where

Rv = E
[
φH

v,kφv,k

]
=

[
σ2
2I 0

0 σ2
1I

]
. (22)

Then the optimal solution in (19) can be expressed as

θb = (Rx +Rv)
−1ry2y. (23)

As θb 6= θo, θb is biased and the bias is dependent on the input noise.
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In order to obtain the unbiased optimal solution (17), we search for a cost function whose gradient
vector is identical to that of (16). So we modify the cost function as

J(θ) =
E
∣∣y2(k)− φH

y,kθk

∣∣2 − θH
k Rvθk

ǫ + φH
y,kφy,k

. (24)

Then the corresponding optimal solution can be obtained as

θ = (Ry −Rv)
−1ry2y. (25)

By substituting (20) and (21) into (25), we have

θ = R−1
x ry2x = θo. (26)

Eq. (26) shows that we can arrive at unbiased parameter estimate by modifying the cost function under
noisy condition. Consequently, we use the stochastic gradient descent method to minimize the cost
function (24) iteratively,

θk = θk−1 −
µ

2
∇J(θk−1), (27)

where the non-negative parameter µ is step-size, and ∇J(θk) denotes the gradient vector of J(θk).
Then we have

θk = θk−1 +
µ

ǫ + φH
y,kφy,k

[ry2y −Ryθk−1 +Rvθk−1] . (28)

As the moments Ry and ry2y are usually unavailable, in stochastic gradient descent method we replace
them by their instantaneous approximations that Ry = φH

y,kφy,k and ry2y = φH
y,ky2(k). Then we obtain

the BC-NLMS algorithm as

θ̂k = θ̂k−1 +
µ

ǫ+ φH
x,kφx,k

[
φy,k

(
y2(k)− φH

y,kθ̂k−1

)
+

[
σ2
2I 0

0 σ2
1I

]
θ̂k−1

]
. (29)

As the variances of the noises σ2
1 and σ2

2 are unknown, it is necessary to estimate them.
The traditional NLMS update equation can be described as

θ̂′
k = θ̂′

k−1 +
µ

ǫ+ φH
y,kφy,k

[
φy,k

(
y2(k)− φH

y,kθ̂
′
k−1

)]
, (30)

where θ′
k indicates the estimate parameter based on NLMS algorithm without bias-compensation.

Consider the property of the least-mean-square error, we have

e1(k) = y2(k)− φH
y,kθ̂

′
k. (31)

Define the auto-correlation function of the least-mean-square error as

f1(k) = E
[
e21(k)

]
. (32)

According to the principle of orthogonality, it is deduced that the regression vector φy,k and the
least-mean-square error e1(k) are uncorrelated as

E[φy,ke1(k)] = 0. (33)

Substituting (13), (31) and (33) into (32), we have

f1(k) = E
[
n(k)y2(k)− n(k)φH

y,kθ̂
′
k

]
. (34)

Since

E [n(k)y2(k)] = E
[(
v2(k)− φH

v,kθ
) (

φH
y,kθ + n(k)

)]
= E

[
v22(k)

]
= σ2

2 , (35)
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E
[
n(k)φH

y,k

]
= E

[(
v2(k)− φH

v,kθ
) (

φH
x,kθ + φH

v,kθ
)]

= −θH

[
σ2
2I 0

0 σ2
1I

]
. (36)

So Eq. (34) can be written as

f1(k) = σ2
2

(
1 + θH

1 θ̂
′
1

)
+ σ2

1θ
H
2 θ̂

′
2, (37)

where θ = [θH
1 θH

2 ]
H and θ̂′ = [θ̂′H

1 θ̂′H
2 ]H.

Here we introduce a backward output estimate method. We first introduce an auxiliary parameter β
as follows:

β̂k = β̂k−1 +
µ

ǫ+ φH
y,kφy,k

[
φy,k

(
y2(k − L− 1)− φH

y,kβ̂k−1

)]
, (38)

and the backward output prediction error e2(k) is defined as

e2(k) = y2(k − L− 1)− φH
y,kβ̂k. (39)

The cross-correlation function between the least-mean-square error and prediction error is defined as

f2(k) = E [e1(k)e2(k)] . (40)

By the similar orthogonal property as (33), we have

E [φy,ke2(k)] = 0. (41)

Using (13), (39), and (41) into (40), we have

f2(k) = E
[
n(k)y2(k − L− 1)− n(k)φH

y,kβ̂k

]
. (42)

Since

E [n(k)y2(k − L− 1)] = E
[(
v2(k)− φH

v,kθ
) (

φH
y,k−L−1θ + n(k − L− 1)

)]

= E [v2(k)v2(k − L− 1)]− E
[
φH

v,kθv2(k − L− 1)
]

= 0. (43)

Using (36), we have

f2(k) = σ2
2θ

H
1 β̂

′
1 + σ2

1θ
H
2 β̂

′
2, (44)

where β = [βH
1 βH

2 ]
H.

