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Abstract With HPC (high performance computing) evolving into the exascale era, improvements in com-

puting performance and power efficiency have become increasingly more important. Based on our previous

work on enabling earthquake simulations on a large scale on Sunway TaihuLight, we further explore other

possibilities to improve the application through a fully-customized hardware design on reconfigurable FPGA

(field programmable gate array) devices. We investigate the feasibility and the potential benefits of a com-

plete fixed-point design. We first perform a coarse-resolution-based simulation to analyze the representation

range and precision needed to capture both the total energy and the energy distribution of variables over

space and time. We then derive a complete fixed-point design that identifies the suitable bitwidth for major

categories of variables and dynamically represents the range through a dynamic scaling scheme. Finally, we

use the optimized fixed-point design to run a case of the Wenchuan earthquake to demonstrate the potential

of supporting large-scale scientific simulations on FPGA devices. The results demonstrate that an 18-bit

fixed-point design already provides an almost identical description of the seismic events in the Wenchuan

scenario down to a single-precision floating-point version and provides sustainable performance equivalent

to 13.1 Intel Xeon Gold 6154 18-core CPUs or 2.10 Sunway 260-core processors, with performance per watt

(power efficiency) improved by 15.3 and 3.72 times compared with the Intel Xeon Gold 6154 18-core CPUs

and the Sunway 260-core processors, respectively.

Keywords reconfigurable computing, earthquake simulation, FPGA, hardware-software co-design, archi-

tecture exploration

Citation Chen B W, Fu H H, Luk W, et al. A fully-customized dataflow engine for 3D earthquake simulation

with a complex topography. Sci China Inf Sci, 2022, 65(5): 152103, https://doi.org/10.1007/s11432-020-2976-5

1 Introduction

Since the invention of the first supercomputer in 1964 [1], scientists have found that theorems and
experiments have not met the increasing complexity required when solving scientific problems. There-
fore, numerical computing began to be applied in significant scientific domains [2], such as earthquake
simulations [3], seismic inversions [4], climate simulations [5], sky simulations [6,7], and phase-field simu-
lations [8]. Till now, numerical computing has supported much of cutting-edge research activities in the
corresponding fields.

The development of HPC (high performance computing) platforms and the development of computer-
related science domains have been driving progress in each field in the last few decades. Better computing
power has led to more detailed simulations of various physics, chemistry, or even molecular processes
that scientists attempt to investigate. Improved simulations resulting in improved understanding of the
processes has led to more complex models and higher demands for computer power.

In the last decade, increasing heat dissipation and power consumption issues have pushed the archi-
tecture of computing nodes of the leading supercomputers from being homogeneous to heterogeneous.
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The heterogeneous supercomputers consist of both general-purpose processors (traditional CPUs (cen-
tral processing units)) and many-core accelerators that provide intensive computing capabilities, such as
GPUs (graphics processing units) [9], Intel Xeon Phi [10], and Shenwei 26010 processors [11].

With the exascale era on the horizon, improvements in both computer performance and power efficiency
have become increasingly important and challenging. HPC researchers have put tremendous efforts into
exploring the next generation of the system architecture. Potential changes for the traditional HPC design
methodology have been widely researched [12]. Since 2011, there have been many projects that promote
hardware-software co-design for exascale design space exploration [12–14], which identifies leading high-
impact scientific applications and creates a collaborative design process of both hardware and algorithms
using a reconfigurable FPGA (field programmable gate array) platform as an alternative platform for
design verification and emulation.

In this work, we choose large-scale earthquake simulations as our target application and explore the
performance potential of fully-customized hardware design on reconfigurable FPGA devices. There are
two major reasons that we chose the earthquake simulation application.

First, earthquake simulation programs are of great scientific and societal importance. Earthquakes
are one of the most severe natural disasters that humanity faces. With a direct detection of only 12 km
of the subsurface, seismic simulation becomes a vital tool for the research activities that aim at improving
the understanding of the subsurface structures and the mechanism of earthquake formations. Regard-
ing the reduction of earthquake hazards, the simulation programs can also play important roles that
range from producing earthquake drill scenarios to providing quantitative evaluation of potential risks
for determining the earthquake insurance costs [15].

Second, earthquake simulations are one of the traditional supercomputing applications that demon-
strate the most demanding level of both computational and memory challenges. With a limited under-
standing of the subsurface and to achieve an acceptable level of accuracy, a typical earthquake simulation
program involves several different processes, such as a velocity update, stress update, and attenuation.
To capture the elastic features of seismic waves, the program could involve up to 50 three-dimensional
(3D) arrays. As a result, large-scale earthquake simulations are only possible in some of the leading
supercomputer facilities, such as the Earth simulator in Japan [16], Jaguar [17] and Titan [18] in the
United States, and Sunway TaihuLight [19] in China.

This paper presents a fully-customized hardware design for our earthquake simulation application
SWST on Sunway TaihuLight [20], which can capture the complex surface topography and provide a
sustained performance of 9.07 Pflops when using over 10 million cores of the system. Based on previous
work that has achieved a well-tuned performance on an existing leading-edge supercomputer, we continue
to explore the potential benefits of a fully-customized dataflow design on reconfigurable FPGA devices.
We investigate the methods and tools for analyzing the numerical behaviors and for deriving a complete
fixed-point design that can achieve both a similar level of accuracy and improved computational efficiency
compared with the current floating-point designs. Our major contributions are as follows:

(1) We propose a coarse-resolution simulation-based analysis approach to identify the representation
range and precision needed to capture both the total energy (covering over 99% of total energy) and the
energy distribution of variables (achieving a coefficient of determination larger than 98%) over space and
time (detailed in Section 4).

