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Abstract In cell-free massive multiple-input multiple-output (MIMO) systems, it is beneficial to apply

low-precision analog-to-digital converters (ADCs) to reduce power consumption, hardware cost, and the

load on backhaul link. However, low-precision ADCs will result in serious degradation in spectral efficiency

(SE). It is important to achieve a good tradeoff between SE and energy efficiency (EE) for cell-free massive

MIMO systems with low-precision ADCs. In this paper, we first derive the closed-form expressions of uplink

achievable rates with maximal ratio combining (MRC) receiver and zero-forcing (ZF) receiver in cell-free

massive MIMO systems. Then we analyze the EE model of cell-free massive MIMO systems. Based on

the above analysis, the tradeoff between SE and EE is studied. Moreover, we propose two quantization bit

allocation algorithms to optimize the SE and EE jointly from the perspective of multi-objective optimization.

One algorithm is based on the deep Q-network (DQN) and the other one is based on the non-dominated

sorting genetic algorithm II (NSGA-II). The proposed algorithms provide more feasible solutions and achieve

better system performance than equal quantization bit allocation algorithm. Numerical results verify the

accuracy of the derived closed-form expressions and the effectiveness of the proposed optimization algorithms.

Keywords cell-free massive MIMO, low-precision ADC, spectral efficiency, energy efficiency, multi-

objective optimization
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1 Introduction

In cell-free massive multiple-input multiple-output (MIMO) systems, a large number of remote antenna
units (RAUs) are connected to a central processing unit (CPU) and distributed over a large area to
coherently serve a small number of users. Benefiting from the above merits, cell-free massive MIMO
systems have the potential to enhance the system performance greatly in the beyond fifth-generation
(B5G) and the sixth-generation (6G) networks [1].

However, the hardware complexity, power consumption of analog-to-digital converters (ADCs) in radio
frequency (RF) chains and capacity requirement on the link between CPU and RAUs increase exponen-
tially with the number of quantization bit. Therefore, one of the possible ways to reduce cost is using
low-precision ADCs which has received widespread attention in recent years.

Considerable research studies have been conducted to study the influence of low-precision ADCs on
spectral efficiency (SE) and energy efficiency (EE). But the tradeoff between SE and EE is not mentioned
in detail. Refs. [2–5] studied the impact of low-precision ADCs on SE. On the condition that the precision
of ADCs on the same RAUs was the same, the downlink and uplink achievable rates of distributed massive
MIMO systems with low-precision ADCs were analyzed respectively in [2, 3]. However, all RAUs were
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assumed to transmit and receive signals independently. Ref. [4] found 6-bit precision ADCs can achieve
the same performance as the perfect ADCs. Ref. [5] showed the impacts of the key design parameters that
include the number of total antenna arrays and the proportion of ideal ADCs/digital-to-analog converters
(DACs) on the uplink achievable rates in cell-free massive MIMO systems with mixed-ADC/DAC receiver.
Refs. [6,7] studied the impact of low-precision ADCs on EE. Ref. [6] pointed out low-precision ADCs were
not recommended from an EE point of view. Ref. [7] compared the EE with zero-forcing (ZF) receiver and
with ZF successive interference cancellation (ZF-SIC) receiver in uplink cell-free massive MIMO systems
with low-precision ADCs.

Besides, the optimization of SE and EE in cell-free massive MIMO systems with low-precision ADCs
has been discussed in [8–11]. Ref. [8] formulated an optimization problem to determine the portion of
the antennas connected to the low-power one-bit ADCs at the base station (BS) to maximize the sum SE
for a given budget constraint in single-cell multiuser MIMO systems. Ref. [9] proposed a quantized bit
allocation mechanism based on sum rate maximization and the superiority of the mechanism was proved.
EE can be maximized by optimizing the number of quantization bit and antenna selection in MIMO
systems [10]. But above researches only consider SE maximization or EE maximization separately. EE
decreases monotonically with the increase of SE, so the EE and SE cannot be maximized simultaneously
in terms of the quantization bit allocation. An ADC resolution optimization algorithm was proposed
in [11] to maximize a linear combination of SE and power consumption of BS. But the solutions obtained
by the algorithm only achieved the same performance as the equal quantization bit allocation algorithm.
The equal quantization bit allocation is easy to implement but cannot maximize the SE and EE.

Motivated by the above observations, this paper analyzes the impact of low-precision ADCs on the SE
and EE performance of cell-free massive MIMO systems, and proposes two quantization bit allocation
algorithms to maximize SE and EE jointly from the perspective of multi-objective optimization. The
main contributions of this paper are summarized as follows.

• Considering maximal ratio combining (MRC) receiver and ZF receiver, we derive the closed-form
expressions of the uplink achievable rates based on the estimated channel state information (CSI) at
RAUs and additive quantization noise model (AQNM). Besides, we build the power consumption model
and EE model in cell-free massive MIMO systems.

• Based on the closed-form expressions of SE and EE, we take insight into the tradeoff between SE
and EE in terms of the number of antennas per RAU, the transmit power per user and the number of
quantization bit.

• To jointly optimize SE and EE, we propose two quantization bit allocation algorithms subject to
the total ADC quantization bit constraint and quality-of-service (QoS) constraint. The proposed bit
allocation algorithms achieve better performance and provide more feasible solutions to the allocation of
quantization bit. The simulation results show the proposed algorithms outperform the equal quantization
bit allocation algorithm.

