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Abstract The paper considers the control problem for uncertain nonlinear systems with unknown control

input gain. Based on the information of control direction rather than the nominal value of control input

gain, a new active disturbance rejection control design is proposed. In the proposed design, the extended

state observer (ESO) is constructed to estimate the total disturbance containing the uncertainty of control

input. Via the estimations from ESO, the control input is generated by a designed dynamical system, which

can force the actual input to track the ideal input. Moreover, for a wide class of nonlinear uncertainties, the

transient performance of the proposed design is investigated. The theoretical results show that the tracking

and estimating errors, as well as the difference between the actual and ideal inputs, can be sufficiently small

by tuning the parameter of ESO despite various uncertainties. The experiment of a permanent magnet linear

synchronous motor servo system illustrates the effectiveness of the proposed design.
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1 Introduction

How to tackle the uncertainties is a central issue in control science and technology [1]. To ensure the
normal operation of systems against uncertainties, numerous control strategies have been substantially
developed, such as proportional-integral-derivative (PID) control [2], robust control [3], sliding-mode
control [4], and various disturbance rejection methods [5–8]. Among various disturbance rejection meth-
ods, the active disturbance rejection control (ADRC), proposed by Han [8], has drawn much attention
from both researchers and practitioners owing to its uniqueness in concepts, simplicity in engineering
implementation, and superior performance in practice.

The fundamental idea of ADRC is to actively estimate and compensate for the total disturbance.
In the frame of ADRC, the integrator chain describes the internal relationship from the control input
to the controlled output. Based on this essential form, the total effects from the internal and exter-
nal disturbances to the controlled output can be obtained, which generates the concept of uncertainties
to the “total disturbance” [9]. Then the extended state observer (ESO) is innovatively constructed
to estimate the total disturbance and the derivatives of the controlled output. Via the estimations
from ESO, the control input containing the compensation for the total disturbance can be designed.
Owing to the effective estimation and compensation for total disturbance, ADRC has been success-
fully applied to various industrial processes, such as flight systems [10, 11], robotic systems [12], motion
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control systems [13, 14], ship control systems [15], tank gun control systems [16] and process control
systems [17, 18].

The theoretical foundation of ADRC has been investigated in the last decade. Based on the assumption
that the derivative of the total disturbance is bounded, Ref. [19] rigorously analyzed the estimating error
of the linear ESO. Besides, the convergence of the nonlinear ESO was investigated in [20] also with the
assumption that the derivative of total disturbance is bounded. In [21], by assuming that the derivative of
the total disturbance is bounded, the stability of the ADRC-based closed-loop system was proved. Because
the total disturbance might be a function dependent on the system states in practice, the derivative of
the total disturbance will be influenced by the system state which cannot be assumed to be bounded
before designing the controller. Several profound theoretical results of ADRC with the more practical
assumptions for total disturbance have been made in [9, 22–26]. In [22], by considering the uncertainties
as a linear function of system states with unknown coefficients, the stability region of the unknown linear
coefficients was investigated. Ref. [23] revealed that both the tracking and estimating errors can be
sufficiently small by suitably tuning the parameter of ESO despite a wide scope of uncertainties with
nonlinear growth. Under the certain condition for the initial value, Ref. [24] proved the convergence
of the linear ADRC-based closed-loop system for nonlinear uncertainties. For nonlinear ADRC-based
closed-loop systems with nonlinear uncertainties, Ref. [25] provided the tunable upper bounds of tracking
and estimating errors, which illustrates the stability of nonlinear ADRC design. Moreover, the capability
of ADRC for systems not in the form of integrator chain was investigated in [9, 26], which reveals the
universality of ADRC design for nonlinear uncertain systems. However, these studies considered the
ADRC design with a known nominal control input gain. Besides, the restricts for the difference between
the nominal and real control input gains were needed in [9,23,26]. More importantly, a recent paper [27]
proposed a necessary condition for the nominal control input gain in ADRC, which illuminates the limits
of the conventional ADRC to handle uncertain control input gain. Thus, the following question is risen:

Can we improve the capability of ADRC to deal with the uncertain control input gain via some
innovative design?

Motivated by this question, the paper investigates the ADRC design for nonlinear uncertain systems
with unknown control input gain. Refs. [28–30] innovatively proposed a dynamic inversion-based method
to handle the non-affine uncertainties. The key ideology of the dynamic inversion-based method is to
design a dynamical system such that the actual control input can track the desired input. Inspired by
this innovative design, the paper proposes a new ADRC composed of an ESO and a dynamical system
for control input. The ESO is designed to estimate the total disturbance containing the unknown term
of control input. Based on the estimations from ESO and the control direction, a dynamical system
is constructed to generate the control input, which can force the actual control input to track the ideal
control input. Different from the convergence analysis with respect to the observer’s parameters in [28–30],
the paper rigorously studies the transient performance of the proposed ADRC-based closed-loop system.
Moreover, the relationship between the closed-loop performance and the controller parameters is explicitly
shown, which further provides a simplified tuning law of the proposed ADRC. Via the simulation of a
single-link robotic manipulator system and the experiment of a permanent magnet linear synchronous
motor servo system, the effectiveness of the proposed ADRC is illustrated. The main contributions of
the paper are presented as follows.