(2) Based on the analysis results, we derive a complete fixed-point dataflow engine that not only assigns
the suitable bitwidth to each variable but also provides a customized scaling scheme that maintains the
most informative bits at the front during the time-stepping process (detailed in Subsections 5.1 and 5.2).

(3) Using such a design, we implement a CPU-FPGA hybrid 3D earthquake simulation program that
can use both a single FPGA and multiple FPGAs with a curvilinear coordinate transformation and
traction image method to deal with complex surface topography (detailed in Subsection 5.3).

Our optimized design could accommodate one deep-pipelined core, which can support 1026 arithmetic
operations and provide a sustainable performance that is equivalent to 13.1 Intel Xeon Gold 6154 18-core
CPUs, or 2.10 Sunway 260-core CPUs. The simulation results of the Wenchuan model demonstrate that
an 18-bit fixed-point design can already provide an almost identical description of the seismic events to
a single-precision floating-point version. If we further push toward a 15-bit or even 12-bit design, we
can still maintain a correct description on the peaks of strong ground motion with further performance
improvement.
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2 Related work

2.1 Precision analysis and optimization

In the early days of FPGA acceleration, due to the limitation of the available reconfigurable resources,
precision analysis and optimization began from standalone functions and kernels.

Analytic methods, such as affine arithmetic and the data-range propagation method [21], are proposed
to determine the range and the number of bits needed to represent it adequately. In terms of accuracy,
studies have discussed the sensitivity of the output to errors in the intermediate variables for fractional
bitwidth optimization [22], and the Taylor series has been used to propagate the worst-case truncation
error at each node in the dataflow graph to the output. Using such methods, hardware designs with
optimized bitwidth for every single variable can be achieved for various accuracy requirements of a
specific elementary function [23, 24].

With an increasing amount of programmable resources, FPGAs can gradually accommodate more
complex computational workflows. As a result, methods also must be developed for analyzing and
optimizing the precision in such scenarios. As scientific computations usually involve tens of thousands
of time steps, the above analytic methods, which usually take a fairly conservative approach, propagate
both the range and the error. The analysis becomes meaningless after several time-stepping iterations.
As a result, a number of existing efforts take an enumerating approach to experiment with several
precisions [25, 26] to determine the most suitable configuration of number representations. However, the
high computational cost makes it not feasible for extremely complex 3D numerical simulation cases.

For floating-point applications on FPGAs, optimization methods based on integer linear program-
ming [27] and mixed-integer geometric programming [28] are proposed to compute the optimal reduced
precision and the optimal resource allocation for the resulting FPGA design. However, these methods only
work for floating-point functions with a clear error requirement. For numerical simulations that involve
hundreds of thousands of time steps, the accuracy required for each step to maintain the numerical
stability and accuracy is unclear. For a precision study on the simulation of 2D shallow water equations,
the authors propose the use of the numerical differences caused by different compilation options as an
acceptable range of error in long-term simulations. However, the correct precision is still determined
through an enumeration of a number of different mantissa bitwidths, which, as mentioned above, would
not be a feasible solution for complex 3D cases.

With a similar goal to investigate the tradeoff between accuracy and performance, our analysis starts
with a coarse-resolution simulation run. We analyze the numerical behaviors in space and time to derive
the appropriate computational scheme to capture the physics phenomena sufficiently and accurately.

2.2 Seismic modeling

As one of the major traditional HPC applications, seismic modeling is also a typical target for FPGA
researchers.

In 2004, He et al. [29] achieved approximately 15.6 times acceleration in 2D prestack Kirchhoff time
migration on the SPACE platform at a conservative speed of 50 MHz compared with 2.4 GHz Pentium
4 workstations, which can calculate the Kirchhoff summations for 50 million points per second.

In 2007, Pell et al. [30] achieved a 40 times speedup for subsurface offset gathers on a MAX-1 accelerator
card with a Xilinx Virtex-4 FPGA.

In 2008, Fu et al. [25] optimized seismic computation with an FPGA. Under the constraint of the PCI
Express X8 bandwidth between CPU and FPGA, they could support two concurrent computation cores
and achieve 13.7-times speedup on a Maxeler Technologies MAX-1 Card with a Xilinx Virtex-4 FX100
FPGA compared with a software implementation on Intel Xeon CPU clocked at 1.86 GHz.

In 2013, Medeiros et al. [31] implemented 2D RTM on an Altera Stratix 260E, with 160 PEs, which
had achieved a 29 times speedup in comparison with a CPU implementation, and it was only 13% slower
than the GPGPU (general-purpose graphics processing unit) implementation. As for power consumption,
the CPU-FPGA design was 1.7 times more efficient than the GPGPU system.

In 2019, Bittencourt et al. [32] designed a hardware/software co-design system on the FPGA platform,
which could provide a scalable model for 2D RTM on HPC environments. The team’s goal was to provide
information about the system architecture considering the computational challenges in seismic imaging
for oil exploration. The team implemented the system on an Intel Arria 10 GX FPGA Development Kit
board. For performance, they achieved an approximately 112-times speedup over a single core of Intel
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Xeon Gold 6148. When compared with a Titan XP GPU, the energy consumption of the system was
reduced to approximately 55%.

