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Abstract Hyperspectral remote sensing is well-known for its extraordinary spectral distinguishability to

discriminate different materials. However, the cost of hyperspectral image (HSI) acquisition is much higher

compared to traditional RGB imaging. In addition, spatial and temporal resolutions are sacrificed to obtain

very high spectral resolution owing to the limitations of sensor technologies. Therefore, in this paper, HSIs

are reconstructed using easily acquired RGB images and a convolutional neural network (CNN). As a result,

high spatial and temporal resolution RGB images can be inherited to HSIs. Specifically, a two-stage CNN,

referred to as the spectral super-resolution network (SSR-Net), is designed to learn the transformation model

between RGB images and HSIs from training data, including a band prediction network (BP-Net) to esti-

mate hyperspectral bands from RGB images and a refinement network (RF-Net) to further reduce spectral

distortion in the band prediction step. As a result, the learned joint features in the proposed SSR-Net can

directly predict HSIs from their corresponding scenes in RGB images without prior knowledge. Experimental

results obtained on several benchmark datasets demonstrate that the proposed SSR-Net outperforms several

state-of-the-art methods by ensuring higher quality in HSI reconstruction, and significantly improves the

performance of traditional RGB images in classification.
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1 Introduction

Hyperspectral imaging technology, which collects electromagnetic spectrum information in hundreds of
narrow and contiguous bands, has been widely used in many applications, e.g., land-use/land-cover map-
ping, mineral exploration, and water pollution detection [1–3]. To collect rich information about an
imaged scene, hyperspectral imaging systems must capture a large amount of spatial, spectral, and tem-
poral information. However, compared to high spectral resolution, the spatial and temporal resolutions
of hyperspectral images (HSI) are not as high as that of traditional RGB and multispectral images be-
cause they are balanced with spectral resolution owing to the limitations of optical systems and sensor
technologies.

RGB imaging can easily achieve extremely high spatial and temporal resolutions at very low acquisition
costs. As a result, RGB images are used in an extremely wide range of applications. The abundant
structure and texture information contained in RGB images is very relative to identifying objects and
understanding scenes. In addition, the high temporal resolution of RGB videos can enable tracking of
moving objects and understanding human behavior. However, compared to HSIs, the lack of spectral
information in RGB images degrades the ability to discriminate pixels of different materials.

In many applications, images (or videos) with high spatial, spectral, and temporal resolutions are
required to identify and track objects according to their structure, texture, and spectra [4–8]. However,
owing to the trade-offs among spatial, spectral, and temporal resolutions in an imaging system, it is
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very difficult to directly acquire images with high resolution in these domains. Therefore, many post-
acquisition prepossessing algorithms have been proposed. For example, image fusion algorithms fuse
spectral information in low spatial-resolution HSIs and spatial information in high spatial-resolution
multispectral images, mosaic RGB images, and panchromatic images [9–14], where images with both high
spatial and spectral resolution can be obtained. The spatial super resolution (SR) algorithm can generate
a super-resolution image using a low spatial-resolution HSI [15–18]. However, the imaging cost is high
owing to the input of HSIs. In addition, the temporal resolution in these strategies cannot be improved
further owing to the temporal resolution limitations of HSIs. Therefore, to reduce image acquisition costs,
spectral SR of RGB images has been proposed to obtain HSIs with high spatial-resolution. As a result,
the temporal resolution of such HSIs can be enhanced because RGB images can be acquired easily at
very high temporal resolution. In addition, spatial and spectral joint SR has also been attempted over
existing satellite multispectral images to obtain high spatial-resolution HSIs [19].

Recently, some studies have explored direct hyperspectral reconstruction based on RGB images. For
example, Nguyen et al. [20] employed a radial basis function (RBF) neural network to estimate scene
reflections and global illumination. However, the color matching function was assumed to be known,
and its reconstruction performance was highly dependent on the white balance step. Arad et al. [21]
studied a sparse dictionary between an HSI and its corresponding RGB image, and they reconstructed
an HSI based on the sparse reconstruction. Yi et al. [22] improved Arad’s method using a spectral
improvement and spatial preservation strategy. Jia et al. [23] assumed that hyperspectral pixels can be
embedded in low-dimensional manifolds, where the low-dimensional manifolds are reconstructed based on
an RBF neural network. As a result, HSIs are reconstructed from the learned low-dimensional manifolds,
rather than being learned from the original RGB images. In 2018, CVPR organized a challenge [24] on
spectral reconstruction from RGB images, where an advanced CNN-based hyperspectral reconstruction
method achieved the best performance. Since then, many CNN-based methods have been proposed.
For example, Can and Timofte [25] proposed a moderately deep CNN model to reconstruct spectral
images. Han et al. [26] employed class-based back propagation neural networks to learn nonlinear spectral
mappings between RGB and high-spatial-resolution HSI pairs. In addition, 2D and 3D CNNs have been
applied to spectral reconstruction from RGB images, in which 3D-CNN based architecture achieved
better performance because it can exploit the inter-channel co-relation to refine the extraction of spectral
data [27].