Combine (37) and (44), the unknown noise variances σ2
1 and σ2

2 can be estimated by

[
f1(k)

f2(k)

]
=

[
1 + θH

1 θ̂
′
1 θH

2 θ̂
′
2

θH
1 β̂1 θH

2 β̂2

][
σ2
2

σ2
1

]
, (45)

where θH
1 and θH

2 can be replaced by θ̂H
1,k−1 and θ̂H

2,k−1, respectively. Meanwhile, if the values of f1(k)

and f2(k) are available, the unknown noise variances σ2
1 and σ2

2 can be estimated by

[
σ̂2
2

σ̂2
1

]
=

[
1 + θ̂H

1,k−1θ̂
′
1 θ̂H

2,k−1θ̂
′
2

θ̂H
1,k−1β̂1 θ̂H

2,k−1β̂2

]−1 [
f̂1(k)

f̂2(k)

]
. (46)

According to the definition of f1(k) and f2(k), f̂1(k) and f̂2(k) can be computed respectively as

f̂1(k) = λf̂1(k − 1) + (1− λ)|e1(k)|
2, (47)

f̂2(k) = λf̂2(k − 1) + (1− λ)e1(k)e2(k). (48)

Therefore, the BC-NLMS algorithm can be summarized as Algorithm 1.
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Algorithm 1 Bias-compensated NLMS algorithm

1: Initialization

θ̂0 = 0, θ̂′

0 = 0, β̂0 = 0, f̂1(0), f̂2(0) = 0;

2: Traditional NLMS algorithm for blind identification

θ̂′

k = θ̂′

k−1 + µ

ǫ+φH
y,k

φy,k

[φy,k(y2(k) − φH
y,k θ̂

′

k−1)];

3: Estimation of σ̂2
1 and σ̂2

2

β̂k = β̂k−1 + µ

ǫ+φH
y,k

φy,k
[φy,k(y2(k − L− 1) − φH

y,k β̂k−1)],

f̂1(k) = λf̂1(k − 1) + (1 − λ)|e1(k)|
2,

f̂2(k) = λf̂2(i− 1) + (1 − λ)e1(k)e2(k),




σ̂2
2

σ̂2
1



 =





1 + θ̂H
1,k−1θ̂

′

1 θ̂H
2,k−1θ̂

′

2

θ̂H
1,k−1β̂1 θ̂H

2,k−1β̂2





−1 



f̂1(k)

f̂2(k)



;

4: Bias compensation update

θ̂k = θ̂k−1 + µ

ǫ+φH
y,k

φy,k



φy,k

(

y2(k) − φH
y,k θ̂k−1

)

+





σ̂2
2I 0

0 σ̂2
1I



 θ̂k−1



;

5: Repeat from 2–4 to update the estimation results until convergence.

4 Blind adaptive identification based on bias-compensated variable step-size
NLMS method

The NLMS algorithm is popular for its low computational power, but still suffers from the contradiction
between convergence speed and estimation accuracy. Therefore we consider the variable step-size mech-
anism to introduce dynamic adjustment step parameters in the adaptive blind identification algorithm.

Ref. [25] described a power normalized NLMS algorithm, which reduced computational complexity of
the NLMS algorithm. We now apply the algorithm to our model as a variable step-size method and
further develop the algorithm by bias-compensated technique.

We scale both the numerator and denominator of the term µ/(ǫ+ φH
y,kφy,k) in (30) by N , and the

NLMS algorithm can be written as

θ̂′
k = θ̂′

k−1 +
µ/N

ǫ/N + φH
y,kφy,k/N

[
φy,k

(
y2(k)− φH

y,kθ̂
′
k−1

)]
(49)

= θ̂′
k−1 +

µ′

ǫ′ + φH
y,kφy,k/N

[
φy,k

(
y2(k)− φH

y,kθ̂
′
k−1

)]
, (50)

where µ′ and ǫ′ are smaller step-size and regularization parameter, respectively. As

φH
y,kφy,k = y22(k − 1) + y22(k − 2) + · · ·+ y22(k − L) + y21(k) + y21(k − 1) + · · ·+ y21(k − L), (51)

a careful inspection of the equation reveals that φH
y,kφy,k contains two part and each of them can be

calculated respectively as

y22(k − 1) + y22(k − 2) + · · ·+ y22(k − L) = (L − 1)y22(k), (52)

y21(k) + y21(k − 1) + · · ·+ y21(k − L) = Ly21(k). (53)

y21(k) and y22(k) can be calculated by iteration respectively as

p1(k) = αp1(k − 1) + (1− α)|y1(k)|
2 = y21(k), (54)

p2(k) = αp2(k − 1) + (1− α)|y2(k − 1)|2 = y22(k). (55)

