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Appendix A Theoretical Analysis

In this section, we introduce the min-max framework in statistical decision theory [1] to analyze the proposed model, and

provide bounds on the risk of the SoMA estimator.

Appendix A.1 Notations

Here we define some notations used in following theoretical analysis.

Matrix and set: Given rating matrix R ∈ Rn×m and social matrix S ∈ Rn×n, let M = [R,S] ∈ Rn×(n+m) be their row

concatenation and [M] be its column space. Let Mn×·
d be a set of rank-d matrices with row dimensions n and arbitrary

column dimensions, and Mn×m
d ⊆ Mn×·

d be its subset with column dimensions m. Let Gnd be the Grassmannian defined as

the set of d-dimensional subspace in Rn. Note each element in Gnd is a subspace. Let Ond be the set of orthonormal matrices

in Rd×n.

Metric between subspaces: Suppose S1 ∈ Gnd and S2 ∈ Gnd are subspaces of Rn. The distance between these two

subspaces is defined as d(S1, S2) = ||P1 − P2||F , where Pi is the orthogonal projection onto Si. The distance between a

pair of subspaces can be characterized by the blocks of a certain orthogonal matrix.

The min-max risk of SoMA estimator: The rating matrix R and social matrix S admit generalized factorization

R = θ>φ and S = θ>υ where φ and υ are the corresponding transform matrices. Since R and S admit a unique θ in

factorization, we have a mapping f : Rn×·d → Gnd such that f(R) = θ. Then, the SoMA estimator can be defined as

f̂ : {MΩ} → Gnd where Ω = {ΩR,ΩS} is the index set of observed entries in R and S. The quality of mapping f̂ can

be evaluated via l(f̂ |MΩ) =
1
2

[
d(f̂(MΩ), f(R)) + d(f̂(MΩ), f(S))

]
and the maximum risk of SoMA estimator can be

calculated by
R(f̂) = supEΩl(f̂ |MΩ)

where expectation EΩ is taken over the randomness of MΩ.

Packing: For any set S equipped with a distance metric dS , let {Sw}w∈W be an arbitrary subset of S indexed by set W .

For δ > 0, we say this subset is a δ-packing of S with respect to dS if dS(Sv , Sv′ ) > δ whenever v 6= v
′
.

Hypothesis testing: To lower bound R(f̂), we employ the classic estimation-to-testing reduction method [2–4]. We

design a new hypothesis testing problem. Let {Sw}w∈W be a 2δ-packing of Gnd indexed by a finite set W , and V and

V ′ be two random variables taking values w and w
′

from W . Thus the hypothesis testing problem is stated as following

steps: (1) randomly choose V and V ′ from W independently and uniformly; (2) conditioned on V and V ′ , randomly choose

θ and θ
′

satisfying [θ] = Sw and [θ
′
] = S

w
′ ; (3) generate R = θ>φ and S = θ>υ with some random matrices φ and

υ; then generate observation MΩ = [RΩR
,SΩS

]. (4) apply a testing function T : {MΩ} → W defined as T (MΩ) =

argminw∈W d(f̂(MΩ), Sw).

Appendix A.2 A Bound for SoMA

Here we give the primary lower bound of SoMA estimator.

Proposition 1. Suppose Gnd admits a 2δ-packing indexed by a finite set W , and V is a uniform random variable on W .

Then, the SoMA estimator satisfies

R(f̂) > δ

2

(
1− 1

|W | (1− p(T (MΩ) 6= V))
)

where the probability is defined over the random choice of MΩ = [RΩR
,SΩS

] and W .
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Proof. Write V for (V,V ′ ) and w for (w,w
′
). Let notation ∨ denote the logical disjunction. Following standard min-max

arguments, we have

supEΩ

[
d(f̂(MΩ), f(R)) + d(f̂(MΩ), f(S))

]
> supE[δ · 1{d(f̂(MΩ), f(R)) > δ ∨ d(f̂(MΩ), f(S)) > δ}]

= δ · sup p{d(f̂(MΩ), f(R)) > δ ∨ d(f̂(MΩ), f(S)) > δ}
(A1)

where the inequality is based on the fact that total distance is greater than δ if any one distance is greater than δ.