HSI datasets acquired by well-known airborne sensors (e.g., AVIRIS) and other natural scenes on the
ground (e.g., The Interdisciplinary Computational Vision Laboratory (ICVL) datasets [21]) have provided
abundant raw materials for data-based learning. Based on big data resources, transfer learning enables the
reconstruction of spectral information in scenes from RGB images and learning the complex relationships
between the two data sources. Deep learning technologies, which have made remarkable progress in feature
learning tasks, can effectively exploit the advantages of big data to learn the spatial context features of
complex scenes from HSIs [28–31]. Therefore, in this paper, we propose a spectral super-resolution
network (SSR-Net), which applies deep learning to realize spectral SR of RGB images. The proposed
SSR-Net contains a band prediction network (BP-Net) to increase spectral resolution of RGB images and a
refinement network (RF-Net) to fine-tune spectral distortion in BP-Net. In the proposed BP-Net, only the
convolutional layer is used, where the common characteristics of all bands in HSIs are learned jointly in the
first few convolutional layers, and different band images are reconstructed with different final convolutional
layers and different convolution kernels. In all convolutional layers (other than the first layer), a small
convolution kernel, i.e., 3×3×3, is used to increase learning by considering a small number of parameters.
In the proposed RF-Net, dilate convolution is employed to learn the correlation between non-continuous
bands such that more spectral features can be extracted. In addition, a residual branch is added to
increase the training speed and improve reconstruction performance. Finally, experiments conducted on
three well-known public datasets (the ICVL [21], CAVE (The CAVE Laboratory Multispectral Image
Database) [32], and KAIST (Visual Computing Laboratory of the KAIST University) [33] datasets) were
conducted to compare the proposed SSR-Net to state-of-the-art spectral SR algorithms. In addition,
experiments on HSIs were performed to demonstrate the advantages of spectral SR in classification tasks.

In summary, our primary contributions of this paper are summarized as follows.
(1) We proposed a two-stage neural network (SSR-Net) to learn the mapping between HSIs and RGB

images, where HSIs can be reconstructed directly from RGB inputs without prior knowledge in a coarse-
to-fine manner. The proposed SSR-Net is designed according to the unique characteristics of HSIs,
including high spectral similarity among band images and abundant spatial context. Since band images
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Figure 1 (Color online) Framework of proposed SSR-Net for HSI reconstruction. The proposed SSR-Net estimates HSIs from

RGB images in a coarse-to-fine manner. First, the BP-Net estimates HSIs in a coarse manner, where joint spatial-spectral features

are learned, and then all band images are predicted in a band-by-band manner. The RF-Net further fine-tunes HSIs by exploiting

spatial context and spectral correlation in the coarsely estimated HSIs.

in an HSI have high spectral similarity, joint spatial-spectral features are first learned in BP-Net to
estimate HSIs in a band-by-band manner for coarse estimation. To facilitate fine estimation, the RF-Net
is constructed to fine-tune the reconstructed results by further exploiting the spatial context and spectral
correlation in the coarsely estimated HSIs.

(2) In addition to validation using natural scenes, i.e., the ICVL, CAVE, and KAIST datasets, the
proposed SSR-Net is also evaluated using satellite HSIs, and the superiority of spectral SR is validated
in the context of classification applications. The experimental results demonstrate the spectral SR can
improve the classification performance of remote sensing images by reconstructing HSIs from the original
RGB inputs.

The remainder of this paper is organized as follows. Section 2 presents the proposed SSR-Net for
hyperspectral reconstruction, including BP-Net for band image prediction and RF-Net for spectral fine
tuning. In Section 3, we discuss experiments conducted on several benchmark datasets to demonstrate
the effectiveness of the proposed SSR-Net for hyperspectral reconstruction. Finally, the conclusion is
presented in Section 4.