Most existing efforts on seismic modeling focus on the processing of small-scale artificial seismic events
used for oil and gas exploration and are usually constrained to 2D cases. Our work addresses a full
workflow of natural earthquake simulations on the FPGA devices. With the capability to capture complex
surface topography, our design contains 12 velocity arrays, 24 stress arrays and three elastic parameter
arrays, as well as nine grid transformation coefficient arrays. The goal is to effectively evaluate the
possibility of supporting extreme-scale high-performance computing applications on FPGA platforms.

3 Our target application: 3D elastic earthquake simulation with accurate
surface topography

3.1 The numerical method

We use seismic wave equations to describe the propagation of seismic wave. To depict the effects caused
by complex surface topography in most active seismic regions, we use a finite difference method with
curvilinear grid transformation as our major numerical method [20].

In 3D inhomogeneous isotropic elastic media, the first order velocity-strain equations, including the
momentum equation and the generalized stress-strain relationship, which control the rule of propagation
of elastic waves, can be written as i.e.,

ρ
∂vi
∂t

= σij,j + fi, (1)

∂σij

∂t
= λvk,kδij + µ(vi,j + vj,i), (2)

where λ and µ are the Lamé parameters in isotropic media, i, j ∈ (x, y, z) are the directions in coordinate
system, vi are velocity components, σij are stress components, fi are seismic sources.

For our convenience, we use (x, y, z) to denote our physical space and write Eqs. (1) and (2) in a
matrix form

∂W

∂t
= A

∂W

∂x
+B

∂W

∂y
+C

∂W

∂z
, (3)

where W includes unknows needed to be solved, including both velocity components and stress compo-
nents: W = [vx, vy, vz, σxx, σyy, σzz , σxy, σxz , σyz]

T.
To deal with the complex surface topography, we use curvilinear transformation to transform the

irregular physical coordinates (x, y, z) to computational space (ξ, η, ζ):

x = x(ξ, η, ζ), y = y(ξ, η, ζ), z = z(ξ, η, ζ). (4)

By performing such transformations, our earthquake simulation program can then process the scenar-
ios with significant changes on surface topography. Most big earthquakes happened because of faulty
plates [33,34], which usually results in complex surface topography. A typical example is the hilly region
of the Wenchuan earthquake, as shown in [20, Figure 1]. In such an area, the complex surface topog-
raphy would cause severe effects, such as amplification and basin effects near the edges, influencing the
accuracy of the earthquake simulation to a large extent. Adequately dealing with the side effects plays
an important role in describing the details of the seismic wave. More discussions about the case study of
the Wenchuan earthquake simulation are provided in Section 6.

We compute derivatives in a regular computational space while solving the problem in a physical
space. In finite difference method, to reduce the dispersion and dissipation error of one-sided differences,
we apply dispersion relation preserving (DRP) in MacCormack-type schemes, which is called DRP/opt
MacCormack schemes [35,36]. We use Runge-Kutta time marching schemes [37] to refine the results and
split the difference operator into a forward operator and a backward operator, which are used in Runge-
Kutta time marching schemes. The fourth-order Runge-Kutta scheme which calculates the wavefields
from nt to n(t+ 1) is shown as follows:

W
(1) = W

n, (5)
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Figure 1 (Color online) The computational workflow of our target earthquake simulation program. Wv , mWv , hWv , and tWv

are the four Runge-Kutta velocity states, each of which has three components on the three axes. Ws, mWs, hWs, and tWs are the

four Runge-Kutta stress states, each of which has six components. ρ, µ, and λ are the three elastic parameters. M is the array of

grid transformation coefficients, with 9 components for the transformations along different axes.

W
(2) = W

n + α2∆tL̂FFF(W (1)), (6)

W
(3) = W

n + α3∆tL̂BBB(W (2)), (7)

W
(4) = W

n + α4∆tL̂FFF(W (3)), (8)

W
n+1 = W

n +∆t
[

β1L̂
FFF(W (1)) + β2L̂

BBB(W (2))

+ β3L̂
FFF(W (3)) + β4L̂

BBB(W (4))
]

, (9)

where L̂FFF and L̂BBB are the linear combination of one-sided difference operator, the superscript F
means forward direction and B means backward direction.

Free surface boundary condition is of great importance in seismic wave simulation. The free boundary
condition we used is called traction image method [35].

3.2 The computational workflow

Figure 1 provide a more clear picture about what need to be computed and stored in each time step.
We have in total 48 3D arrays, which describe the four Runge-Kutta states of three velocity components,
the four Runge-Kutta states of six stress components, the three elastic parameters, and the nine grid
transformation coefficients respectively. If including the intermediate arrays within kernels, there would
be about 100 variables evolved in each grid.

In each Runge-Kutta step, we need to (1) update the stress states hWs, tWs using the velocity state
Wv and the stress states tWs, mWs; (2) update the velocity states hWv, tWv using the velocity states
tWv, mWv and the stress state Ws; (3) use the updated hWs, and tWs to compute the next Ws; (4) use
the updated hWv, tWv to compute the next Wv. In total, around 1016 arithmetic operations need to be
performed for the processing of one single grid in the 3D space for one Runge-Kutta step. We need four
Runge-Kutta steps to accomplish one complete iteration of the time step.