The rest of this paper is organized as follows. System models consisting of cell-free massive MIMO
systems channel model, quantization noise model and uplink channel estimation are discussed in Section 2.
Then in Section 3, we derive the closed-form expressions of the uplink achievable rates and model the
system power consumption and EE. Besides, we propose two quantization bit allocation algorithms based
on the deep Q-network (DQN) and the non-dominated sorting genetic algorithm II (NSGA-II) in Section 4,
respectively. Simulation results and discussions are presented in Section 5. Lastly, in Section 6, we
summarize our contributions and draw conclusions.

Notation. Vectors and matrices are denoted by boldface lower case and upper case letters, respectively.
IN denotes an N -dimensional identity matrix. (·)T and (·)H represent the transpose operator and conju-
gate transpose operator, respectively. | · | and ‖ · ‖ represent the absolute value of a scalar and spectral
norm of a matrix, respectively. E [·], E [·|·] and Cov (·, ·) denote the expectation, conditional expectation
and covariance operator, respectively. diag{·} denotes a square diagonal matrix with the elements of the
given vector on the main diagonal. ⊗ is the Kronecker product. h ∼ CN (0, IN) denotes vector h satisfies
circularly symmetric complex Gaussian distribution with mean zero and covariance matrix IN .

2 System model

We consider an uplink cell-free massive MIMO system with K users served by M RAUs. Each RAU is
equipped with N antennas and the RF chain of each antenna includes an ADC. The precision of ADCs



Wang H, et al. Sci China Inf Sci May 2022 Vol. 65 152301:3

at one RAU is the same and that is irrelevant at different RAUs. All RAUs are connected via backhaul
links to the CPU where the design of receivers and the processing of received signals are completed. All
RAUs cooperate to receive signals but each RAU quantizes signals separately.

2.1 Channel model

The uplink channel vector between all RAUs and the k-th users is assumed to be frequency-flat fading
and is modeled as

gk =
[

√

λ1,kh
T
1,k,
√

λ2,kh
T
2,k, . . . ,

√

λM,kh
T
M,k

]T

, (1)

where λm,k represents the pass lose between the m-th RAU and the k-th user which depends on the
distance between them, hm,k ∼ CN (0, IN ) ∈ CN×1 represents small-scale fast fading. Thus, E

[

gkg
H
k

]

=
Λk = diag (λ1,k, λ2,k, . . . , λM,k)⊗ IN , and gk ∼ CN (0,Λk).

2.2 Quantization noise model

In uplink transmission, the signal of K users received by the m-th RAU can be written as

ym =
√
pu

K
∑

k=1

gm,kxk + nm, (2)

where xk denotes the Gaussian-distributed signal with zero mean from the k-th user, gm,k denotes the
channel vector between the m-th RAU and the k-th user,

√
pu denotes uplink transmitted power per

user, nm ∼ CN
(

0, σ2IN
)

∈ CN×1 is the complex additive white Gaussian noise (AWGN) vector whose
elements are mutually independent and have zero means [2, 7], and σ2 is the power of noise.

Then, the quantized signal is expressed as

ymq = Q (ym) = Q

(

√
pu

K
∑

k=1

gm,kxk + nm

)

, (3)

where Q (·) represents quantization function. Quantization noise can be modeled as AQNM when the
gain is set appropriately by automatic gain control (AGC). Hence, quantized received signal is given by

ymq ≈ αmym + nmq =
√
puαm

K
∑

k=1

gm,kxk + αmnm + nmq, (4)

where αm = 1 − ρm, ρm represents the reciprocal of signal to quantization noise ratio at the m-th RAU
and depends on the number of quantization bit. It is assumed that the input of the quantizer satisfies
Gaussian distribution and b represents the number of quantization bit. For a Gaussian random variable
non-uniform scalar least mean square error quantizer, the value of ρ is given in Table 1 when b 6 5 . When

b > 5, ρ can be approximated as ρ = π
√
3

2 ·2−2b. nmq denotes the additive quantization noise vector whose
elements satisfy the complex Gaussian distribution with zero mean and are mutually independent [2, 7].
According to [5], the covariance of nmq for fixed channel is

Rnmq,nmq = αm (1− αm) diag
(

E
[

ymyH
m

])

. (5)

Therefore, the signal received by all RAUs is written as

y =
√
puGx+ n, (6)

where x ∈ CK×1 denotes the data signal from K users,
√
pu denotes uplink transmitted power per user,

n = [nT
1 ,n

T
2 , . . . ,n

T
M ]T ∼ CN

(

0, σ2IMN

)

∈ CMN×1 is the complex AWGN, σ2 is the power of noise,
G = [g1, g2, . . . , gK ] ∈ CMN×K represents the channel matrix between all the M RAUs and all the K
users, gk = [gT

1,k, g
T
2,k, . . . , g

T
M,k]

T ∈ CMN×1 represents the channel vector betweenM RAUs and the k-th
user.

Under the AQNM, the quantized received signal of all RAUs is written as

yq ≈ Ay + nq =
√
puAGx+An+ nq, (7)
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Table 1 The values of ρ for different b

b = 1 b = 2 b = 3 b = 4 b = 5

ρ 0.3634 0.1175 0.03454 0.009497 0.002499

where A = diag (α1, α2, . . . , αM )⊗ IN , nq = [nT
1q,n

T
2q, . . .n

T
Mq]

T. The signal x, the complex AWGN n

and the quantization noise nq are mutually independent [7].
Due to the independence of quantization noise, the covariance of nq for fixed channel is

Rnq,nq = E
[

nqnq
H
]

= E
[

diag(n1qn
H
1q,n2qn

H
2q, . . . ,nMqn

H
Mq)

]

= A (I−A)

(

pu

K
∑

j=1

Λj + σ2I

)

, (8)

where Λj = E
[

gjg
H
j

]

= diag (λ1,j , λ2,j , . . . , λM,j)⊗ IN .