Reducing the above estimation problem into the hypothesis testing problem (with a 2δ-packing {fw}w∈W ), we have

sup p{d(f̂(MΩ), f(R)) > δ ∨ d(f̂(MΩ), f(S)) > δ} > 1

|W |2
∑
w

p{d(f̂(MΩ), fw)

> δ ∨ d(f̂(MΩ), fw′ ) > δ|V = w}

where the coefficient is based on the uniform sampling assumption on W so that p(V = w) = 1
|W |2 .

p{d(f̂(MΩ), fw) > δ ∨ d(f̂(MΩ), fw′ ) > δ|V = w}

= p{d(f̂(MΩ), fw) > δ ∨ d(f̂(MΩ), fw′ ) > δ|w 6= w
′
,V = w} · p{w 6= w

′
,V = w}

+ p{d(f̂(MΩ), fw) > δ ∨ d(f̂(MΩ), fw′ ) > δ|w = w
′
V = w} · p{w = w

′
,V = w}

= 1 · p{w 6= w
′
,V = w}+ p{d(f̂(MΩ), fw) > δ ∨ d(f̂(MΩ), fw′ ) > δ|w = w

′
V = w} · p{w = w

′
,V = w}

(A2)

where the second equality is based on the geometric argument, i.e. if w 6= w
′
, then no f̂ can be simutaneously δ-close to

both fw and f
w
′ , which implies p{d(f̂(MΩ), fw) > δ ∨ d(f̂(MΩ), fw′ ) > δ} = 1.

Since d(f̂ , fw) > δ as implied by T (MΩ) 6= w and average over all possible w, we have

supEΩ

[
d(f̂(MΩ), f(R)) + d(f̂(MΩ), f(S))

]
> δ
(
p(w 6= w

′
) +

1

|W |p{T (MΩ) 6= V|V = V
′
}
)

>
δ

2

(
1− 1

|W | (1− p(T (MΩ) 6= V))
) (A3)

Now we will give a detailed lower bound covering the recovery error.

Proposition 2. Let S, S
′

respectively be the column space of any R,R
′ ∈ Mn×m

d . Let sd(R) be the smallest non-zero

singular value of R. Then

d(S, S
′
) 6

√
2||R−R

′
||F

sd(R)
(A4)

For simplicity, we focus on a set M̃n×·
d ⊆ Mn×·

d whose matrices have their smallest non-zero singular values bounded

away from zero.

Let G̃nd ⊆ Gnd be the set induced from M̃n×·
d such that for every S ∈ G̃nd there is an matrix R ∈ M̃n×·

d satisfying f(R) = S.

For a matrix R and a latent factor θ̂ estimated from its observation RΩ, we define the recovery error as

ER(θ̂) = min ||R− θ̂>φ||2F (A5)

and we can define the recovery loss for both rating matrix and social matrix as l(f̂ |MΩ) = 1
2

[ER(f̂(MΩ) + ES(f̂(MΩ)]

and the maximum risk of SoMA estimator as R(f̂) = supEΩl(f̂ |MΩ). Thus, the recovery bound is given as follows

Theorem 1. Given a M̃n×·
d and its induced G̃nd that admits a 2δ-packing indexed by a finite set W , Let V be a uniform

random variable on W . Then, there is a constant c > 0 (depending on M̃n×·
d ) bounded away from zero such that SoMA

estimator f̂ satisfies
R(f̂(MΩ) >

cδ

2
√
2

(
1− 1

|W | (1 + p(T (MΩ) 6= V))
)

(A6)

where the probability defined over the random choice of MΩ = [RΩR
,SΩS

] and W .

Proof. Note that sd(R) is the smallest non-zero singular value of matrix R. Constant c = inf
R∈M̃n×·

d
sd(R) is positive

and bounded away from zero. Combing with Proposition 2, this implies that any matrix R, R
′ ∈ M̃n×·

d satisfy d(S, S
′
) 6

√
2||R−R

′
||F

c
and ER(f̂(MΩ)) > c·d(f̂(MΩ),f(R))√

2
. Hence over all M ∈ M̃n×·

d × M̃n×·
d , we have

supEΩ[ER(f̂(MΩ)) + ES(f̂(MΩ))] >
c√
2
supEΩ

[
d(f̂(MΩ), f(R)) + d(f̂(MΩ), f(S))

]
Applying proposition 1, we can obtain the bound stated above.

Theorem 1 shows a recovery error bound that maintains the same order as the estimation error bound.
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Appendix B Scalable Stochastic Variational Inference for SoMA

The key problem in the parameter estimation of Bayesian model is computing the posterior distribution over the latent

variables given the observed data. For SoMA, it is intractable to obtain the exact inference of the posterior distribution,

thus, we adopt mean-field stochastic variational Bayesian method to approximate the full posterior distribution.

Appendix B.1 Variational Inference for SoMA

Variational methods aim to approximate the posterior distribution (i.e. p(θ,φ,z,γ,π|R,S, α, β, λ, σφ, σR)) via a factorized

form

q(θ,φ,z,γ,π) =

n∏
i=1

q(γi|ηi)
d∏
c=1

q(πc|δc)
n∏
i=1

d∏
c=1

q(θic|ζic)×
m∏
j=1

q(φj |µj , σ2)
∏
<i,k>

d∏
c=1

q(zikc|ξic) (B1)

with q(πc|δc) = Beta(πc; δc), q(θic|ζic) = Beta(θic; ζic), q(γi|ηi) = Exp(γi; ηi) q(φj |µj , σ2) = N(φj ;µj , σ
2)

and q(zikc|ξic) = B((zikc; ξic). The variational inference can be implemented by minimizing the Kullback-Leibler (KL)

divergence between the true posterior p(θ,φ,z,γ,π) and the factorized variational distribution q(θ,φ,z,γ,π). It has been

proved that minimizing the KL divergence is equal to optimizing an Evidence Lower BOund (ELBO) L:

L = Eq[log p(θ,φ,z,γ,π,R,S)]− Eq[log q(θ,φ,z,γ,π)]

=

n∑
i=1

d∑
c=1

Eq[log p(θic|α)]− Eq[log q(θic|ζic)] +
m∑
j=1

Eq[log p(φj |σφ)]− Eq[log q(φj |µj , σ2)]

+

n∑
i=1

Eq[log p(γi|λ)]− Eq[log q(γi|ηi)] +
d∑
c=1

Eq[log p(πc|β)]− Eq[log q(πc|δc)] +
∑
Sik

Eq[log p(Sik|zik,π)]

+
∑
<i,k>

d∑
c=1

Eq[log p(zikc|θic)]− Eq[log q(zikc|ξic)] +
∑

Rij 6=0

Eq[log p(Rij |θi,φj , σR)]

(B2)

All these variables can be roughly divided into global hidden variables and local hidden variables [5]. The first three lines

in the right of (B2) contain the summations over all user groups, users, and items, thus they are denoted as global terms,

and the related variables (ζ,µ,η, δ) are called as global variables. The remaining parts are local terms, and ξ is taken as

local variable. Next, we will optimize ELBO via stochastic optimization.

Appendix B.2 Stochastic Optimization

Stochastic variational inference is a coordinate ascent algorithm that iteratively updates local and global variables. For each

iteration, given the current settings of the global variables, we subsample the rating information R and compute optimal

local variables. Then the global variables can be updated by using the stochastic natural gradient which is computed from

the subsampled data and local variables.

For (B2), the gradients of ELBO with respect to the global variables ζ,µ,η, δ can be calculated via

∂L
∂ζic,1

= α1 − ζic,1 +
∑

Rij∈D

θ>i φj +

n∑
k=1

d∑
c=1

Sikθic +
n∑
k=1

d∑
c=1

(1− Sik)θic

∂L
∂µj

= −µj
σ2
φ

+
∑

Rij∈D

(Rij − θ>i φj)
∂L
∂δc,1

= −δc,1 + β1 +

n∑
k=1

(Sik − g(Ŝik))g
′
(Ŝik)

∂L
∂ηi

= −ηi + λ+
∑

Rij∈D

(Rij − θ>i φj) +
n∑
k=1

(Sik − g(Ŝik))g
′
(Ŝik)

where the mini-batch of observed rating set is denoted as D = {(i, j) : Rij > 0}. Then we can update these variables

via stochastic gradient ascent technique with different learning rates (ρ
(τ)
i , ρ

(τ)
j , ρ

(τ)
c ) for different variables. Note ρ(τ) =

(τ0 + τ)−κ, where κ ∈ (0.5, 1] is the learning rate and τ0 6 0 downweights early iterations. In a similar way, we can obtain

natural gradient for ζic,2, stochastic gradient for σ and δc,2, we omit it because of page limitation.

The local parameter ξ can be updated via coordinate ascent technique:

ξic ∝ exp
{
Eq[log θicγi] +

n∑
k=1

SikEq[log πc] +
∑

Rij∈D

(Rij − θ>i φj)
}
. (B3)

By iteratively updating these variables until coverage, we can get the stable results. The full stochastic variational inference

is summarized in Algorithm B1.
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Algorithm B1 The stochastic variational inference for SoMA

Input: Rating matrix R with n users and m items, social matrix S, initialized variational parameters.

while ELBO is not converged do

Sample a mini-batch D of rating matrix.

Update local variables

Update ξic for each user i related to D via (B3)

Update global variables

Update ζic for each user i related to D;

Update µj for each item j related to D;

Update ηi for each user i related to D;

Update δc for each group c;

Set ρ
(τ)
i for each user, ρ

(τ)
j for each item, and ρ

(τ)
c for each group; τ = τ + 1.

end while

Output: stable value of latent variables θ,φ,z,γ,π.

Complexity analysis: The main computation complexity of SoMA is to iteratively update global and local variables.

SoMA has to model both observed social relations connecting each user and unobserved social relations about the current

user. In order to alleviate the computational complexity, we randomly sample a subset of unobserved social relations.

Updating the local variables costs O(d(nnz(R) + nnz(S) +r(n2 − nnz(S))), where r is the sampling ratio for unobserved

social relations. Updating the global variables will cost O(d(n + m)). The total complexity of SoMA is O(td(nnz(R) +

nnz(S) + r(n2 − nnz(S))), where t is the number of iterations.