The complexities in both the number of variables and computational patterns correspond to the ad-
vanced features that our target earthquake simulation program provides. The four-step Runge-Kutta
method brings an improved numerical accuracy of the scheme. The introduced grid transformation co-
efficients help to convert the possible irregular surface topography into a regular aligned 3D array, so
that the capability to describe irregular shapes and the high computational efficiency can be maintained
at the same time. The elastic parameters are added to include elastic behaviors into the simulation.
Therefore, some of the most advanced simulation features are achieved by paying the price of increased
complexity in both computation and memory. Implementing such a workflow using the generally assumed
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Figure 2 (Color online) Fixed point format.

single-precision floating-point on an FPGA chip is an overwhelming design goal to achieve. Deriving a
complete fixed-point design through careful numerical analysis and systematic optimization becomes the
only viable option.

4 A customized fixed-point number representation

4.1 Algorithmic formulation

A fixed point number can be described by an integer I and a scaling factor S. And the value would be
expressed by V = I × S, where V is the value of the number. To express tons of grids in fixed-point
formats, it is less efficient to store both I and S for every grid. Moreover, due to the complexity of
operations between fixed point numbers with different scaling factors, we usually share the scaling factor
S among grids of the same variable, which usually cover continuous range in physics space. The fixed
point format for one variable can be described as the number of total bits NA and the number of fraction
bits NF , which is shown as Figure 2, where scaling factor S = 2NF .

In general, constructing a computing unit for fixed point with less bits costs less resources, which saves
more space for instruction parallelism. Thus, reducing bits of fixed-point format for variables would be
one of the effective keys to optimize the hardware and software co-design. By reducing the bits of a kind
of fixed-point format, the total bits NA and fraction bits NF both decrease, and scaling factor S also
changes. However, using less bits would lose the precision of the corresponding bits, how to reach the
balance of the precision and performance would be a challenge.

4.2 The general methodology

For most physics-oriented numerical simulation programs, the key events to capture are the injection of
energy into the system, the distribution and reallocation of the energy over the simulation domain, and
the dissipation of energy in the system. For example, in an earthquake simulation, the earthquake source
is injected into the simulation region, the wave propagation module then simulates the propagation of
the seismic waves to different parts of the region and the gradual attenuation of the waves. For weather
and climate modeling, we have a more complicated scenario, with injected solar energy, redistribution of
energy and water, consumption of fossil energy, and many other activities happening continuously.

In our earthquake simulation target application, we perform the analysis also from the perspective of
capturing the major energy distribution of the system. Our range and precision analysis of the entire
simulation process consists of the following major parts:

(1) A coarse-resolution run. Our approach is a dynamic approach that makes the analysis and
optimization based on actual runs of the simulation. To minimize the computational costs (especially for
large-scale earthquake simulations, which can occupy entire supercomputers for days or even weeks), we
do the simulation and analysis using a coarse-resolution grid. In general, we set the coarse resolution to
be 1/2 or 1/4 of the target one, which corresponds to roughly 6% or 1% of the original computational
cost.

(2) Range analysis. We first analyze the energy sum of each time step. We consider the energy
as the sum of squares of the variables (velocity, stress, or other parameters) over the 3D domain, i.e.,
Σi,j,kWv

2 or Σi,j,kWs
2. We perform range analysis to ensure that at least 99% of the total energy is

properly described. Then we perform the analysis for all the different time steps, to study the change
of the energy over time, and to derive a customized scaling scheme that would help to keep the most
significant bits in the optimized design.
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(3) Precision analysis. While the previous part ensures that the dynamic range of the simulation
is well captured, in this part, we need to quantify the additional precision bits needed for each variable,
so that the distribution of energy is also described in the correct way. We evaluate the accuracy of the
computed distribution using the coefficient of determination R2, which reflects how well the reduced-
precision result represent the full-precision result. For this metric, we can set the target to different
ratios (98%, 90%, etc.) for different accuracy requirements.

(4) Verification of the design. Based on the range and precision analysis, we achieve the optimized
bitwdith with a customized scaling scheme using the coarse-resolution run. We then apply the design
to perform the target-resolution simulation, and verify whether both the energy sum and the energy
distribution is kept within the required regions.

4.3 Tools and cases

We use Maxeler dataflow computing platforms [38] to implement our designs. Maxeler dataflow program-
ming model can enable us to describe complex hardware designs in the form of Java code, and explore
various fixed-point and floating-point representations. The Maxeler programming tool also provides a
bit-accurate simulation feature, which we use to generate the simulation results of various precision
configurations.

In this study, we run our experiments on two major cases. One is an ideal case that is more general
than various realistic cases, and is more conducive to our focus on theoretical analysis. The effects of
complex earthquake sources, 3D media and undulating terrain are not considered in the ideal case. In
the ideal case, we use a simple point source with Ricker wavelet, which is widely used in seismic wave
simulations. A homogeneous half-space with the compressional wave speed Vp = 6000 km/s, the shear
wave speed Vs = 3464 km/s and the density ρ = 2670 kg/m3 is used. We use a spatial resolution of
100 m and a time step of 0.009 s to discretize the test model, which consists of 100 × 100 × 50 3D grid
points.

The other one is the Wenchuan earthquake case, which evaluates the performance of our complete
fixed-point design in realistic scenarios, with a computational region of 400 km × 400 km × 80 km. We
use the elevation data from SRTM PLUS [39] to generate the surface topography of the computational
region. We use the seismic source modeled from dynamic rupture simulation by Zhang et al. [40], which
is consistent with other kinematic inversion results. The realistic model of the Wenchuan earthquake can
be treated as a more rigorous test to evaluate our complete fixed-point design.