2.3 Channel estimation with low-precision ADCs

It is assumed that the CSI is unknown at RAUs and channel estimation via pilot training is necessary.
The pilot sequences are quantified by low-precision ADCs at RAUs and then sent to the CPU for channel
estimation, so the low-precision ADCs will bring an adverse effect on channel estimation. However, it is
more practical to take the quantization process into consideration when estimating channels.

During the uplink pilot transmission phase, the orthogonal pilot sequences of all users are represented
by Xp and the length of pilot sequences is K. To facilitate analysis, Xp is assumed to be K ×K unit
matrix IK [12, 13]. Therefore, the quantized pilot signal received by all RAUs is expressed as

Yp ≈ √
ppAGXp +AN +Nq, (9)

where pp is the power of pilot signal, N ∈ CMN×K denotes the AWGN matrix with CN
(

0, σ2
)

elements,
Nq ∈ CMN×K denotes the additive Gaussian quantization noise matrix which is uncorrelated with the
unquantized received signal. Then the received pilot signal of the k-th user at RAUs is written as

ykp ≈ √
ppAgk +Ank + nkq, (10)

where nk denotes the k-th column of N and nkq denotes the k-th column of Nq.
The minimum mean-square error (MMSE) channel estimation of the uplink channel from the k-th user

to all the RAUs is given by

ĝk = E [gk] + Cov (gk,ykp) Cov(ykp,ykp)
−1

(ykp − E [ykp]) , (11)

where E [gk] = 0, Cov (gk,ykp) = E
[√
ppAgkg

H
k

]

=
√
ppAΛk, E [ykp] = 0 and Cov (ykp,ykp) can be

calculated as

Cov (ykp,ykp) = E
[

ppA
2gkg

H
k +A2nkn

H
k + nkqn

H
kq

]

= ppA
2Λk +A2σ2 +A (I−A) diag

(

pp

K
∑

j=1

Λj + I

)

.
(12)

Therefore, the channel estimation is given by

ĝk =
√
ppAΛk

(

ppA
2Λk + σ2A2 +A (I−A) diag

(

pp

K
∑

j=1

Λj + I

))−1

ykp. (13)

Furthermore, according to [14], ĝk is equivalent to

ĝk =
[

√

β1,kĥ
T
1,k,
√

β2,kĥ
T
2,k, . . . ,

√

βM,kĥ
T
M,k

]

, (14)
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where βm,k is the equivalent large-scale fading between the m-th RAU and the k-th user and can be
expressed as

βm,k =
α2
mppλ

2
m,k

α2
mppλm,k + σ2α2

m + αm (1− αm) pp
∑K

j=1 λm,j+αm (1− αm)σ2
. (15)

ĥm,k ∼ CN (0, IN) represents the equivalent small-scale fast fading between the m-th RAU and the k-th

user, and ĥk = [ĥT
1,k, ĥ

T
2,k, . . . , ĥ

T
M,k]

T ∼ CN (0, IMN ) is expressed as

ĥk =

(

ppA
2Λk + σ2A2 +A (I−A) diag

(

pp

K
∑

j=1

Λj + I

))−1/2

yk. (16)

It can be seen from (15) and (16) that, both the large-scale fading and the small-scale fading are related
to the number of quantization bit when the quantization process is considered in channel estimation.
By dividing the numerator and the denominator of βm,k by α2

m, it is obviously seen that the smaller
the number of quantization bit is, the smaller the αm is and the more serious the channel estimation
degradation is.

Since ĝk ∼ CN (0, diag (β1,k, β2,k, . . . , βM,k)⊗ IN ), due to the orthogonality property of MMSE esti-
mation, gk can be decomposed into

gk = ĝk + g̃k, (17)

where g̃k ∼ CN (0, diag (η1,k, η2,k, . . . , ηM,k)⊗ IN ) denotes channel estimation error and ηm,k
∆
= λm,k −

βm,k.

3 Spectral efficiency and energy efficiency analysis

In this section, we derive the closed-form expressions of uplink achievable rates with MRC receiver and
ZF receiver, and we analyze the system power consumption to obtain the expressions of SE and EE.
Based on the closed-form expressions, the SE-EE tradeoff will be analyzed in Section 5.