Then φH
y,kφy,k/N can be further calculated as

p(k) = Lp1(k − 1) + (L− 1)p2(k − 1) = φH
y,kφy,k/N. (56)

As the value of p(k) is small in the initial stage of iteration, the novel NLMS algorithm will gain large
step size, while gain smaller step size with the increasing of iterations. The step-size variation makes it
possible for the VSS-NLMS algorithm to converge faster and to a lower steady-state error than in the
fixed step-size case.
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Besides, another property of the further developed algorithm is its computational simplicity. For NLMS
algorithm, each iteration of recursion requires 24L+ 16 real multiplications, 24L+ 12 real additions and
one real division for general complex-valued data, while 6L+4 real multiplications, 6L+2 real additions
and one real division for real-valued data. On the other hand, the developed variable step-size NLMS
method requires 16L+ 18 real multiplications, 16L+ 22 real additions and one real division for general
complex-valued data, while 4L + 11 real multiplications, 4L+ 8 real additions and one real division for
real-valued data per iteration. In summary, for real-valued data, the developed variable step-size NLMS
method reduce the computational simplicity when L > 4, while L > 2 for general complex-valued data.

Then, we further develop the modified NLMS algorithm with power normalization to a bias compensate
algorithm. Similar with the BC-NLMS algorithm, the BC-VSS-NLMS algorithm can be summarized as
Algorithm 2.

Algorithm 2 Bias-compensated NLMS algorithm with variable step-size

1: Initialization

p1(0) = |y1(L)|2, p2(0) = |y2(L)|2, p(0) = 0, θ̂0 = 0, θ̂′

0 = 0, β̂0 = 0, f̂1(0) = 0, and f̂2(0)=0;

2: Update p(i)

p1(k) = αp1(k − 1) + (1 − α)|y1(k)|
2,

p2(k) = αp2(k − 1) + (1 − α)|y2(k − 1)|2,

p(k) = Lp1(k − 1) + (L − 1)p2(k − 1);

3: The VSS-NLMS algorithm for blind identification

θ̂′

k = θ̂′

k−1 + µ
ǫ+p(k) [φy,k(y2(k) − φH

y,k θ̂
′

k−1)];

4: Estimation of σ̂2
1 and σ̂2

2

β̂k = β̂k−1 + µ
ǫ+p(k) [φy,k(y2(k − L − 1) − φH

y,k β̂k−1)],

f̂1(k) = λf̂1(k − 1) + (1 − λ)|e1(k)|
2,

f̂2(k) = λf̂2(i− 1) + (1 − λ)e1(k)e2(k),
[

σ̂2
2

σ̂2
1

]

=

[

1 + θ̂H
1,k−1θ̂

′

1 θ̂H
2,k−1θ̂

′

2

θ̂H
1,k−1β̂1 θ̂H

2,k−1β̂2

]

−1 [

f̂1(k)

f̂2(k)

]

;

5: Bias compensation update

θ̂k = θ̂k−1 + µ

ǫ+p(k)

[

φy,k

(

y2(k) − φH
y,k θ̂k−1

)

+

[

σ̂2
2I 0

0 σ̂2
1I

]

θ̂k−1

]

;

6: Repeat from 2–5 to update the estimation results until convergence.

5 Application to blind channel equalization

Then the estimates can be used to recover the signal transmitted by the channels.
By stacking the channel output vector yk, we have

yk = [y1(k), . . . , y1(k −M + 1), y2(k), . . . , y2(k −M + 1)]T. (57)

Define

sk = [s(k), s(k − 1), . . . , s(k − L−M + 1)]T, (58)

vk = [v1(k), . . . , v1(k −M + 1), v2(k), . . . , v2(k −M + 1)]T, (59)

where M is called the stack number or smoothed factor and M > L.
Then we have

yk = Hsk + vk, (60)

where the channel convolution matrix H is a 2M × (L+M) Sylvester matrix with full column rank:

H =




h′
1,0 · · · h′

1,L 0 0 · · · 0

0 · · · h′
1,L−1 h′

1,L 0 · · · 0
...

...
...

...
...

...
...

0 · · · · · · · · · · · · · · · h′
1,L

h′
2,0 · · · h′

2,L 0 0 · · · 0

0 · · · h′
2,L−1 h′

2,L 0 · · · 0
...

...
...

...
...

...
...

0 · · · · · · · · · · · · · · · h′
2,L




(61)
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with h′
i,k = hi,k/h1,0, i = 1, 2, and k = 0, 1, . . . , L.