2 Proposed SSR-Net

Notation. In this paper, scalars are denoted by italic lowercase letters, vectors by bold lowercase ones, 2-D
matrices by bold uppercase ones, three-dimensional (3-D) and higher dimensional matrices by calligraphy
ones, and functions/operators by script ones. Let R ∈ R

m×n×3 denote an RGB image with m × n

pixels. Correspondingly, let H ∈ R
m×n×b represent the b-band HSI reconstructed from R, where I(i) ∈

R
m×n (1 6 i 6 b) represents the i-th spectral band of the reconstructed HSI.
In hyperspectral remote sensing, tens or hundreds of images are acquired simultaneously, owing to which

the acquisition cost is high and spatial resolution is compromised for high spectral resolution. Moreover,
it is very difficult to acquire hyperspectral videos. On the contrary, RGB images can be acquired at
a very low cost with very high spatial and temporal resolution. Therefore, in this paper, RGB images
are used to reconstruct HSIs using deep learning techniques, by which the cost of HSI acquisition will
be greatly reduced. The reconstructed HSIs own very high spatial resolution as the input RGB images.
Moreover, the temporal resolution of HSIs can also be enhanced when RGB videos (or image sequences)
are used as input. The entire deep learning framework of our proposed SSR-Net for HSI reconstruction
is shown in Figure 1, which shows the proposed SSR-Net contains two parts: a BP-Net to separately
reconstruct all the bands of HSIs and an RF-Net to reduce spectral distortion in previous prediction.

2.1 Proposed BP-Net

The BP-Net is first used to reconstruct all the hyperspectral band images directly from the input RGB
image without any auxiliary information. As shown in Figure 1, the proposed BP-Net utilizes fully con-
volutional layers to conduct such a prediction task. Different from a traditional image prediction network
that outputs just a single band image, the proposed BP-Net predicts tens or hundreds of hyperspectral
band images simultaneously. Instead of directly constructing tens or hundreds of isolated networks, the
proposed BP-Net first extracts joint features from RGB images for all the band predictions. Then mul-
tiple convolution kernels layer is designed to predict different band images from these extracted joint
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Table 1 The structure parameters of the proposed SSR-Net

Input Kernel Padding Dilation Output

BP-Conv1 1, 3, 64, 64 32, 1, 3, 5, 5 1, 2, 2 – 32, 3, 64, 64

BP-Net
BP-Conv2 32, 3, 64, 64 32, 32, 3, 3, 3 1, 1, 1 – 32, 3, 64, 64

BP-Conv3 32, 3, 64, 64 32, 32, 3, 3, 3 1, 1, 1 – 32, 3, 64, 64

BP-Conv4 (×b) 32, 3, 64, 64 32, 3, 3, 3 (×b) 0, 1, 1 – 1, 1, 64, 64 (×b)

RF-Conv1 1, b, 64, 64 16, 1, 3, 3, 3 3, 1, 1 3, 1, 1 16, b, 64, 64

RF-Net RF-Conv2 16, b, 64, 64 1, 16, 1, 1, 1 – – 1, b, 64, 64

RF-Res 1, b, 64, 64 1, 1, 1, 1, 1 – – 1, b, 64, 64

features. As a result, the following two phases are contained in the proposed BP-Net.

2.1.1 Joint feature learning

This phase uses three successive 3-dimensional (3D) convolutional layers to learn effective features from
the RGB input, which are jointly used to predict band images. Such 3D convolution simultaneously
explores the spatial context and spectral information within the three RGB channels. Each convolutional
layer nonlinearly transforms its input F (i) (i = 0, 1, 2 and F (0) = R) into multi-channel feature maps
denoted as F (i+1) ∈ R

32×3×64×64:

F (i) = f
(

W
(i)
J ⊗ F (i−1) + δ

(i)
J

)

, i = 1, 2, 3, (1)

where W
(i)
J and δ

(i)
J respectively represent the convolutional kernel and bias in this three convolutional

layer, f(·) represents the activation function in these convolutional layers, and ‘⊗’ represents the convo-
lution operation. In the SSR-Net, the rectified linear unit (Relu) function is adopted, which is conducted
in element-wise mode as

f(x) =
{ x, if x > 0,

αx, if x 6 0,
(2)

with α being a trainable parameter involved in this activation function. Note that padding is used in all
convolutional layers to expand the edges of images/features to ensure that the output of each layer of the
feature maps has an identical size to its input.

2.1.2 Band image prediction

This phase separately estimates all the band images of an HSI from the learned joint features F (3) using
convolutional layer. One convolutional layer is constructed to estimate just one band image and totally
b convolutional layers are required to estimate all the band images. The j-th band image of HSI is
estimated as