3.1 Spectral efficiency analysis

During the uplink data transmission phase, the signal sent by the k-th user is received by the linear
receiver and is quantized by ADCs at RAUs which can be expressed as

rk = aH
k yq =

√
pu

K
∑

j=1

aH
k Aĝjxj +

√
pu

K
∑

j=1

aH
kAg̃jxj + aH

kAn+ aH
k nq, (18)

where ak represents the receiver vector, xj ∼ CN (0, 1) represents the signal transmitted by the j-th user.
MRC receiver and ZF receiver are considered as

ak =

{

ĝk, for MRC,

fk, for ZF,
(19)

where fk is the k-th column of Ĝ
(

ĜHĜ
)−1

while Ĝ = [ĝ1, ĝ2, . . . , ĝK ]. When regarding the inference as
irrelevant additive noise [15, 16], the uplink achievable rate of the k-th user can be given by

Rk (b) = E

[

log2

(

1 +
pu
∣

∣aH
k Aĝk

∣

∣

2

E[aH
k (pu

∑

j 6=k Aĝj ĝ
H
j A

H + pu
∑

j Ag̃j g̃
H
j A

H +A2σ2 +Rnq)ak|Ĝ]

)]

(a)
= E

[

log2

(

1 +
pu
∣

∣aH
k Aĝk

∣

∣

2

E[ψk + ‖aH
kA‖2]

)]

, (20)
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where b = [b1, b2, . . . , bM ] denotes quantization bit vector of M RAUs, (a) results from the nature of the
conditional expectation and the independence between the estimated channel vector and the estimated
channel error vector, and ψk can be expressed as

ψk = pu
∑

j 6=k

aH
k E
[

Aĝj ĝ
H
j A

H
]

ak + pu
∑

j

aH
k E
[

Ag̃j g̃
H
j A

H
]

ak + aH
kRnqak. (21)

In the following, we derive the closed-form expressions of the uplink achievable rates with MRC receiver
and ZF receiver, respectively.

Theorem 1. With low-precision ADCs, the closed-form expressions of uplink achievable rates can be
given by (22) with MRC receiver and by (23) with ZF receiver

Rmrc
k = log2

(

1+
pu
∑M

m=1 α
2
mβ

2
m,k + puNΓ2

k

Φk +Θk +Ψk +
∑

m αmβm,k

)

, (22)

where Γk =
∑M

m=1 αmβm,k, Φk = pu
∑

j 6=k

∑

m α2
mβm,jβm,k, Θk = pu

∑

j

∑

m α2
mηm,jβm,k, Ψk =

pu
∑

m

∑

j tmβm,kλm,j , tm = αm (1− αm),

Rzf
k = log2

(

1+
pu (MN −K + 1)

∑M
m=1 α

2
mβm,k

Υk+Ωk+Ξk+
∑

m αm

)

, (23)

where Υk = pu
∑

m

∑

j 6=k α
2
mβm,j , Ωk = pu

∑

m

∑

j α
2
mηm,j , Ξk = pu

∑

m

∑

j tmλm,j , tm = αm (1− αm).

Remark 1. As seen from (22) and (23), quantization noise affects both the numerator and denominator
of (20), which means that the quantization noise affects both useful signals and interference signals. Based
on the above theorem, we analyze the progressive performance of the system when quantization bit; the
transmission power per user, or the number of antennas per RAU tends to infinity, respectively. The
results will be given in Section 5.

3.2 Energy efficiency analysis

The power consumption of cell-free massive MIMO systems can be modeled as [3, 17–19]

Ptotal (b) =

K
∑

k=1

Pk +

M
∑

m=1

Pm (bm) +

M
∑

m=1

Pbh,m(b) + PCPU, (24)

where Pk represents the power consumption of the k-th user, Pm (bm) represents the power consumption
at the m-th RAU, Pbh,m (b) represents the power consumption of the backhaul link between the m-th
RAU and the CPU, PCPU represents the power consumption for baseband signal processing at CPU,
b = [b1, b2, . . . , bM ] represents the number of quantization bit vector at M RAUs. Specifically, Pk is
expressed as

Pk =
pu
ξ
N0 + Ptc,k, (25)

where ξ is the amplifier efficiency, N0 is the noise power and Ptc,k denotes the power consumed by the
operation of circuit components of the k-th user. Because we only consider the uplink transmission, Pk

has no concern with b. Moreover, Pm (bm) is given by

Pm (bm) = N (2cmPAGC,m + 2PADC,m (bm) + Pres,m)+PLO,m, (26)

where PAGC,m, PADC,m (bm), Pres,m denote the power consumed by AGC, ADC and the residual circuit
units per RF link, respectively, and PLO,m represents the power consumption of local oscillator at the
m-th RAU. In detail, cm is set as

cm =

{

0, bm= 1,

1, bm> 1,
(27)

and PADC,m (bm) is
PADC,m (bm) = FOMW · fs · 2bm , (28)
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where FOMW is the Walden’s figure-of-merit [20], and fs is the Nyquist sampling rate. Pbh,m (b) can be
expressed as

Pbh,m (b) = P0,m+BPbt,m

K
∑

k=1

Rk (b), (29)

where P0,m is the fix power consumption of each backhaul link, B is the bandwidth and Pbt,m is the traffic-
dependent backhaul link power between the m-th RAU and the CPU. Finally, PCPU can be expressed
by

PCPU =MPBB, (30)

where PBB denotes the power for processing baseband signal for each RAU at CPU.
EE can be modeled as the ratio of the sum of achievable rates to total energy consumption [21, 22]

when the unit of energy consumption is watt. The EE can be expressed as

ϕ (b) =
B
∑K

k=1Rk (b)

Ptotal (b)
. (31)

Remark 2. As seen from (24) and (31), the quantization bit at RAUs has an influence on both system
power consumption and EE. Therefore, we analyze how the quantization bit, the number of antennas per
RAU and the transmit power per user influence EE in Section 5.