Appendix C Experiments

In this section, we evaluate the proposed SoMA on four datasets by comparing with existing methods.

Appendix C.1 Experimental Setting

Datasets: In experiments, four widely used social recommendation datasets, Ciao1), Epinions2), Douban3) and Yelp4),

are used to test the recommendation performance. Their ratings are ordinal values on the scale 1 to 5, more information is

summarized in Table C1.

Table C1 Experimental datasets.

Ciao Epinions Douban Yelp Ciao Epinions Douban Yelp

] users (n) 7,375 49,290 129,490 1,182,626 ] relations 111,781 487,183 1,692,952 13,811,526

] items (m) 106,997 139,738 58,541 156,638 SDensity 0.2055% 0.0201% 0.0202% 0.0009%

] ratings 284,086 664,824 16,830,839 4,731,265

RDensity 0.036% 0.010% 0.222% 0.0026%

Metrics for Rating Prediction: Two well-known evaluation metrics, mean absolute error (MAE =
∑

(i,j)∈Rt
|Rij −

R̂ij |/|Rt|) and root mean square error (RMSE =
√∑

(i,j)∈Rt
(Rij − R̂ij)2/|Rt|) are adopted to evaluate the prediction

accuracy, where Rt is the testing set. Rij and R̂ij are the ground truth and predicted rating given by the i-th user to the

j-th item. Smaller RMSE and MAE values indicate better result. Five-fold cross-validation technique is used and their

averaged results are reported.

Baselines: Eleven existing methods are used as baselines. Among them, PMF [6] is a classical probabilistic matrix factor-

ization based collaborative filtering method, and NCF [7] is a deep neural networks based collaborative filtering method.

Locabal [8], TrustSVD [9] and SIACC [10] consider the explicit social relations. PSLF [11], MFC [12], SoDimRec [13], and

UniWalk [14] consider implicit social relations and are implemented via a two-stage strategy. NSCR [15], DeepRec [16] and

GraphRec [17] are social recommendation methods modeling user and item features via deep neural networks. Note that

we also conducted experiments on SoRec [18], TrustMF [19], SocialMF [20] and SoReg [21]. However, we do not list the

experimental results since they were proved inferior to the selected baselines.

Parameter setting: The optimal experimental settings for each method are determined either by experiments or suggested

by previous works. For SoMA, the hyperparameters are set with α1 = 0.5, α2 = 1, β1 = 5, β2 = 1, λ = 2, σφ = 0.5, σR = 10

for all datasets. The learning parameters for inference algorithm are set with τ0 = 50000, κ = 0.5.

1) https://www.cse.msu.edu/ tangjili/trust.html
2) http://www.trustlet.org/downloaded epinions.html
3) https://www.cse.cuhk.edu.hk/irwin.king.new/pub/data/douban
4) https://www.yelp.com/dataset/challenge
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Figure C1 Effect of d (the number of user groups) on SoMA for (a) Ciao, (b) Epinions, (c) Douban, and (d) Yelp.
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Figure C2 Effect of sampling ratio r (to select the unobserved social relations for each user) on SoMA in terms of

running time (seconds) and RMSE for (a) Ciao, (b) Epinions, (c) Douban, and (d) Yelp.

Appendix C.2 Results and Discussion

In this section, we investigate SoMA from several views. Firstly, a series of experiments are conducted to test the effects

of two parameters (the number of user groups d and the sampling ratio for unobserved relations r). Secondly, SoMA

is compared with baselines from two facets including All Users and Near-cold-start Users in term of rating and ranking

prediction. All Users indicates that all ratings are used as the testing set. Near-cold-start Users view means that the users

who rate less than five items will be involved in the testing set. Thirdly, we investigate how the social relations affect the

corresponding social recommendation methods and the effect of global social structures. Fourthly, the generalization ability

analysis demonstrates the efficiency for SoMA. Then, we analysis model scalability and complexity by comparing with

several comparative social recommendation methods. Finally, we show the interpretable recommendation results provided

by SoMA with the aid of auxiliary information.

Appendix C.2.1 Effect of parameters

The first experiment is conducted to demonstrate the effect of number of social groups (i.e., latent space size d) on the

proposed model. Figure C1 shows the effect of number of user groups d on four datasets in term of MAE and RMSE. For

each dataset, SoMA performs better as d increases, reaches the best value, and then decreases in performance as d grows

larger. Note that larger d does not output better recommendation performance. The main reason is that the observed

rating matrix is extremely sparse. Increasing the number of groups would keep splitting the large user group into more

focused small groups, which may lead to data overfitting and further destroy the recommendation performance. Meanwhile,

a larger value d aggravates the computational complexity. It can be seen that the optimal d in Ciao, Epinions, Douban,

and Yelp are 10, 20, 25 and 30 respectively, and they are almost proportional to the number of users.