I(j) = W
(j)
P ⊗F (3) + δ

(j)
P , j = 1, 2, . . . , b, (3)

where W
(j)
P and δ

(j)
P respectively represent the convolutional kernel and bias to estimate the j-th band

image. Note that no activation function is applied in these convolutional layers.
In a CNN, the size of the mapped region of pixels on the feature map output plays an important role

in feature learning. As shown in Figure 2(c), the size of the receptive field of the first convolution layer
equals the size of the filter, while that of deeper convolutional layer is related to both the stride size and
the size of convolution kernel of all previous layers. Thus, a small convolution kernel can also result in
a large receptive field under multi-layer superposition [34]. Moreover, a small convolution kernel offers
the advantage of fast learning speed since fewer parameters are involved. Therefore, in the proposed
BP-Net, small convolution kernels of size 3 × 3 × 3 are used for learning in all the convolutional layers
except the first layer that is to reduce the number of parameters and accelerate the learning speed. The
detailed information of the proposed BP-Net is listed in Table 1, which shows that the size of input to
the BP-Net, denoted as R, is fixed as 1 × 3 × 64 × 64, meaning an RGB image of size 64× 64 is fed to
the BP-Net. According to the information of the four convolutional layers in the proposed BP-Net listed
in Table 1, the size of receptive field for these four layers is shown in Table 2. It can be observed that,
though small convolution kernels are used in the BP-Net, areas as large as 11× 11 from the RGB image
can be sensed to estimate just one element for the HSI.
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Table 2 The receptive field of each convolutional layer in the BP-Net

Conv1 Conv2 Conv3 Conv4

Receptive field 5 × 5 7 × 7 9 × 9 11 × 11

Kernel 32, 3, 5, 5 32, 3, 3, 3 32, 3, 3, 3 31, 3, 3, 3

(a) (b) (c)

Figure 2 (Color online) (a) Illustration of a traditional convolutional layer. (b) Illustration of a dilate convolutional layer. In

these figures, red indicates the region of the input layer that is dotted with the convolution kernel, while green indicates the range

of receptive fields corresponding to the convolution kernel. (c) Illustration of the receptive field. In CNNs, the receptive field of a

neuron is determined by the filter in all the preceding layers.

2.2 Proposed RF-Net

In the proposed BP-Net, spectral distortion easily occurred since all the bands of an HSI are estimated
independently. Therefore, another RF-Net is constructed to alleviate the spectral distortion. Context
information has played an important role in image reconstruction, image prediction and other tasks. In
this paper, spectral context information is considered in the proposed RF-Net.

In order to alleviate spectral distortion, more contextual spatial-spectral information can be explored
by increasing the depth of the network or the size of the convolution kernel. However, such an operation
also results in difficulty in network learning since much more parameters are involved. Dilate convolution,
which is also known as atrous convolution in DeepLab [35], allows for an exponential increase in the field of
view without the decrease of spatial dimensions or increase of the number of parameters [36]. As shown
in Figures 2(a) and (b), compared with traditional convolution, the dilate convolution learns features
from non-continuous bands, such that a larger size of spectral context can be explored under a similar
scale of network to traditional convolution. For example, if traditional convolution is applied on an input
x ∈ R

p×1 with a kernel w ∈ R
q×1 (without loss of generality, q ≪ p), the output y ∈ R

p×1 (padding can
be used to keep the size of output equal to that of input) is

yk =

q−1
∑

l=0

wlxk+l, k = 1, 2, . . . , p. (4)

However, when the dilate convolution is applied, the output y′ ∈ R
(p)×1 becomes

y′
k =

q−1
∑

l=0

wlxk+l∗∆, k = 1, 2, . . . , p, (5)

where ∆ is a step-size in dilate convolution and set to 2 in this paper. High dimensional dilate convo-
lution can be obtained by applying this one-dimensional calculation to all dimensions. Therefore, dilate
convolution is adopted in the proposed RF-Net to alleviate spectral distortion by effectively exploring
the spectral context of non-continuous bands.

As shown in Figure 1, the proposed RF-Net consists of two dilate convolutional layers to explore
both spatial and spectral context. The first convolutional layer learns effective spatial-spectral features
from the HSI estimated by the BP-Net, while the second convolutional layer estimates the HSI using
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these features. The output of BP-Net, which is constructed by assembling these estimated band images
HB = {I(j)}, is fed to the RF-Net. Therefore, the feature learned in the first convolutional layer is

FR = f (WR1⊗̄HB + δR1) , (6)

where WR1 and δR1 respectively represent the weight and bias in this convolution, FR represents the
features learned in RF-Net, and ⊗̄ denotes dilate convolution. The Relu activation function is also used
in this feature learning convolutional layer. Consequently, an updated HSI can be estimated from these
features learned in HB:

HR = WR2⊗̄FR + δR2, (7)

where WR2 and δR2 respectively represent the weight and bias in the second convolutional layer, HR

represents the estimated HSI after alleviating spectral distortion by exploring spatial-spectral context.
In order to accelerate learning processing, a residual branch is also adopted in the RF-Net, where a

1× 1× 1 convolutional kernel is used for linear scaling to fine-tune the range of the output image. As a
result, the final HSI estimated from the RGB image is

Ĥ = HR +WB ⊗HB, (8)

where WB represents the 1 × 1 × 1 convolutional kernel in residual branch and Ĥ represents the HSI
estimated from the RF-Net, i.e., the HSI estimated from the proposed SSR-Net. The parameters of the
proposed RF-Net are also summarized in Table 1.