(1) Based on the control direction rather than the nominal control input gain, a new ADRC for
nonlinear uncertain systems with unknown control input gain is proposed.

(2) The transient performance of the proposed ADRC-based closed-loop system with a wide class of
nonlinear uncertainties is analyzed. Via establishing the relationship between the parameter of ESO and
the parameter in dynamical input design, the tracking and estimating errors, as well as the difference
between the actual and ideal control inputs, can be sufficiently small despite a wide class of uncertainties
by just tuning the parameter of ESO.

The rest of this paper has the following organization. In Section 2, the problem formulation is pre-
sented. In Section 3, a new ADRC design based on the information of the control direction is proposed.
The transient performance of the proposed ADRC-based closed-loop system is given in Section 4. The
simulation and experimental verification are provided in Section 5. Finally, the conclusion is given in
Section 6.

Notations. The following notations are used throughout this paper. For a given function y(t), y(k)(t)
represents the k-th order derivative of y(t) with respect to the variable t for k > 1 and y(0)(t) , y(t).
| · | and ‖ · ‖ are the absolute values of a scalar and the 2-norm of a vector or a matrix, respectively.
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For a given matrix or vector A, the corresponding transposition is denoted by AT. R represents the real
number field. The function sgn(·) is defined as follows:

sgn(a) =











1, if a > 0,

0, if a = 0,

− 1, if a < 0.

2 Problem formulation

Consider the following nonlinear uncertain system:

ẋ(t) = Ax(t) +B(b(x(t), t)u(t) + f(x(t), t)), y(t) = CTx(t), t > t0, (1)

where x(t) = [x1(t) x2(t) · · · xn(t)]T ∈ R
n is the state vector, xi(t) ∈ R represents the i-th component

of the state vector x(t), y(t) ∈ R is the measured output to be controlled, u(t) ∈ R is the control input,
b(·) ∈ R represents the control input gain and f(·) ∈ R represents the uncertainties including nonlinear
uncertain internal dynamics and external disturbances. Additionally, t0 is the initial time. The matrices
A,B, and C have the following forms:

A =















0 1 · · · 0
... 0

. . .
...

...
...
. . . 1

0 0 · · · 0















n×n

, B =















0
...

0

1















n×1

, C =















1

0
...

0















n×1

. (2)

The paper considers the case that only the control direction sgn(b) is known, where sgn(·) represents the
sign function. The detailed expression of the control input gain b(·), as well as the nominal value of b(·),
is unknown.

The control objective is to design the control input u(t) based on the known control direction sgn(b)
such that the output y(t) can track the reference signal r(t). The reference signal satisfies the following
assumption.

Assumption 1. There exists a positive constant Mr such that supt>t0 |r(i)(t)| 6Mr for 0 6 i 6 n+1.

We assume that the control input gain b(·) and the uncertainties f(·) satisfy the following assumption.

Assumption 2. The functions b(x, t) and f(x, t) are differentiable. There exist continuous functions
ψf , ψb̄ and ψb such that

sup
t>t0

{

|f(x, t)|,
∥

∥

∥

∥

∂f(x, t)

∂x

∥

∥

∥

∥

,

∣

∣

∣

∣

∂f(x, t)

∂t

∣

∣

∣

∣

}

6 ψf (x), ∀x ∈ R
n, (3)

sup
t>t0

{

|b(x, t)|,
∥

∥

∥

∥

∂b(x, t)

∂x

∥

∥

∥

∥

,

∣

∣

∣

∣

∂b(x, t)

∂t

∣

∣

∣

∣

}

6 ψb̄(x), inf
t>t0

|b(x, t)| > ψb(x) > 0, ∀x ∈ R
n. (4)

Assumption 1 implies that the reference signal and its derivatives are bounded, which is satisfied for
practical systems. For Assumption 2, inequalities (3) and (4) illustrate that the functions b(·) and f(·)
and their partial derivatives are bounded when the system states stay in a bounded set. Moreover, the
inequality (4) illustrates that the lower bound of |b(·)| is larger than zero if the states stay in a bounded set,
which is a common assumption also provided in [23,26]. Hence it can be deduced from (4) that the control
direction sgn(b) will not change for various (x, t), which is consistent with the physical mechanism in many
practical plants [12, 18]. Assumption 2 describes a large scope of nonlinear uncertainties in practice.

Remark 1. Via investigating the relationship between the original system states and the new states
composed of the derivatives of the controlled output, a wide class of nonlinear uncertain systems can be
transformed into the form (1), including uncertain systems with mismatched uncertainties or measurement
uncertainties [9, 26]. The detailed analysis technique can be found in [9, 26] and is omitted here.