For each user, SoMA has to model not only the observed social relations connecting this user, but also the unobserved

social relations about him/her. From Table C1, we can see that each user only has few observed social relation (e.g.,
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in Yelp, s is 12 for each user, however there are total 1, 182, 626 users). To efficiently handle this, we adopt sampling

technique to select a small subset of unobserved social relations for each user by a fixed ratio r (from 0.1 to 1 with step

0.1). Figure C2 lists the running time and prediction accuracy under varying the sampling ratio. This demonstrates that

considering unobserved social relation is beneficial to social recommendation. However, they aggravate the computational

complexity and may introduce noisy social relations when considering more unobserved social relations. Fortunately, the

performance becomes better when the sampling ratio is in [0.2,0.3] and the computational complexity is acceptable.

Table C2 Comparing different recommendation methods on testing All Users and Near-cold-start Users.

Datasets Ciao Epinions Douban Yelp

Metrics MAE RMSE MAE RMSE MAE RMSE MAE RMSE

A
ll

U
se

r
s

PMF 0.8257 1.1310 1.1206 1.3654 0.6230 0.7699 0.6684 0.8557

NCF 0.7832 1.0189 1.0433 1.2894 0.6046 0.7432 0.6686 0.8455

Locabal 0.7561 1.0214 0.9374 1.1548 0.5756 0.7190 0.6572 0.8331

TrustSVD 0.7516 0.9854 0.9145 1.1332 0.5563 0.6985 0.6393 0.8116

PSLF 0.7654 0.9963 0.9251 1.1486 0.5731 0.7126 0.6448 0.8252

MFC 0.7601 0.9865 0.9257 1.1495 0.5798 0.7197 0.6512 0.8271

SoDimRec 0.7694 0.9995 0.9305 1.1524 0.5751 0.7148 0.6537 0.8296

SIACC 0.7554 1.0138 0.8515 1.1115 0.5679 0.7183 0.6531 0.8287

UniWalk 0.7525 0.9868 0.9042 1.1251 0.5636 0.7163 0.6542 0.8313

NSCR 0.7765 1.0044 1.0142 1.2643 0.5916 0.7325 0.6496 0.8297

DeepSoR 0.7639 0.9973 0.9322 1.1563 0.5763 0.7173 0.6453 0.8239

SoMA 0.7451 0.9813 0.8357 1.0943 0.5484 0.6857 0.6307 0.7957

N
ea

r
-c

o
ld

-s
ta

r
t

U
se

r
s

PMF 0.9344 1.1877 1.3508 1.4477 0.8433 1.0239 0.8752 1.0722

NCF 0.8732 1.1233 1.2836 1.3954 0.7733 0.9631 0.7922 0.9912

Locabal 0.8296 1.0775 1.0877 1.2651 0.7244 0.8836 0.7487 0.9152

TrustSVD 0.7954 1.0135 1.0532 1.2452 0.6751 0.8453 0.7228 0.8952

PSLF 0.8122 1.0321 1.0721 1.2762 0.7011 0.8685 0.7412 0.9122

MFC 0.8134 1.0334 1.0702 1.2678 0.7093 0.8766 0.7385 0.9025

SoDimRec 0.8278 1.0523 1.0689 1.2606 0.6909 0.8606 0.7461 0.9194

SIACC 0.8094 1.0021 1.0656 1.1971 0.6389 0.8323 0.7523 0.9253

UniWalk 0.8188 1.0414 1.0677 1.2322 0.6935 0.8685 0.7344 0.9011

NSCR 0.8517 1.0893 1.2534 1.3499 0.7534 0.9354 0.7814 0.9689

DeepSoR 0.8333 1.0821 1.2432 1.3663 0.7364 0.8946 0.7659 0.9381

GraphRec 0.8041 1.0016 1.0561 1.2034 0.6313 0.8296 0.7269 0.9008

SoMA 0.7859 0.9988 1.0506 1.1890 0.6278 0.8256 0.7147 0.8838

Appendix C.2.2 Recommendation performance

A series of experiments are conducted to compare the proposed SoMA with several baselines on All Users and Near-

cold-start Users (in terms of RMSE and MAE), as shown in Table C2. The best and second results are marked in bold

and underlined, respectively. As expected, social recommendation methods work better than recommendation method

with solely rating information (PMF and NCF) which only exploits the rating information in most cases. Although NCF

and PMF only utilize the rating information, NCF obtains much better performance than PMF since the power of neural

networks. From the view of All Users, TrustSVD outperforms others on Ciao, Douban and Yelp dataset. The main reason

is that TrustSVD sufficiently exploits the social relations with two strategies: adjusting the user latent factor with the user’s

social neighbors, and enforcing the rating matrix and social matrix share the same user latent factor. SIACC performs well

on Epinions dataset because it simultaneously considers global and local social relations when determining the co-clusters

among users and items. Note that deep social recommendation methods (NSCR, DeepSoR and GraphRec) also achieve

comparative performance due to the non-linear feature learning.