2.3 Training procedure

The RGB input and its corresponding ground-truth HSI are used to train the network, and the L1 loss
function [37] is adopted in the proposed SSR-Net. Assumed H represents ground-truth HSI of the HSI

estimated by the SSR-Net Ĥ. The L1 loss function between the prediction and the ground-truth in the
SSR-Net is defined as follows:

loss(H , Ĥ) =
1

m× n× c

h
∑

i=1

w
∑

j=1

c
∑

k=1

|(hi,j,k − ĥi,j,k)|, (9)

where hi,j,k and ĥi,j,k represent the input at the position (i, j, k) of H and Ĥ, respectively, and ‘| · |’
represents absolute value.

The proposed SSR-Net estimates hyperspectral images (HSIs) from RGB images in a coarse-to-fine
manner: BP-Net first estimates HSIs in a coarse manner, in which joint spatial-spectral features are first
learned and then all the band images are predicted in a band by band manner; RF-Net further fine-
tunes coarsely estimated HSIs by exploiting their spatial context and spectral correlation. Therefore, the
training of the proposed SSR-Net can be divided into two steps: training BP-Net for coarse estimation
and training RF-Net for fine estimation, When the proposed SSR-Net is well-trained, it can be directly
used to reconstruct HSIs from an RGB inputs. Note that in order to train the proposed SSR-Net more
effectively, the orthogonal method proposed in [38] is used for weight initialization. In this initialization
algorithm, the weight of network is filled with a semi-orthogonal matrix to accelerate the training speed.

3 Experiments

In this section, extensive experiments are conducted to evaluate the performance of our proposed SSR-Net
for the reconstruction of HSIs from RGB images.

3.1 Experiments on ground natural images

3.1.1 Datasets

Three benchmark hyperspectral datasets, namely ICVL dataset [21], CAVE dataset [32] and KAIST
dataset [33], are adopted. The ICVL dataset is acquired using a Specim PS Kappa DX4 hyperspectral
camera and a rotary stage for spatial scanning [21]. Such dataset contains 201 images from a variety of
urban (residential/commercial), suburban, rural, indoor and plant-life scenes. Most images are of size
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Figure 3 (Color online) CIE 1964 color match function.

Table 3 Reconstruction performance of the proposed SSR-Net with different training strategies over the ICVL dataset

RMSE PSNR (dB) SSIM SAM

Overall training 0.0072 43.88 0.9913 0.0387

Coarse-to-fine training 0.0063 45.12 0.9929 0.0337

1392× 1300 and 519 spectral bands (from 400 nm to 1000 nm at roughly 1.25 nm increments). Similar
to that in [21], the spectral range used from each image was limited roughly to the visual spectrum and
computationally reduced via proper binning of the original narrow bands to 31 bands of roughly 10 nm
in the range 400–700 nm. The CAVE dataset, which is available at the web1), is acquired using a tunable
filter (VariSpec Liquid Crystal Tunable Filter) and a cooled CCD camera (Apogee Alta U260, 512× 512
pixels) [32]. The images in this dataset contain 31 bands ranging from 400 nm to 700 nm with 10 nm
intervals. A variety of objects and materials are included in this dataset, such as textiles, skin, hair,
real and fake fruits and vegetables, candy, drinks, and paints. The KAIST dataset [33] is similar to
CAVE dataset, but the spatial resolution is much higher than both the CAVE and ICVL datasets. It
contains 32 images of size 2704× 3376, each of which also consists of 31 bands ranging from 420 nm to
720 nm. In addition, all the KAIST images are normalized by the intensity of the reference white of
Spectralon (calibrated 99% reflectance). For these three datasets, we use the integration of the HSIs and
the CIE-1964 (as shown in Figure 3) color match function to generate the corresponding RGB images.

In this paper, the proposed SSR-Net is trained based on the PyTorch2) framework using the Adam
solver [39] for optimization, the beta1 is set as 0.9, the beta2 is set as 0.999. The weight decay is used
to reduce the over-fitting problem. The learning rate is decayed exponentially from 0.001 to 0.0001. The
training stops when no notable decay of training loss is observed. During training, we import a fixed-
size area from the original image into the network of size 64 × 64. In order to verify the quality of the
reconstructed HSIs, several quantitative metrics are adopted, including root mean square error (RMSE),
PSNR, and structural similarity index measurement (SSIM).