4.4 Range analysis

As mentioned above, the key information at a given time step is the velocity and stress values that
describe the current distribution of energy over the space. While one can always increase the number
of bits to achieve a more accurate representation of the distribution, a minimum number of bits that
capture the major information, e.g., over 99% of the total energy, would be a nice candidate to achieve
the balance between accuracy and efficiency.

In range analysis, we firstly investigate the value of variables at each single time step. Figure 3
demonstrates the cumulative percentage of energy for exponent values ranging from 29 to −5 for the
intermediate variable DxTxx and from 3 to −31 for the intermediate variable DxVy at the 120th time
step. We pick the 120th time step, as it is a time point that the seismic wave already propagates to
almost the entire region of the 3D domain. The curve of cumulative percentage for DxTxx demonstrates
that the values with an exponent larger than 14, 13, and 11 already contribute to over 99%, 99.9%, and
99.99% of the total energy simulated at the exact moment, while for DxVy the corresponding exponents
are −10, −12, and −13, which suggests a reduced-precision design might only need to consider values
with a magnitude larger than 214 for DxTxx and 2−10 for DxVy (the corresponding scaling factors are
S = 214 for DxTxx and S = 2−10 for DxVy respectively).

If we assume that we only keep the values that contribute to the first 99% of the total energy, we can
quickly derive the number of bits NA and NF needed for representing the range in a fixed-point repre-
sentation, and the corresponding scaling factor S can be decided by NF . For most velocity, stress, and
intermediate variables, we need 12 to 15 bits to represent the dynamic range. For grid transformation co-
efficient variables, which simply records the relationship between the physical grid and the computational
grid, we only need 5 bits to represent the dynamic range.
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Based on our analysis of the total energy at each given time step, we can then perform the analysis
over multiple time steps. Figure 4 demonstrates the results for the Wv and Ws variables during the first
500 time steps of the simulation. The gap between the two lines corresponds to the region of exponent
values that can represent over 99% of the signal, similar to the results in Figure 3, but presented as a
long time series. The red dots picks the largest gap over time. For the case of the Wv variable, the largest
range of exponent values needed for the coverage of 99% is from −11 to 3 (NA = 14 bits to represent the
range).

Besides the gap between the largest and smallest values for the 99% representation, the trend of the
lines also correspond well to the energy injection, propagation, and dissipation processes of the seismic
event that we try to capture. The lines would serve as a guide for us to derive the customized scaling
scheme for the fixed-point design, as detailed in Section 5.

4.5 Precision analysis

After identifying the number of bits needed to represent the range, we identify the number of extra
precision bits needed to represent each variable with sufficient accuracy.

As noted in previous studies on precision analysis [24], identifying the optimal word length configuration
for a design under the resource cost constraint is an NP-hard problem that requires huge amount of time
to achieve a close-to-optimal result. To achieve a feasible fixed-point design for a practical and complex
scientific computing application, we take a more engineering-oriented approach.

The first strategy is divide and conquer. Based on the characteristics of different variables, we group
them into six main categories: velocity components, stress components, derivatives of velocity, derivatives
of stress, curvilinear grid transformation coefficients, and elastic parameters, as shown in Figure 5. For
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Figure 5 (Color online) The main categories of variables that are put into different groups. Each group of variables employ the

same type of representation precision. We follow the sequence of the arrows to replace each group of variable from full precision

(32-bit floating-point) to the optimized fixed-point precision one by one.

each group of variables, we employ the same type of representation format, i.e., the same kind of precision.
The second strategy is a systematic refinement approach that replace floating-point arithmetic with

fixed-point arithmetic. Following a basic sequence from input variables to intermediate variables (also
shown as the arrows in Figure 5), we gradually switch each group of variables from 32-bit floating-point
numbers to fixed-point numbers. We gradually increase the number of extra precision bits from zero (the
number of range bits needed is decided in the range analysis part), and evaluate the accuracy of the specific
precision using the computed coefficient of determination (R2), which is computed as the sum of square
of the errors of the variable when comparing between a reduced-precision (the current configuration of
precision bits) simulation and a full-precision (32-bit floating-point) simulation. The number of precision
bits increases until the R2 values of the first 200 time steps are all above the designated threshold (98%
or 90%, depending on the accuracy expected in the corresponding application).

Through a number of simulations following both the ‘divide and conquer’ and ‘systematic refinement’
strategies, we can then derive the acceptable precision bit configurations for all the different groups of
variables.

5 A complete fixed-point dataflow engine design

5.1 The dataflow engine design

The traditional control flow processors, like CPU, GPU, and Intel Xeon Phi, have similar patterns to
execute an application: a series of instructions loaded from memory to processors and then after fetch-
decode cycle processors to perform computing or reading and writing data from or to memory. To
increase the executing efficiency, an HPC processor often has multiple cores, each of which equipped with
multi-level caches and vectorization computing units. For example, the SW26010 processor [11] consists
of 256 computing cores, each of which runs at a working frequency of 1.45 GHz and has an on-chip 64 KB
scratch-pad memory and a 256-bit vectorization computing unit, which indicate that its performance is
based on the high working frequency and data parallelism.