The best linear least squares estimate of sk is given by

ŝ0,k =
(
HHH

)−1
HHyk. (62)

By substituting h′
i,k with the their unbiased estimate obtained by (29), the estimate value Ĥ can be

obtained. Then, Eq. (62) can be expressed as

ŝk =
(
ĤHĤ

)−1
ĤHyk. (63)

Therefore, the transmitted signal can be recovered by (63).

6 Simulation results

In the simulation, we consider a scenario with a two-ray multipath channel presented in [16]. The single-
input double-output system transfer function is described as

H1(q
−1) = −1.1836+ 0.4906q−1 − 0.3093q−2 + 0.4011q−3 + 0.1269q−4 − 1.8522q−5,

H2(q
−1) = 1.2965 + 0.0525q−1 + 0.3410q−2 − 0.0260q−3 + 0.3991q−4 + 0.8817q−5,

(64)

where both H1(q
−1) and H2(q

−1) are nonminimum phase filters.
The noise-free input s(k) is generated from a series of non-return-to-zero code and the additive noise

v1(k) and v1(k) are Gaussian distributions. We set the smoothing factor α = 0.998. The number of
iteration is chosen as 50000 and a Monte Carlo simulation of 100 independent trials independently is
conducted under the same simulation scenario.

The signal-to-noise ratio (SNR) is defined as

SNR = 20 log10
std (xk)

std (vk)
(dB), k = 1, 2. (65)

According to different requirements for SNR, we determine the variances of v1(k) and v2(k).
Here, we introduce mean-square deviation (MSD) as the criteria for assessing the accuracy of the

estimation results, which is defined as

MSDθ = 20 log10

(
1

N

N∑

k=1

‖θ̂k,i − θ‖

)
(dB), (66)

where N denotes the number of the independent trials, and θk,i denotes the estimate of θ at the ith
iteration in kth trial.

Figure 3 gives the mean square error (MSE) curves of the LMS method, NLMS method, the VSS-
NLMS method, the BC-NLMS method and the BC-VSS-NLMS method when the step-size µ = 0.1 and
SNR = 15 dB.

The curves demonstrate that the results of the traditional NLMS algorithms are biased when consider-
ing the background noises of each channel. Compared with the method without bias-compensate, there
is a significant improvement in terms of estimation accuracy by implementing the proposed BC-NLMS
algorithm and BC-VSS-NLMS algorithm.

In Figure 4 the symbol error rate (SER) performance of each algorithm is shown for the selected SNR
levels.

It is clear from Figure 4 that the SER performance of the bias-compensate methods is better compared
with both the NLMS method and the VSS-NLMS method under different SNR conditions. SER decreases
with the increase of SNR. However, when SNR is reduced to a certain extent, there is a tendency that the
SER curves of the four algorithms approach to each other. This is because with the reduction of noise
variance, the benefit of bias compensation for noise is less and less obvious, and the accuracy of the four
methods is closer.

Figures 5(a) and (b) show the constellation of the recovered signal by implementing the NLMS method
and VSS-NLMS method when the step-size µ = 0.01 at SNR = 12 dB, respectively. Figures 5(c) and
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Figure 5 (Color online) Constellation of the equalized signal. (a) NLMS method; (b) VSS-NLMS method; (c) BC-NLMS method;

(d) BC-VSS-NLMS.

(d) show the recovered signal constellation by implementing the BC-NLMS method and BC-VSS-NLMS
method at SNR= 12 dB, respectively.

It indicates that the channel is not well equalized by methods without bias-compensate. Compared with
the traditional NLMS methods, there is a significant improvement in terms of equalization performance by
implementing the proposed BC-NLMS and BC-VSS-NLMS method as the retrieved signal constellation
are tightly clustered, the points on the constellation are more convergent to the true values.

Simulation results above illustrate that both the BC-NLMS and BC-VSS-NLMS methods can effectively
improve the performance of the NLMS and VSS-NLMS method. In other words, the BC-NLMS and BC-
VSS-NLMS algorithms can both effectively solve the problem of bind equalization.
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7 Conclusion

In this paper, we address the problem of blind channel equalization that the transmission channel is
corrupted by noise with unknown statistics by proposing BC-NLMS and BC-VSS-NLMS methods. The
blind equalization problem is converted to an EIV parameter estimation problem by receiving signals
with two antennas. The proposed algorithms contain an approach to estimate the unknown additive
noise variance of the transmission channel online, and then the effect of the noise-induced bias can be
removed. Therefore, the estimate of channel characters can be obtained in real time to equalize the
channel and recover the transmitted signal. We compared the numerical performance behavior of the
proposed methods with other adaptive methods. Simulation results demonstrate the effectiveness of the
proposed methods for blind channel equalization on the accuracy of equalization.
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