Obviously, SoMA performs better than the existing social recommendation methods, which confirms that considering

both observed and unknown social relations are helpful to extract social structure and leverage training the social rec-

ommendation model. Even though SoDimRec and UniWalk make use of observed and unobserved social relations, they

adopted a two-phase separated strategy, i.e., they firstly mine the indirect social relations and then integrate them to matrix

factorization based social recommendation model. Such strategy will ignore the interaction between social structure identi-

fication and recommendation model training, which results in that these two methods are inferior to the proposed unified

Bayesian learning framework SoMA. Moreover, although PSLF learns latent user factors and indirect social relations in

a unified model, SoMA outperforms PSLF on all datasets. Unlike Dirichlet distribution used in PSLF, SoMA adopts

Beta distribution to model community membership, which can make sure that each user has large affiliation strengths with

multiple communities if he or she are simultaneously and strongly related to these communities.

Although the relative improvements are small, small improvements can lead to significant differences of recommendations

in practice [22]. Thus, we conduct t-test between SoMA and each baseline with five-fold cross-validation results. The p-
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Figure C3 Comparison of social recommendation methods with different social degrees.

values in all cases are less than 10−5, which indicates that the improvements are statistically significant at the 5% level.

Therefore, based on these observations, we can say SoMA consistently outperforms the state-of-the-art baselines and

significantly improves the recommendation performance.

Appendix C.2.3 Effect of social information

In order to investigate how the social relationships affect the social recommendation with different strategies, we analyze

the social relationships from the perspective of social degrees. Specifically, all users are split into seven subsets according

to their social degrees (i.e., the number of user’s neighbors in social network): 0-5, 6-10, 11-20, 21-50, 51-100, 101-200, and

>200. All social recommendation methods are compared in seven user-subsets with different social degrees for each dataset,

as shown in Figure C3 (in terms of RMSE). It is interesting that all methods on each dataset have the similar trends with

respect to different social degrees, which confirms that social degree plays an important role in social recommendation

systems. As expected, SoMA obtains the best performance for all social degrees on all datasets because of its great

strategy to sufficiently exploit social information. From Figure C3, it can be seen that all methods on Douban and Ciao

have different trends from other two datasets. Recall the statistic information in Table C1, the rating information in Douban

is much denser than others, while the social information in Ciao is much denser than others. This result indicates that

social recommendation performance may be affected by the denser information to a larger extent. Especially, the overall

RMSE becomes better and better with the increasing of social degree on Ciao datasets, which implies that social relations

positively promote recommendation performance. However, all methods output worse performances on the users with higher

social degrees (>200) (except for Ciao). One possible reason is that the social ties of such users are casual because they

tend to add more and more friends without real intentions, and this kind of behaviors may destroy the quality of social

information.

Secondly, the social recommendation with implicit social structures (MFC, SoDimRec, PSLF and SoMA) are investigated

by analyzing the properties of the mined implicit social structures. From the experimental results, it can be seen that

the proposed SoMA is superior to MFC, SoDimRec and PSLF. The main difference between them is the processing of

determining implicit social structures. MFC and SoDimRec can be taken as two-phase recommendation framework, where

the community detection approach (Bigclam [23]) is adopted to identify the implicit social structures from the social network

in the first phase, and then the learned implicit social struuresct are employed into the recommendation phase. In other

words, MFC and SoDimRec only take the social network into account for mining the social relations. SoMA and PSLF

utilized both social network and rating information to identify the implicit social structures (such social structure are

used to learn the user and item latent factors), meanwhile, the learned latent factors affect the implicit social structures

identification. In this case, we can say SoMA and PSLF are unified model, rather than a two-phase process like MFC and

SoDimRec, while the difference between SoMA and PSLF is the generative process in modeling implicit social structure.

Thus, in experiments, we investigated the user communities (i.e., the implicit social structures) properties learned from

MFC, SoDimRec, PSLF and SoMA. (Note that MFC and SoDimRec have the same user communities results because
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Figure C4 RMSE comparison of TrustSVD, UniWalk, NSCR, DeepSoR and SoMA in terms of different size of training

sets.
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Figure C5 Social communities obtained via Bigclam, PSLF and SoMA for two kinds of representative users on Ciao.
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they adopt the same community detection method Bigclam [23]. We determine whether user i belongs to community c by

comparing θic with a predefined threshold ε =
∑
i,c θic/nr for all methods). Fig. C5 shows the community of two kinds

of representative users from Ciao dataset learned via Bigclam, PSLF and SoMA. In order to show the difference between

them, we investigated the user communities properties from three different views.