In a reconfigurable dataflow engine, we reconfigure a circuit with thousands of computing units, which
support various computing operations and data choreography. The input data stream moves frommemory
into the dataflow engine and then moves from one computing unit to another computing unit in a cycle,
and after a number of cycles, the output data stream contains the results of our algorithm. In such a
processing pipeline, the dataflow engine can achieve parallel performance through significant concurrent
data parallelism powered by computing units with customized number representations.

Figure 6 illustrates the architecture of our optimized fixed-point design for earthquake simulations. To
achieve an enhanced performance through the efficient utilization of memory bandwidth, we load all the
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Figure 6 (Color online) The general architecture of our fixed-point design for earthquake simulation.

arrays into the onboard memory through the peripheral component interconnect express (PCIe) interface
at the initialization stage. We then stream the data from onboard dynamic random access memory
(DRAM) to drive the computation. The main hardware resources are mapped into two major modules
of the design: the velocity update module and the stress update module. To enable dynamic scaling of
the range and the format bridging between different modules, we have a number of scaling units and
conversion units at both the input/output ports and the intermediate connecting ports. According to the
range analysis results, as shown in Figure 4, we derive a predefined scaling scheme and load the scaling
factors for each time step into the onboard mapped registers. The streaming circuit can then read the
scaling factor that corresponds to the current time step and scale the variables accordingly.

Convertors in Figure 6 are for fixed-point variables with different bitwidths and different dynamic
scalers. These convertors can be divided into two categories: (1) in the case that the dynamic scaler
of the output variable is larger than the input variable, the input variable and dynamic scalers are first
expanded as wide-bitwidth variables. The reason for this is that the dynamic scalers may sometimes be
very large. Then, the input variable is multiplied by the quotient of dynamic scalers of the output and
input variables. Finally, the result is cast to the output variable, where the higher bits of the result are
assigned to the output variable. (2) In the case that the dynamic scaler of the output variable is smaller
than the input variable, it is similar, although the input variable should be divided by the quotient of
dynamic scalers of the input and output variables. In our design, the change of the data range of variables
during iterations can result in a reversed size relationship between dynamic scalers in some cases, and
both kinds of convertor should be used at the same time, and finally, a multiplexer is used to choose the
correct one. To simplify the operations of multiplication and division, the quotient of dynamic scalers can
be precomputed, and the left-shift and right-shift operations can optimize multiplication and division.
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Table 1 Bitwidth configuration of major variables in the fixed-point design

Variable Wv Ws M ρ DxVx DxTxx

Bitwidth (ideal case) 21 22 18 15 20 20

Bitwidth (Wenchuan case) 18 19 18 15 17 17

5.2 Resource-oriented optimization

In a reconfigurable platform, resources on board are usually limited, which makes our 3D elastic earth-
quake simulation algorithm with complex computing logic become a resource-constraint problem. Thus,
reducing resource utilization on board would gain some benefits in our design: (1) Due to features of
dataflow in reconfigurable platforms, reducing some of the hardware resources can increase parallelism
and derive a more deep-pipelined design. (2) After optimizing the resource utilization, the objective is
more likely to be achieved in placement and routing stages with a higher required stream frequency.
(3) The reduced-bitwidth variables can relax the requirement for memory bandwidth in multiple aspects,
such as bandwidth between computing modules and onboard DRAM between FPGA and CPU, as well
as between CPUs.

To reduce the resources used to build our design, we perform some optimization techniques. First,
there are some finite difference coefficients, which are frequently used in our algorithm. To reduce the
repeating data transfer from DRAM, we can store the coefficients in the ROM. Second, as the division
operations will use many resources, we can pre-calculate the inversion of some numbers in CPU and then
transform the division operations to multiplication operations in the dataflow engine. Third, to reduce
the number of computing units, we can exchange the computational order of our algorithm to reuse some
duplicate computational results but with the acceptance error.

To reduce the bitwidth and complexity of computing units, we apply our complete fixed-point scheme.
To achieve over 99% representation of the dynamic range over time and over 98% representation of the dis-
tribution, as shown in Table 1, for the ideal case, we need roughly 21 bits for velocity variables, 22 bits for
stress variables, 18 bits for grid transformation coefficients, 15 bits for the elastic parameters, and 20 bits
for most intermediate variables.

Similar to the ideal case, for the real 3D velocity model of the Wenchuan earthquake region, we perform
the same kind of range and precision analysis to determine the most suitable configuration of the bitwidth.
Interestingly, the result showed that the actual Wenchuan case, with a more complex surface topography
and velocity model, requires a smaller number of bits to represent the different variables. As shown in
Table 1, to achieve over 99% representation of the dynamic range over time and over 98% representation
of the distribution, we require 18 bits for velocity variables, 19 bits for stress variables, 18 bits for grid
transformation coefficients, 15 bits for the elastic parameters, and 17 bits for most intermediate variables.

We suppose that the main reason for a lower precision requirement in the Wenchuan case is a result of
the different types of seismic source we used in the simulations. In the ideal case, we use a point source
for simplicity. In the case of the Wenchuan earthquake, a finite fault model that consists of many point
sources at different locations is used for the simulation. In the process of balancing the accuracy of the
maximum and minimum values of the wavefield at each time step, the point source becomes more difficult
and demands more bits.

Although the major variables in fixed-point formats can reduce the bitwidth of the registers and
computing units, the intermediate variables during computing may still need extra bitwidth due to the
multiplication or division operations between variables and scaling factors. Therefore, we must further
analyze operations involved with the multiplication of variables and scaling factors. For example, for
the stress update module, there are updating operations involving variables Wv, Ws, M , λ, µ, and their
corresponding four scaling factors. In the naive design, the intermediate variables require approximately
56 bits to accommodate all the informative bits. After analyzing the range change between variables, we
can reduce the number of intermediate bits to 38 by adjusting the computational order of the variables
and scaling factors, which maintains a precision similar with that of the naive design.