4 The optimization of quantization bit allocation

In this section, we propose feasible quantization bit allocation algorithms to realize the joint optimization
of SE and EE with low-precision ADCs in cell-free massive MIMO systems. As shown in (22)–(24),
the precision of ADCs determines the SE and power consumption, which in turn affects EE in (31).
Hence, the allocation of quantization bit plays an important role in improving system performance. It is
proved that compared with the use of fixed high-precision ADCs, the adaptive quantization bit allocation
mechanism has the advantages of higher flexibility and lower power consumption by applying variable
low-precision ADCs. However, the low-precision ADCs have a bad effect on the SE. Consequently, it
is necessary to obtain a good tradeoff between SE and EE through the optimization of the number of
quantization bit at RAUs.

4.1 Joint optimization problem formulation

The first optimization objective is to maximize the average uplink achievable rate per user.

Problem 1 (Spectral efficiency maximization).

maximize
b

f1 (b) =
∑

j

Rv
j (b) /K, (32)

where v represents MRC or ZF receiver. In cell-free massive MIMO systems, the impact of small-scale
fading is minimal and users pay more attention to the average QoS. It is reasonable to simply use the
closed-form expressions of the achievable rates only related to the large scale for optimization.

The second optimization objective is to maximize the EE.

Problem 2 (Energy efficiency maximization).

maximize
b

f2 (b) = ϕ (b) . (33)

It is noteworthy that the distributions of RAUs are considered in the optimization objectives which is
the key of feasible quantization bit allocation algorithm. Besides, the total number of quantization bit
is limited to make sure the optimization results are within a reasonable range, and the minimum uplink
achievable rate per user is limited to ensure the QoS in practical situation. We assume all users send
signals at full power and there are perfect ADCs at users. Thus, we obtain a joint optimization problem
which can be formulated as the following.
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Problem 3 (Joint optimization problem).

maximize
b

f = [f1 (b) , f2 (b)]
T

s.t. C1 : Rul
k > Rul,min

k , ∀k = 1, 2, . . . ,K,

C2 : N
∑

m

bm 6 btotal, ∀m = 1, 2, . . . ,M, (34)

where btotal is the total number of quantization bit at all RAUs. The great tradeoff between SE and EE
simultaneously can be achieved by solving (34).

4.2 Solutions to SE and EE tradeoff

The existence of the non-convexity and discrete optimization variables of each objective makes it chal-
lenging to obtain the solutions due to the increasing complexity by traditional optimization ways. Con-
sequently, we propose one solution based on DQN and the one solution based on NSGA-II to solve the
joint optimization problem.

4.2.1 Solution based on DQN

In the optimization problem, the model describes the relationship between the optimal quantization bit
allocation and the location distributions of RAUs and users are unknown. Q-learning mechanism has
advantages of discovering how to choose actions to maximize the reward and achieve the goal [23], so it is
suitable for the optimization problem. In the proposed algorithm, the state st in Q-learning mechanism
is defined as

st
∆
= bt, (35)

where bt represents the quantization bit vector in step t. The action at is defined as

at
∆
= b̃t, (36)

where b̃t represents the change of quantization bit in step t and only one bit can be changed per step.
The reward rt is defined as

rt
∆
= f1 (b) +f2 (b) /10

5−r̃, (37)

where f1 (b) in (32) denotes average SE, f2 (b) in (33) denotes EE and r̃ is a constant related to the sum
of SE and EE. To ensure the joint optimization of SE and EE, we divide EE by 105 so that SE and EE
are on the same order of magnitude.

Considering the choice of action in step t, we take the state-action Q values as the basis and the
epsilon greedy scheme is applied. In step t, the state-action Q value of each possible action in state st is
estimated. The action with the greatest Q value will be selected if the random probability is less than
the fixed probability ε. Otherwise, the action will be chosen randomly.

Nevertheless, the state space and action space are so big that it is difficult to find a state-action Q
value table. Thus, it is necessary to introduce the neural network to obtain state-action Q values. The
input of the neural network is state st and the output of the neural network is the Q values of all actions
in state st. The parameters of the neural network are optimized by performing a gradient descent step
on the squared error loss which can be expressed as

yt =

(

rt + γmax
a′∈A

Q (s′, a′)−Q (st, at)

)2

, (38)

where rt is the reward of action at in the step t, γ denotes the discount parameter, Q (st, at) denotes
the Q value of the selected action at in the state st, and maxa′∈AQ (s′, a′) represents the maximal
state-action Q value of the next state s′, and A is the set of actions. The computational complexity
of solution based on DQN mainly results from the matrix multiplication in forward propagation and
backward propagation of deep neural network. Therefore, the computational complexity of the algorithm
based on DQN is O(2(Mn1 + 2MnL−1 +

∑L−1
l=2 nl−1nl)st), where M = 20 denotes the number of RAUs

and the number of nodes of input layer, 2M denotes the total number of actions and the number of nodes
of output layer, L = 2 denotes the number of network layers, nl denotes the number of nodes of l-th
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layer, s = 32 represents the size of mini-batch and t = 80000 represents the number of iterations [24] in
the optimization problem.

The quantization bit allocation algorithm based on DQN is summarized in Algorithm 1.

Algorithm 1 Quantization bit allocation algorithm based on DQN

1: Initialize the state s0 and the parameters of neural network;

2: while t < tmax do

3: Select action at based on epsilon greedy scheme and state-action Q values;

4: Obtain the next sate s′;

5: Calculate the reward rt of action at in step t;

6: Save st, at, rt and s′ for the neural network optimization;

7: t = t + 1;

8: end while

9: Output the state smax with the greatest reward.