View 1 : The users are assigned into more communities by the proposed SoMA than by Bigclam and PSLF. Taking the

user 312 as an example, it belongs to 10 communities as shown in Fig. C5(b) and Fig. C5(c), but belongs to 5 communities

as shown in Fig. C5(a). These three subfigures contain the same subset of users. It can be seen that most users are

assigned into the community C1 by Bigclam, while they are divided into different communities by PSLF and SoMA. By

investigating their rating behavior, there is almost no relevance between user 47, 317, 427 and 566. Thus, it is better to

separate them (as done by SoMA ) rather than put them into a big community (as done by Bigclam). In this case, the

latent factor of user 312 will be affected by 5 gross communities in MFC and SoDimRec, while by 10 delicate communities

in PSLF and SoMA, which may be one of the reasons to improve the final recommendation accuracy. Compared with

PSLF, SoMA has ability to determine the fine-grained preference influence. Table C3 lists the recommendation accuracy

on three representative users to demonstrate that these users benefit from the proposed SoMA.

Table C3 Recommendation accuracy (RMSE) on representative users in Fig. C5.

View View 1 View 2 View 3

userID 427 566 312 1003 922 1442 1459 2226 3062

MFC 0.9761 0.9677 0.9832 0.9871 0.9677 0.9782 0.9973 1.0324 1.0244

SoDimRec 0.9851 0.9719 0.9713 0.9893 0.9788 0.9645 0.9855 1.0315 1.0341

PSLF 0.9731 0.9688 0.9705 0.9733 0.9714 0.9652 0.9831 1.0233 1.0261

SoMA 0.9724 0.9653 0.9696 0.9621 0.9648 0.9589 0.9788 0.9983 0.9996

View 2 : The users are assigned into fewer communities by the proposed SoMA than by Bgiclam and PSLF. Taking

the user 1442 as an example, as shown in Fig. C5(d), (e) and (f), it belongs to 5 communities in SoMA, but belongs

to 10 communities in Bigclam and 8 communities in PSLF. User 1442 has nothing to do with the communities C1, C6,

C7, C8 and C9 in SoMA. Similarly, by investigating the rating behavior, we find that the rating preference similarities

between user 1442 and the users in these four communities are almost zero, thus it is necessary to split user 1442 from such

communities. In other words, the proposed method has ability to eliminate the unnecessary social relations, which may be

one of the reasons to improve the final recommendation accuracy. Table C3 lists the recommendation accuracy on three

representative users, which further confirms that the proposed social recommendation framework is useful to improve the

recommendation performance.

View 3 : The users cannot be assigned into any community by Bigclam, like user 3062 in Fig. C5(a), and user 1459

and user 2226 in Fig. C5(d). Note that these users can be grouped into the corresponding communities by PSLF and

SoMA, which indicate that user preference can be influenced. For example, user 3062 is assigned into C1 and C5 in PSLF

and assigned into C1, C5 and C7 in SoMA. Once the user belonging to the proper communities, his or her latent factor

can be identified by the supervision of the indirect social relations. Table C3 lists the recommendation accuracy on three

representative users in View 3, where SoMA is better than PSLF, MFC and SoDimRec. Although both PSLF and SoMA

are unified graphical model, SoMA can determine better user community membership.

Appendix C.2.4 Effect of global social structure

Popularity is important for users on social networks especially for professional users who are following more serious goals

of increasing visibility, turnover, sells, and so on. Reaching those goals through social media can be directly affected by

the number of followers. In the proposed SoMA model, we introduce a global social structure variable γi to model the

influence of user popularity. Thus, we conduct experiments to investigate the effect of user popularity on user preference

learning. We remove the user popularity variable γ from the SoMA and it degenerates into SoMA-G, i.e., user preference

is modeled via Sik ∼ B(pik). Table C4 lists the recommendation performance obtained via SoMA and SoMA-G on four

datasets in terms of RMSE. Obviously, SoMA performs better than SoMA-G, which indicates considering global social

structure among all users is useful for recommendation.

Table C4 Comparison of SoMA-G and SoMA.

Datasets SoMA-G SoMA

Ciao 0.9910 0.9813

Epinions 1.1126 1.0943

Douban 0.6967 0.6857

Yelp 0.8127 0.7957

Table C5 Running time (seconds) of recommendation

methods with implicit social structures.

Datasets Ciao Epinions Douban Yelp

MFC 1875.38 6322.17 11561.79 38161.32

SoDimRec 2988.52 11204.54 17228.14 60958.71

PSLF 3782.31 18852.32 31231.41 62331.48

SoMA 2315.12 7455.21 13221.53 42331.51

Appendix C.2.5 Generalization ability analysis

In order to evaluate the generalization ability of the proposed model, we choose different training sets with different

sizes {20%, 40%, 60%, 80%} and fix the same 20% as the testing set. We guarantee that small size training set is

included in large size training set. Since TrustSVD and UniWalk obtains competitive performance among all baselines

and NSCR and DeepSoR belongs to deep social recommendation, the following comparisons and analysis focus on SoMA,
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Figure C6 Scalability analysis of SoMA.