Considering all these optimizations, we can refine the resource utilization compared with the original
full-precision floating-point design, which is shown in Table 2. For the full-precision floating-point design,
the percentage of logic utilization is 47.32%. However, it consists of 32-bit complicated floating-point
computing units, and the design cannot meet timing even in a lower stream frequency of 100 MHz. In a
higher frequency, more severe timing issues occur, and the bandwidth becomes a challenge. For the opti-
mized complete fixed-point design, with 23.35% of the resource utilization and simper reduced-bitwidth
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Table 2 Resources comparison of the full-precision floating-point design and the optimized fully fixed-point design

Design Logic utilization (%) DSP blocks (%) BRAM (%)

Original full-precision floating-point design 47.32 19.49 23.63

Optimized complete fixed-point design 23.25 18.64 24.86
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Figure 7 (Color online) The task mapping for CPU + FPGA hybrid system.

fixed-point computing units, we can increase the stream frequency to 300 MHz, which is equivalent to
three computing cores running on a stream frequency of 100 MHz.

5.3 CPU-FPGA hybrid system

Using such a design, we implement a CPU-FPGA hybrid system for a 3D earthquake simulation program
that can use both a single FPGA and multiple FPGAs with a curvilinear coordinate transformation and
traction image method to respond to complex surface topography. The task mapping for CPU and FPGA
is shown in Figure 7. We map the initialization, boundary exchange, coarse-resolution simulation, and
IO operations to CPU, which can manage and process some simple and tedious tasks. We perform range
and precision analysis toward the results from a coarse-resolution run and store the dynamic scaling
factors and the updated boundary in the memory. To fully utilize the memory bandwidth, we store the
3D arrays, such as W , mW , tW , hW , M , ρ, λ, µ and the current scaling factors in the onboard DRAM.
Notably, the current scaling factors and boundary data can be transferred between the memory and the
DRAM by PCIe. In the dataflow engine, we map the most density computing tasks, such as velocity
update, stress update, and datatype conversion.

By adopting the optimized fixed-point representation, we can use one Xilinx Ultrascale+ VU9P FPGA
to implement the deep-pipelined core, achieving parallel performance from thousands of concurrent in-
struction parallelism. Moreover, with the bandwidth support of onboard DRAM running on a memory
frequency of 1066 MHz, we can boost the stream frequency of our design from 100 to 300 MHz, which is
equivalent to three computing cores running on 100 MHz.

To target our implementation for large-scale runs in the future, we also implement a partitioning
scheme to support multiple FPGAs. We partition the entire space into blocks and assign different blocks
to different FPGAs. The boundary regions are communicated among different FPGAs through the MPI
interfaces, which are shown in Figure 7. Each FPGA must send the boundary data to the CPU through
PCI-e interfaces and then communicate to the other CPUs through the MPI send and receive function
calls. In the Wenchuan earthquake simulation case, the time for computing on FPGA is 2.52 s, and the
time for MPI communication between CPUs is 0.65 s. The time for boundary transfer from CPU to
FPGA is 0.28 s, and the time for boundary transfer from FPGA to CPU is 0.17 s. Thus, the time for
computing on FPGA requires about 81.8%, while the communication between FPGAs requires about
19.2%, which demonstrates that the FPGA is primarily devoted to effective computing.
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of a coarse-resolution simulation to a target-resolution design.

6 Results and discussions

6.1 Accuracy verification of the design

In our approach, the extensive range and precision analysis occur in the coarse-resolution simulation. We
then derived the fixed-point design from handling the fine-resolution target scenario.

Therefore, after achieving the fixed-point design, we must verify whether it still maintains an acceptable
level of accuracy for both representing the correct amount of total energy and representing the correct
energy distribution.

As shown in Figure 8, we evaluate the representation of the total energy by calculating the ratio between
the total energy simulated using fixed-point numbers and the total energy computed using single-precision
floating-point numbers. We then evaluate the representation of the energy distribution by computing the
coefficient of determination and between the fixed-point and the floating-point representation. In the
analysis process, we set the target ratio to be 99% and the target R2 to be 98%. The curves of both
the ideal and the Wenchuan cases demonstrate that the ratio of total energy is well maintained above
95% and R2 is well preserved above 99%, which demonstrates that the analysis in the coarse-resolution
case can serve as decent guidance for the design in a fine-resolution scenario. There is an interesting
fluctuation in the ratio of total energy through the different time steps, especially for the Wenchuan case,
which could be due to either the delayed effect of the scaling scheme or the internal physics phenomena.

From another point of view, the formula for the coefficient of determination (marked as R2) is: R2 =
1− SSE/SST, where SSE is often used in error analysis. Moreover, Figure 8 demonstrates the accuracy
loss of the system. For the ideal case, we can see up to approximately 5% energy loss and 1% accuracy
loss throughout the simulation. For the Wenchuan case, we can observe up to about 4% energy loss and
1% accuracy loss throughout the simulation.