4.2.2 Solution based on NSGA-II

Although the DQN bit allocation algorithm can optimize SE and EE jointly by maximizing the sum of
SE and EE, we cannot take insight into the SE-EE Pareto boundary. The multi-objective evolutionary
algorithm NSGA-II is proved efficient to solve our proposed optimization problem [25]. NSGA-II can
solve all optimization objectives at the same time to find the Pareto-optimal SE-EE tradeoff front which
allows us to choose the number of quantization bit flexibly according to the demand. The computational
complexity of NSGA-II to obtain all the Pareto-optimal solutions in our problem is O(2S2) where S
denotes the population size which corresponds to the number of Pareto-optimal solutions.

To apply NSGA-II, first of all, we initialize the algorithm parameters related to NSGA-II: the maximum
iterations Gmax, the size of population p, the distribution index for crossover etac and for mutation etam,
and so on. Secondly, p quantization bit vectors b are randomly generated under the constrain C2 which is
denoted as population P (0). The population P (0) is ranked based on non-dominating sorting and crowding
distance. Thirdly, select a parent population by tournament selection according to the currently ranked
population and generate offspring population by selection, mutation, and crossing. Fourthly, combine the
offspring population and the old population to sort a new population P (generation) including p solutions
based on the rank results. Then repeat the second step to the fourth step until the generation reaches
Gmax. Finally, output the optimal population PGmax with f in (34).

The steps of the quantization bit allocation algorithm based on NSGA-II are shown in Algorithm 2.

Algorithm 2 Quantization bit allocation algorithm based on NSGA-II

1: Initialize system parameters: the maximum iterations Gmax, the size of population p, generation = 1;

2: Generate the population P (0) randomly and rank each individual based on non-dominating sorting and crowding distance;

3: while generation 6 Gmax do

4: Select an excellent parent population to generate offspring population by selection, mutation, and crossing;

5: Rank the offspring population and the old population to generate a new population P (generation);

6: generation = generation + 1;

7: end while

8: Output the optimal population PGmax with f in (34).

5 Simulation results

In this section, the accuracy of the closed-form expressions is verified by simulations and the impact of
low-precision ADCs on system SE and EE is analyzed. Besides, we present the simulation results to
evaluate the performance of our proposed quantization bit allocation algorithms based on SE-EE joint
optimization.

This paper assumes a circular area with a radius R = 1000 m. There are K = 5 uplink users and they
are all uniformly distributed in the area with a minimum access distance r0 = 30 m to RAUs. According
to [16], the path loss exponent between the k-th user and the m-th RAU is modeled as λm,k = d−l

m,k,
where dm,k denotes the distance between the k-th user and the m-th RAU, l is the path loss exponent
which is set as 3.7. Besides, the length of uplink pilot sequence is τ = K and the coherence time in
symbols is T = 196. All the power consumption parameters are given in Table 2 according to [3, 19].
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Table 2 Power consumption parameters

Parameter Value

pu 0.02 W

N0 290 × κ × B × NF

κ 1.381 × 10−23 J/K

B 1 MHz

NF 9 dB

ξ 0.4

Ptc,k 100 mW

PAGC,m, Pres,m, PLO,m 2 mW, 20 mW, 22.5 mW

FOMW 15 fJ/conversion-step

P0,m, Pbt,m 200 mW, 0.25 W/(Gbits/s)

PBB 200 mW
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Figure 1 (Color online) Uplink average SE against the number of antennas per RAU when M = 6.

Firstly, we verify the accuracy of the closed-form expressions of uplink achievable rate given by The-
orem 1. Figure 1 shows the relationship between the average uplink SE and the number of antennas
at each RAU when the number of quantization bit b varies. Regardless of the number of quantization
bit per RAU, the closed-form expressions of achievable rate are consistent with the simulation results,
which proves the correctness of Theorem 1. However, the smaller the number of quantization bit is, the
greater the gap between the simulated results and theoretical results is which results from the bigger
quantization noise when estimating channel. And ZF receiver is more easily affected by low-precision
ADCs. Furthermore, when the number of quantization bit is fixed, as the number of antennas per RAU
increases, the uplink SE increases and the gap between MRC and ZF receiver gets larger due to the
ability of ZF receiver to resist interference. Considering the fixed number of antennas per RAU, as the
number of quantization bit increases, the uplink SE increases rapidly when b 6 3. However, the increase
of b hardly further improves the uplink SE when b > 3. It leads to that low-precision ADCs can be
used in massive MIMO systems, and adding antennas of each RAU can compensate for the performance
impairment caused by low-precision ADCs to a certain extent.

Next, we study the power-scaling law of SE. Considering that the number of quantization bit is fixed,
each user’s transmit power is pu = Eu/(MN) with fixed Eu = 2 W when N changes. Figure 2 illustrates
the uplink average SE under different numbers of quantization bit against the number of antennas per
RAU with MRC receiver and ZF receiver. It can be seen that as the number of antennas N increases,
the uplink SE increases, but the growth rate gradually slows down. When N is fixed, the SE increases
and performance gain decreases as b increases. When b < 4, the SE grows when b grows. When b > 4,
the SE almost keeps the same no matter how b increases. The SE approaches the limit rate when
b → ∞, N → ∞. When N is small, compared with the decrease in SE caused by the decrease in uplink
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Figure 2 (Color online) Uplink average SE against the number of antennas and the number of quantization bit per RAU when

pu = Eu/(MN), M = 25. (a) MRC receiver; (b) ZF receiver.

transmission power, the increase in SE caused by the increase in the number of antennas plays a major
role. Therefore, the increase in SE is fast. As N increases, the influence of the decrease in the uplink
transmission power and the increase in the number of antennas gradually reaches a balance, so the SE
increases slowly and gradually tends to a certain value. When we focus on the difference between MRC
receiver and ZF receiver, it seems that ZF receiver is more sensitive to the damage brought by the low-
precision ADC. When b increases, the SE increases more rapidly with ZF receiver especially when b < 4.
Though the limit rates of MRC receiver and ZF receiver are almost at the same, the ZF receiver exceeds
MRC receiver under the same condition and ZF receiver can reach the limit faster.