3.1.2 Coarse-to-fine based training

In the proposed coarse-to-fine based strategy, the BP-Net is trained first for coarse estimation. After the
BP-Net is well-trained, the RF-Net is then trained by fixing parameters of the BP-Net for fine estimation.
In order to demonstrate the superiority of such coarse-to-fine based strategy, an experiment over ICVL
dataset is carried out to compare such coarse-to-fine based training strategy with the overall training
strategy that training all the parts of the SSR-Net simultaneously. The experimental results of different
training strategies for the proposed SSR-Net is shown in Table 3. Obviously, the proposed coarse-to-fine
based training strategy outperforms the overall training strategy.

Moreover, experiments on these three datasets are first carried out to demonstrate the superiority of
adding RF-Net in the proposed SSR-Net. Comparison between the proposed SSR-Net without RF-Net
(actually just BP-Net) and with RF-Net is carried out. The experimental results by two-folded division
are listed in Table 4, in which the mean value of PSNR is adopted for quantitative evaluation. It is
observed that, about 2 dB improvement can be obtained by adding RF-Net, demonstrating that the
RF-Net can clearly alleviate the spectral distortion.

1) http://www1.cs.columbia.edu/CAVE/projects/gap camera/.

2) http://pytorch.org/.
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Table 4 Reconstruction performance of the proposed SSR-Net with and without RF-Net in terms of mean PSNR in dB

ICVL CAVE KAIST

Fold 0 Fold 1 Fold 0 Fold 1 Fold 0 Fold 1

BP-Net 40.50 43.76 31.52 30.53 30.49 30.80

SSR-Net 44.66 45.01 33.91 32.36 31.82 32.01

Table 5 Quantitative evaluation results on the three datasets

Method
RMSE PSNR (dB) SSIM SAM

Max Mean Std Min Mean Std Min Mean Std Max Mean Std

K-SVD 0.0404 0.0136 0.0056 27.88 37.90 3.08 0.8804 0.9571 0.0194 0.2038 0.1030 0.0293

RBF 0.0432 0.0097 0.0064 27.29 41.65 4.65 0.9130 0.9858 0.0112 0.1187 0.0485 0.0163

ICVL HSCNN 0.0296 0.0072 0.0047 30.57 44.03 4.35 0.9653 0.9914 0.0063 0.1062 0.0397 0.0137

3DCNN 0.0303 0.0069 0.0043 30.38 44.35 4.26 0.9685 0.9918 0.0051 0.1089 0.0375 0.0135

SSR-Net 0.0276 0.0063 0.0040 31.17 45.12 4.26 0.9701 0.9929 0.0047 0.1033 0.0337 0.0129

K-SVD 0.1066 0.0445 0.0268 19.44 28.33 4.81 0.7481 0.9033 0.0630 0.5360 0.4216 0.0702

RBF 0.1137 0.0373 0.0300 18.89 30.61 5.78 0.7536 0.9331 0.0585 0.4410 0.2660 0.0782

CAVE HSCNN 0.0519 0.0226 0.0115 25.69 33.86 4.19 0.8815 0.9556 0.0268 0.3431 0.2017 0.0525

3DCNN 0.0537 0.0226 0.0122 25.40 34.00 4.44 0.9042 0.9595 0.0260 0.3621 0.2093 0.0590

SSR-Net 0.0522 0.0223 0.0120 25.65 34.10 4.45 0.9041 0.9599 0.0259 0.3445 0.2013 0.0540

K-SVD 0.0507 0.0330 0.0080 25.91 29.86 1.99 0.8078 0.9075 0.0325 0.6336 0.5173 0.0026

RBF 0.0392 0.0231 0.0064 28.12 33.02 2.23 0.9008 0.9467 0.0184 0.5280 0.2930 0.0954

KAIST HSCNN 0.0343 0.0191 0.0071 29.30 34.85 2.93 0.8815 0.9556 0.0268 0.5839 0.2741 0.1389

3DCNN 0.0362 0.0216 0.0068 28.80 33.68 2.60 0.8494 0.9338 0.0277 0.6824 0.2193 0.1628

SSR-Net 0.0340 0.0186 0.0072 29.38 35.12 3.02 0.8607 0.9475 0.0273 0.5372 0.2236 0.1534
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Figure 4 (Color online) Individual results of PSNR over these three datasets. (a) ICVL dataset, (b) CAVE dataset, and

(c) KAIST dataset.