TrustSVD, UniWalk, NSCR and DeepSoR. Figure C4 shows the RMSE comparison in terms of different training set on

four datasets. Since we have similar observations in terms of other metrics, we only show the results in RMSE. Obviously,

the recommendation performance becomes better and better with the increasing of training data and SoMA is superior to

TrustSVD and UniWalk for all training set on four datasets. Note that Epinions and Yelp is extremely sparse, Figure C4

(b) and (d) show that SoMA significantly outperforms TrustSVD, UniWalk, NSCR and DeepSoR, especially for small size

training sets (20%, 40%). This result further demonstrates that SoMA has a strong generalization ability compared with

existing social recommendation methods.

Appendix C.2.6 Complexity and scalability analysis

In this part, we evaluate the efficiency of the designed parallel graph computing algorithm used in SoMA. The algorithm is

implemented in C++ at the hosts with Intel(R) Xeon(R) 2.0GHz CPU E7-4820 v2 having four processors, each processor

has eight cores and the memory is 64GB. The operating system is Ubuntu 16.04.2 LTS. Meanwhile, the Intel(R) parallel

studio XE 2016 composer edition for cpp is used to compile all codes so that the inter-procedural optimizations can be

performed to improve the parallel computing.

Table C5 lists the average running time (for 5-fold cross validation) of different social recommendation methods. For

the existing two-stage social recommendation methods (MFC and SoDimRec), the running time contains two parts, one

for running Bigclam to find the implicit social structures, and the other for learning the latent user/item factors. As

expected, SoMA with scalable variational inference is much faster than them. Meanwhile, although PSLF learns latent

user factors and implicit social structures in a unied model, the inference algorithm, expectation maximization, has to be

used to approximate the complex probabilistic generative process. Fortunately, the proposed model SoMA can be directly

approximated with the aid of parallel gradient-based technique, which are more efficient and effective than PSLF.

Additionally, we investigate the scalability of the SoMA model. We randomly select a subset of ratings as training set

according to a fixed ratio (from 0.1 to 0.9 with step 0.1) and x the testing set. For each ratio, ten subsets are extracted as

training data and the averaged results (running time and RMSE) are recorded in Figure C6. Obviously, the recommendation

performance becomes better and better with the increasing of training data size. Meanwhile, the training computational

complexity (i.e., running time) is linearly scalable to the training data size.

Appendix C.2.7 Interpretable social groups

SoMA exploits both rating and social information to determine the latent space. By assigning users to different social

groups, each group contains users with similar taste, which is helpful to describe the corresponding latent feature. Once

obtaining the user-group membership vector for each user (θi = {θic}dc=1 and 0 6 θic 6 1), we can get the user-group

assignment matrix θ, and know the set of like-minded users. In this case, each social group can be explicitly described by

these like-minded users, which will be helpful to understand the corresponding latent factor.

Specifically, we set a threshold εθ for affiliation strengths with their averaged value, which is defined by εθ =
1
nd

∑n
i=1

∑d
c=1 θic.

Based on this threshold, for each group, we can select its representative users by SUc = {USERi|θic > εθ}. It can be seen

that the users in SUc have strong relations with the c-th group. In other words, we can explain each latent feature (i.e.,

social group) via the information about items that the representative users (SUc) rated. To confirm this, we investigate

the semantical information of each user group for Yelp dataset, where each item (i.e., business) is marked by one or more

categorical labels (there are total 1240 categories). According to the frequency that each category appears in all items, we

selected top 20 categories including Restaurants, Shopping, Food, Beauty&Spas, Home Services, Health&Medical, Nightlife,

Bars, Automotive, Local Services, EP&Services, Active Life, Fashion, Sandwiches, Fast Food, American, Pizza, Coffee&Tea,

Hair Salons, and Hotels&Travel.
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Table C6 Semantical information for 5 selected user groups

Strong Group ID 1 2 3 4 5

Semantical Labels
Restaurants Fashion

Hotels&Travel
Health&Medical Local Service

Pizza, Food Beauty&Spas Active Life Home Service

For each social group, we collect the representative items which are rated by the representative users (i.e., the users in

SUc for the c-th group) and have rating values greater than 4. By counting the frequency of each category appearing in

the representative items of each social group, we can select the representative categories and take them as the semantic

information of the corresponding social group. Table C6 lists the representative categories of five user groups. By taking

advantage of such semantical information, SoMA can provide explainable recommendation reason for each predicted rating.

Taking the 89-th business (Pizza Company with label {Restaurants, Pizza, Food}) and the 105-th user (named by Jenifer)

in Yelp as an example, the predicated rating value that Jenifer gives to item Pizza Company is 4.5, and the recommendation

reason can be given as follows.

To Jenifer:

We recommend business Pizza Company to you because you are strongly associated with the social group

{Restaurants, Pizza, Food} and Pizza Company is a business simultaneously related to categories Restaurants, Pizza

and Food.
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