Then, we make an intensive study of the relationship between SE and EE. We discuss the relationship
from the perspective of the number of quantization bit, number of antennas per RAU and transmit power
per user. Figure 3 illustrates the SE changes against EE when the number of quantization bit and the
number of antennas change. In the figure, different lines correspond to different number of quantization bit
(b = [1, 2, 3, 6, 8]), and different points on each line correspond to different number of antennas per RAU
(N = [1 : 3 : 80]). As the number of antennas per RAU increases, the SE gradually increases, but the
EE firstly increases and then decreases. When comparing different curves, as the number of quantization
bit increases, the SE increases more and more slowly, but the EE firstly increases and then decreases.
This is because power consumption and SE increase with the increase of the number of antennas and the
number of quantization bit. When the number of antennas or the number of quantization bit is small, the
increase in SE plays a major role. However, as the number of antennas or the number of quantization bit
increases, the increase in power consumption gradually plays a major role. There is a little difference with
the trend of the curves when b > 6 which can be explained by the rapid growth of the power consumption
and the slow growth of the SE when the number of quantization bit b > 5 according to Theorem 1 and
(24). Drawing a comparison between MRC receiver and ZF receiver, ZF receiver has better performance
than MRC receiver on both SE and EE in general. However, when the number of quantization bit per
RAU b = 1 and the number of antennas per RAU N < 5, the performance of MRC receiver is better. It
suggests that the performance of ZF receiver benefits a little from multi-antenna structure but gets a lot
loss from 1 bit ADCs when the number of antennas per RAU is small.

Figure 4 shows the relationship between SE and EE when the number of quantization bit and the
transmit power per user change. In the figure, different lines correspond to different number of quantiza-
tion bit (b = [1, 2, 3, 4, 5, 6, 7]) per RAU, and different points on each line correspond to different transmit
power at each user (pu = [0.001, 0.002, 0.01, 0.05, 0.1, 0.3, 0.8, 1.2, 1.8, 2.5, 3.5]). As the transmit power per
user increases, the SE firstly increases rapidly and then increases very slowly; the EE firstly increases
and then decreases rapidly. It proves that the SE will reach the limit when transmit power increases to
a high value so the EE will drop rapidly. In other words, increasing transmit power per user can only
compensate for the damage caused by low-precision ADC and improve system performance to a certain
extent. Besides, when the transmit power is low, the performance of ZF receiver is seriously affected
whatever the number of quantization bit is. But as the increase of the transmit power, the performance
improves faster with ZF receiver than with MRC receiver.

Based on the above analysis, it is more appropriate to set the number of quantization bit as 2–4 bit
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Figure 3 (Color online) Tradeoff between SE and EE against the number of quantization bit and the number of antennas per
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Figure 4 (Color online) Tradeoff between SE and EE against the number of quantization bit (b = [1, 2, 3, 4, 5, 6, 7]) and the

transmit power per user, M = 25. (a) MRC receiver; (b) ZF receiver.

despite of the receiver when the precision of all ADCs at one RAU is the same and RAUs are distributed
uniformly. But it should be noted that the optimal number of quantization bit of ADCs depends on the
system parameters and system configuration. Moreover, we cannot improve SE and EE at the same time
infinitely and need to weigh the two. It will be discussed in the following.

We assume that ADCs on different RAUs can choose different number of quantization bit, but the
ADCs on the same RAU have the same number of quantization bit. Figure 5 shows the Pareto boundary
of SE-EE joint optimization with MRC and ZF receiver obtained by solving (34) using NSGA-II when
RAUs are uniformly distributed. The number of RAU is M = 20 and the total number of quantization
bit is 160N . The required minimum signal-to-interference-plus-noise ratio (SINR) of each user is set to
5 dB. Each point represents a bit allocation solution, and the corresponding SE and EE are shown in the
horizontal and vertical coordinate, respectively. The optimal allocation of quantization bit tends to be
the equal quantization bit allocation when RAUs are uniformly distributed on a circle that surrounds the
uniformly distributed users. The results revealed by the figure are in accordance with the former analysis
when receiver or the number of antennas changes. The ZF receiver outperforms MRC receiver both in
SE and EE. Similar to Figure 3, when the number of antennas per RAU increases from 4 to 15, the SE
increases and the EE first increases slightly and then decreases. The EE decreases monotonically with
the increase of SE, so the EE and SE cannot be maximized simultaneously. But we find more feasible
solutions to the allocation of the quantization bit of ADCs.