3.1.3 Comparison with state-of-the-art

In order to demonstrate the effectiveness of the proposed SSR-Net for spectral SR, several state-of-the-art
methods, including K-SVD [21], RBF Interpolation [20], HSCNN [24], and 3DCNN in [27], are adopted
for comparison. For all of these algorithms, we randomly divide all the considered datasets into two
parts: the training set and the testing set, each of which contains half the number of images. The
experimental results of all these algorithms are listed in Table 5. For the four quantitative metrics, not
only the mean and standard variation of individual results, but also their worst values, i.e., largest RMSE,
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Figure 5 (Color online) Sample results of band images reconstructed by different algorithms from ‘bgu 0403-1439’ in ICVL

dataset.

SAM and smallest PSNR, SSIM for all images in the dataset, are used to evaluate the performance of
HSI reconstruction. It is observed that the proposed SSR-Net achieves the best performance over all
considered algorithms in terms of average RMSE and PSNR on these three datasets, and achieves the
best or nearly best performance in terms of average SSIM. Moreover, the performance of the proposed
SSR-Net over all the individual results in the three datasets does not vary much in terms of the standard
variation. Even when the worse measurements are considered, the proposed SSR-Net also achieves or
approaches the best value over all the compared algorithms. Figure 4 further lists the individual results
of these three datasets in terms of PSNR. It is also confirmed that the proposed SSR-Net reconstructs
HSI with very high accuracy for each individual image.

Three sample results reconstructed by different algorithms from different datasets are also selected
and listed in Figures 5–7, respectively. It is also confirmed that our proposed SSR-Net can reconstruct
HSIs from RGB input with high quality. Figure 8 further lists the recovered spectra by these algorithms
and their corresponding ground-truth spectra from three testing images of different datasets. In each
image, three pixels are selected and listed in one row. It is observed that the spectra reconstructed by
the proposed SSR-Net are more similar to the ground-truth spectra than the other three algorithms.

Different numbers of training images are also tested on the ICVL dataset, including 5, 10, 15, 20,
and 25 images, respectively. All the rest images are used for testing. The experimental results of the
proposed SSR-Net with different numbers of training samples are listed in Figure 9. It is observed that
the performance of the proposed SSR-Net steadily increases when more samples are used for training.

3.2 Experiments on satellite images for classification

In this subsection, the advantage of spectral SR for the classification task is analyzed by applying the
proposed SSR-Net to images acquired by the AVIRIS sensor. Two well-known hyperspectral datasets,
i.e., the Indian Pines dataset and the Salinas Valley dataset, are used for evaluation. Figure 10 provides



Mei S H, et al. Sci China Inf Sci May 2022 Vol. 65 152102:10

420 nm 460 nm 500 nm 540 nm 580 nm 620 nm 660 nm

37.25 dB 46.74 dB 38.25 dB 48.56 dB 32.82 dB 34.98 dB 31.43 dB

33.18 dB 37.95 dB 38.3 dB 44.79 dB 33.76 dB 33.89 dB 35.98 dB

34.72 dB 40.99 dB 36.96 dB 47.63 dB 34.17 dB 34.85 dB 30.67 dB

29.9 dB34.51 dB32.17 dB45.11 dB36.6 dB43.28 dB35.97 dB

36.5 dB 44.61 dB 36.88 dB 47.35 dB 32.27 dB 34.95 dB 30.77 dB

G
ro

u
n
d
-t

ru
th

S
S

R
-N

et
K

-S
V

D
R

B
F

H
S

C
N

N
3
D

C
N

N

Figure 6 (Color online) Sample results of band images reconstructed by different algorithms from ‘face ms’ in CAVE dataset.

Table 6 The classification performance over the Salinas Valley dataset

OA (%) AA (%)

SSR-Net 3DCNN HSCNN RBF KSVD RGB SSR-Net 3DCNN HSCNN RBF KSVD RGB

SVM 87.52 84.74 85.22 78.14 82.35 81.77 93.24 91.25 91.53 83.97 89.43 83.70

SVM-CK
3 × 3 90.03 86.81 86.94 82.69 86.85 84.85 95.23 92.74 93.06 88.42 93.07 91.69

5 × 5 92.70 88.46 89.67 86.62 89.11 86.96 96.69 93.92 94.34 90.96 94.34 93.25

Table 7 The classification performance over the Indian Pines dataset

OA (%) AA (%)

SSR-Net 3DCNN HSCNN RBF KSVD RGB SSR-Net 3DCNN HSCNN RBF KSVD RGB

SVM 63.95 53.62 58.84 46.57 48.47 53.12 62.93 58.60 52.99 53.35 46.49 40.39

SVM-CK
3 × 3 73.81 65.36 72.79 52.90 59.49 66.81 73.63 67.56 69.13 61.14 58.79 63.64

5 × 5 79.99 72.44 77.56 58.59 66.88 72.95 81.76 71.94 76.14 67.92 65.67 67.92

the pseudo color image and the ground-truth for classification for these two datasets, respectively. The
AVIRIS sensor acquires 224 spectral bands ranging from 0.4 µm to 2.5 µm with a spatial resolution of
about 20 m. Owing to its high spectral coverage, AVIRIS scenes have been widely utilized in the remote
sensing community for classification. To be consistent with previous experiments, 31 bands covering a
range from 400 nm to 700 nm are selected in this experiment. Specifically, these 31 bands correspond to
band images from the 6th to the 36th band.