6.2 Simulation and performance results

For the Wenchuan case, we compare the results of our complete fixed-point design with the full-precision
result, as shown in Figure 9. The dynamic rupture source of the Wenchuan earthquake is used in the
seismic wave simulation. There is no visible deviation between the results calculated by our selected fixed-
point design (Figure 9, second column) and the full-precision (Figure 9, first column). This indicates
that our fixed-point design achieves high-precision seismic wave simulations. We can relax the acceptable
accuracy (with a relaxed coefficient of determination threshold of 90% and 70%) to further reduce the
number of bits (Figure 9, third and fourth column, velocity bitwidth down to 15 or 12 bits), and the



Chen B W, et al. Sci China Inf Sci May 2022 Vol. 65 152103:14

Full-precision floating point 18-bit fixed point 15-bit fixed point 12-bit fixed point Data type

Time step

O

60

80

120

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

X (km)

0

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

0

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

0 0

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

0.2

0.1

0

0 50 100 150 200 250 300 350 Y (km)

Y (km) Y (km) Y (km) Y (km)

0

50

100

150

200

250

300

350

0.2

0.1

0

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

X (km)

0.2

0.1

0

0.05

0

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

0.2

0.1

0

0.05

0

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

0.2

0.1

0

0.2

0.1

0

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

0.2

0.1

0

0.05

-0.05

0

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

0.2

0.1

0

0.2

0.1

0

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

0.2

0.1

0

0.05

-0.05

0

−0.05 −0.05

−0.1−0.1

−0.1

−0.2

−0.1

−0.2

−0.1

−0.2

−0.1

−0.1−0.1

−0.2

X (km)

0

X (km) X (km)

X (km) X (km)

X (km)

X (km) X (km)

X (km)

X (km)

Y (km)Y (km)Y (km)

Y (km) Y (km) Y (km)Y (km)

Figure 9 (Color online) Comparison of seismic wave snapshots (velocity component on the x-axis) calculated by the full-precision

and our complete fixed-point design for the Wenchuan earthquake simulation. The traditional full-precision arithmetic calculates

the results in the first column, and the results in the second, third, and fourth columns are calculated by our complete fixed-point

design using 18 (taking velocity as the principal indicator), 15, and 12 bits, respectively. The results of the first, second, and third

row depict the snapshots at the 60th, 80th, and 120th time step, respectively.

Table 3 Overall performance on the CPU and the CPU-FPGA platforms

Platform
Performance

Speed-up
Power Performance per watt (PPW)

PPW speed-up
(grid points/s) (W) (grid points/(W·s))

Intel Xeon E5-2643 6-core CPU 67.6k 1x 127.6 529.8 1x

Intel Xeon Gold 6154 18-core CPU 175.8k 2.6x 205.3 856.3 1.61x

260-core Sunway TaihuLight node 1.10M 16.3x 312.5 3.5k 6.6x

MaxWorkstation 1.36M 20.1x 82.9 16.4k 30.9x

MaxNode 2.31M 34.2x 175.8 13.1k 24.7x

accuracy of the results also decreases. The results using 12 bits deviate significantly from the exact
solution at the 120th time step since the error accumulates over time. Notably, even among the worst
results (Figure 9, fourth column), the maximum value in the wave field was less different from the exact
result. The peaks of strong ground motion are often a focus of seismic disaster analysis, and applications
such as earthquake disaster analysis do not require extremely high accuracy in the waveforms. Hence, it
is useful to quickly calculate a relatively accurate strong ground motion result.

Table 3 demonstrates the performance results of our FPGA-based design as compared with the Intel
CPU version and Sunway many-core processor version (SW26010 260-core processor). A detailed de-
scription of the Sunway architecture and its design of elastic earthquake simulation can be found in [20].
A single SW26010 processor provides a peak performance of over 3 TFlops and a maximum memory
bandwidth of 136 GB/s.

The performance of a hybrid CPU-FPGA algorithm on MaxWorkstation with one Ultrascale+ VU9P
demonstrated a 20.1-times speedup over one Intel Xeon E5-2643 6-core CPU, 7.73 times speedup over
an Intel Xeon Gold 6154 18-core CPU, and a 1.24-times speedup over one 260-core Sunway TaihuLight
supercomputer node. With MaxNode with two Ultrascale+ VU9P, we can gain a 34.2-times speedup
over one Intel Xeon E5-2643 6-core CPU and a 13.1-times speedup over an Intel Xeon Gold 6154 18-core
CPU, which is also 2.10 times faster than one 260-core Sunway TaihuLight node.

As for the performance per watt (aka power efficiency), our CPU-FPGA hybrid algorithm with two
FPGAs is about 24.7, 15.3, and 3.72 times more efficient than the Intel Xeon E5-2643 6-core CPU, the
Intel Xeon Gold 6154 18-core CPU, and the 260-core Sunway TaihuLight node, respectively.
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7 Conclusion

In this paper, we target elastic earthquake simulations, which is one of the most complicated applications
of leading supercomputers. We demonstrate our methods of achieving a highly efficient fixed-point design
that can provide an acceptable level of accuracy as well as decent improvement in computational efficiency.
Through a careful analysis of the numerical behavior, we manage to achieve a fixed-point design that
employs 20-bit numbers to achieve an acceptable level of accuracy, while providing equivalent performance
to 34.2 Intel Xeon E5-2643 6-core CPUs, or 13.1 Intel Xeon Gold 6154 18-core CPUs or 2.10 Sunway
260-core processors. We believe that such analysis and optimization methods are key to applying FPGA
technologies to a wide range of numerical simulations for scientific applications.
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