When it comes to the non-uniform distributions of RAUs, as shown in Figure 6, we compare the
performance of equal quantization bit allocation algorithm and our proposed algorithms when ZF receiver
is applied. The figure illustrates that our proposed algorithms exceed the equal quantization bit allocation
algorithm both in SE and EE. To be specific, when the quantization bit per RAU is 4 in equal quantization
bit allocation algorithm, the performance of bit vector b = [4, 5, 1, 1, 1, 6, 5, 1, 1, 4, 1, 6, 1, 1, 3, 4, 5, 1, 4, 4]
is much better. It seems that the fewer total number of quantization bit achieves better performance
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Table 3 Allocation of quantization bit based on DQN

N RAU distribution b SE (bit/s/Hz) EE (Mbit/J)

4 Uniform [4, 2, 3, 4, 4, 3, 3, 4, 4, 3, 3, 4, 4, 3, 4, 4, 4, 3, 4, 2] 4.2109 0.4538

10 Uniform [4, 5, 3, 4, 4, 3, 3, 4, 4, 3, 3, 4, 5, 3, 4, 2, 4, 3, 4, 3] 5.5392 0.4591

15 Uniform [4, 3, 3, 5, 4, 3, 3, 4, 3, 3, 3, 4, 4, 3, 4, 2, 3, 4, 2, 3] 6.0213 0.4296

4 Non-uniform [5, 4, 2, 1, 1, 6, 4, 1, 1, 3, 1, 7, 1, 1, 5, 3, 3, 1, 2, 3] 6.9271 0.7389

10 Non-uniform [5, 4, 1, 1, 1, 6, 4, 1, 1, 3, 1, 7, 1, 1, 5, 3, 3, 1, 3, 3] 8.3014 0.6794

15 Non-uniform [5, 5, 2, 1, 1, 6, 5, 1, 1, 3, 1, 6, 1, 1, 5, 3, 3, 1, 2, 3] 8.8942 0.6142

Table 4 Pareto-optimal allocation of quantization bit

N RAU distribution b SE (bit/s/Hz) EE (Mbit/J)

4 Uniform [4, 4, 3, 4, 4, 3, 3, 4, 4, 3, 3, 4, 4, 3, 4, 4, 4, 3, 4, 4] 4.2489 0.4571

4 Uniform [5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 4, 5, 5, 4, 5, 5, 5, 4, 5, 5] 4.2789 0.4488

4 Non-uniform [4, 5, 1, 1, 1, 6, 5, 1, 1, 4, 1, 6, 1, 1, 3, 4, 5, 1, 4, 4] 7.0278 0.7505

4 Non-uniform [5, 6, 1, 1, 1, 6, 6, 1, 1, 5, 1, 6, 1, 1, 3, 4, 5, 1, 4, 5] 7.0380 0.7499

because the distributions of RAUs are taken into account. Generally speaking, the RAUs which far
away from users should be allocated fewer quantization bit while the RAUs near the user center can be
equipped with higher-precision ADCs, especially in the cell-free massive MIMO scenario. It should be
noted that the NSGA-II algorithm provides more feasible and effective solutions than equal quantization
bit allocation algorithm when the number of quantization bit b 6 5 . In addition, the solution obtained by
DQN is close to the Pareto-boundary obtained by NSGA-II when M is large and the iteration is limited.
The DQN algorithm runs faster than the NSGA-II algorithm but the NSGA-II algorithm uncovers the
Pareto-optimal front.

When ZF receiver is applied, the optimal bit allocation schemes obtained by DQN algorithm in a given
iteration are listed in Table 3. As seen from Table 3, the optimal solutions tend to be the same despite the
number of antennas per RAU. Similarly, the Pareto-optimal solutions with NSGA-II are almost the same
when the number of antennas per RAU varies. So the quantization bit allocation solutions with NSGA-II
are partly shown in Table 4 when N = 4. In Table 4, as the number of quantization bit decreases, the
SE goes down slightly and the EE goes up. It suggests that the reasonable allocation of quantization
bit can reduce the total number of quantization bit while maintaining good performance. Moreover, we
can provide more feasible solutions to various SE and EE requirements. As Tables 3 and 4 shown, the
allocation of quantization bit tends to be equal when RAUs are uniformly distributed. However, when
RAUs are random non-uniformly distributed, the allocation of quantization bit depends on distributions
of RAUs. In other words, the proposed quantization bit allocation algorithms adapt to the changes of
RAU positions which proves the effectiveness of the proposed algorithms.
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6 Conclusion

In this paper, we derived the closed-form expressions of the uplink achievable rates applying MRC receiver
and ZF receiver based on the estimated CSI in cell-free massive MIMO systems with low-precision ADCs.
The simulation results showed that the SE hardly increases when the number of quantization bit b > 5
and ZF receiver are more sensitive to 1-bit ADCs and 2-bit ADCs. The SE will reach the upper limit
fast as the number of antennas per RAU increases if the user power is limited. Next, the system EE was
modeled which is related to the number of quantization bit at RAUs. Then we analyzed the trade-off
between SE and EE. It is presented that the EE firstly increases and then decreases as the number of
antennas per RAU, the transmit power or the number of quantization bit increase. The optimal number
of quantization bit of the system is 2–4 bit when RAUs are uniformly distributed. Furthermore, we
proposed two optimization algorithms for the allocation of quantization bit based on DQN and NSGA-
II to optimize SE and EE jointly. The DQN quantization bit allocation algorithm solves the problem
faster and finds the bit vector which maximizes the sum of SE and EE, while the NSGA-II quantization
bit allocation algorithm provides all the Pareto-optimal solutions. The simulation results proved the
proposed algorithms which are adaptive to the positions of RAUs are superior to the equal quantization
bit allocation algorithm.
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