In this experiment, the RGB images are also simulated according to the CIE-1964 color matching
functions. Then, these simulated RGB images are used to reconstruct the 31 selected bands of HSI. Each
image is divided horizontally into two parts, one for training and the other for validation. Small patches
with the size of 24 × 24 are clipped as input for more training samples. The batch norm method [40] is
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Figure 7 (Color online) Sample results of band images reconstructed by different algorithms from ‘scene28 reflectance’ in KAIST

dataset.

Figure 8 (Color online) Sample results of reconstructed pixels from three datasets. From top to bottom: ‘Ramot0325-1364’ from

ICVL dataset, coordinates: (300, 500), (500, 100), (200, 900); ‘flowers ms’ from CAVE dataset, coordinates: (250, 130), (220, 250),

(300, 350); ‘scene30 reflectance’ from KAIST dataset, coordinates: (1300, 1500), (2100, 1500), (2830, 1500).
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Figure 9 (Color online) Experimental results by adopting different numbers of training samples for the ICVL dataset.

(a) (b) (c) (d)

Figure 10 (Color online) (a) A pseudo color image of the Indian Pines dataset. (b) The ground-truth map of the Indian Pines

dataset. (c) A pseudo color image of the Salinas Valley dataset. (d) The ground-truth map of the Salinas Valley dataset.

(a) (b) (c)

(d) (e) (f)

Figure 11 (Color online) Classification maps of different algorithms on the Indian Pines dataset. (a) RGB image; (b) HSI

reconstructed by K-SVD [21]; (c) HSI reconstructed by RBF [20]; (d) HSI reconstructed by HSCNN [24]; (e) HSI reconstructed by

3DCNN [27]; and (f) HSI reconstructed by the proposed SSR-Net.

used to expedite the training. For comparison, the K-SVD [21], RBF Interpolation [20], HSCNN [24],
and 3DCNN in [27] are also adopted.

After spectral SR, classification is performed on RGB images and their corresponding reconstructed
HSIs. Here, two popular classifiers are employed, i.e., support vector machine (SVM) and SVM-CK [41].
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(a) (b) (c) (d) (e) (f)

Figure 12 (Color online) Classification maps of different algorithms on the Salinas Valley dataset. (a) RGB image; (b) HSI

reconstructed by K-SVD [21]; (c) HSI reconstructed by RBF [20]; (d) HSI reconstructed by HSCNN [24]; (e) HSI reconstructed by

3DCNN [27]; and (f) HSI reconstructed by the proposed SSR-Net.

In each dataset, 10% of the pixels in each category were used to train the classifier. As shown in Tables 6
and 7, the classification performance of RGB images was improved by reconstructing the HSIs, which
indicates that spectral SR is very relative to improving applications performance, e.g., classification
tasks. In addition, the proposed SSR-Net clearly outperformed the other three algorithms relative to
reconstructing HSIs from RGB images. This conclusion is confirmed by the classification maps obtained
by different algorithms on the Indian Pines (Figure 11) and Salinas Valley (Figure 12) datasets.

4 Conclusion and future work

In this paper, we have explored the intrinsic relationship between RGB images and HSIs using a CNN,
and we have proposed the SSR-Net for spectral SR of RGB images. In addition to an implementing BP-
Net to predict band images directly from RGB inputs, the proposed SSR-Net employs RF-Net to further
improve spectral fidelity. As a result, HSIs can be reconstructed directly from RGB images without
any other priors. The experimental results obtained on three benchmark datasets demonstrate that the
proposed SSR-Net outperforms state-of-the-art methods. In addition, the experimental results obtained
on satellite images demonstrate that classification performance can be improved by spectral SR using the
proposed SSR-Net.

Although the superior performance was obtained by the proposed SSR-Net, many training samples
are required in such deep learning-based techniques to reconstruct HSIs using RGB inputs. Thus, in
the future, it would be valuable to further investigate few-shot learning-based strategies to learn such
mappings. In addition, the transferring ability to RGB images with different contents with training
images will also be considered.
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