3 New ADRC design

In this section, an ADRC design just based on the information of the control direction is proposed.
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3.1 ESO design

In this subsection, an ESO is presented to estimate the system states and the total disturbance.
Because the control input gain b(·) and nonlinearity f(·) are unknown, we define the new state xn+1(t) ,

b(x(t), t)u(t) + f(x(t), t). The system (1) can be rewritten as

ẋe(t) = Aexe(t) +Bf ẋn+1(t), y(t) = CT
e xe(t), (5)

where xe(t) = [xT(t) xn+1(t)]
T ∈ R

n+1 is the extended state vector and the matrices Ae, Bf , and Ce
have the following form:

Ae =

[

A B

0 0

]

(n+1)×(n+1)

, Bf =

[ 0
...
0
1

]

(n+1)×1

, Ce =

[

C

0

]

(n+1)×1

. (6)

For system (5), the following ESO is presented to estimate the extended state vector:

˙̂xe(t) = Aex̂e(t) + Le(y(t)− CT
e x̂e(t)), (7)

where x̂e(t) = [x̂T(t) x̂n+1(t)]
T ∈ R

n+1 is the estimation for the extended state vector xe(t), x̂(t) =
[x̂1(t) · · · x̂n(t)]T ∈ R

n is the estimation for the system state vector x(t) and x̂i(t) ∈ R represents the
i-th component of the vector x̂(t). Besides, the parameter vector of ESO Le ∈ R

(n+1)×1 is designed such
that the matrix AL , Ae−LeC

T
e is Hurwitz. Ref. [31] proposed an effective simplified tuning method of

ESO’s parameter vector Le:

Le =
[

φ1ωo φ2ω
2
o · · · φn+1ω

n+1
o

]T

, φi =
(n+ 1)!

(n+ 1− i)!i!
, ωo > 0, (8)

such that all the eigenvalues of AL are set at −ωo.

3.2 Dynamical design of ADRC input

In this subsection, the ADRC input based on the estimations from ESO is proposed.
Firstly, the ideal trajectory and ideal control input are designed. The ideal trajectory is presented as

follows:

ẋ∗(t) = Ax∗(t)−BKT(x∗(t)− r̄(t)) +Br(n)(t), y∗(t) = CTx∗(t), t > t0, x∗(t0) = x(t0), (9)

where x∗(t) = [x∗1(t) · · · x∗n(t)] ∈ R
n is the ideal state vector, y∗(t) ∈ R is the ideal output, r̄(t) =

[r(t) r(1)(t) · · · r(n−1)(t)]T ∈ R
n and the constant vector K ∈ R

n is designed such that the matrix
AK , A − BKT is Hurwitz. The ideal output y∗(t) can exponentially converge to the reference signal
r(t).

Owing to the system (1) and the ideal trajectory (9), the ideal control input should be designed as

u∗(t) =
−f(x, t)−KT(x(t) − r̄(t)) + r(n)(t)

b(x, t)
. (10)

Then we consider the ADRC input design based on the estimations from the ESO (7) and the ideal
control input (10). The design ideology is to design the control input satisfying the following dynamics:

u̇(t) = −a(x, t)(u(t)− u∗(t)), (11)

where a(x, t) > 0 is a function to be designed. Then the following equation can be obtained based on
(10) and (11):

u̇(t) = −a(x, t)
b(x, t)

(b(x, t)u(t)− b(x, t)u∗(t))

= −a(x, t)
b(x, t)

(xn+1(t) +KT(x(t) − r̄(t))− r(n)(t)). (12)
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By designing a(x, t) = |b(x, t)|λ(ωo) and substituting the estimations from ESO into (12), the ADRC
input can be designed as follows:

u̇(t) = −sgn(b)λ(ωo)(x̂n+1(t) +KT(x̂(t)− r̄(t)) − r(n)(t)), (13)

where λ(ωo) is a function satisfying the following assumption.

Assumption 3. The increasing function λ(ωo) > 0 for ωo > 0 and

lim
ωo→∞

lnωo
√

λ(ωo)
= 0, lim

ωo→∞
ωo

λ(ωo)
= ∞. (14)

Remark 2. The function λ(ωo) = ωko with 0 < k < 1 can satisfy Assumption 3. Based on the specific
expression of λ(ωo), the proposed ADRC has the same number of the adjustable parameters as the
conventional ADRC, i.e., ωo and K.

Remark 3. If u∗ is a constant and the signal u(t) satisfies the following dynamics:

u̇(t) = −a(u(t)− u∗), t > t0 (15)

for a constant a > 0, then it can be deduced that u(t) = e−atu(t0) + (1 − e−a(t−t0))u∗. Hence u(t) can
exponentially converge to u∗ with the desired convergence rate determined by a.

Finally, a new design of ADRC is proposed, i.e., (7) and (13). It is significant to point out that the
proposed design just requires the sign of the control input gain b(·) rather than the detailed value or the
functional structure of b(·).

In Section 4, the transient performance of the proposed ADRC is analyzed.

4 Performance analysis

The following theorem illuminates the transient performance of the proposed design.

Theorem 1. Consider the system (1) with Assumptions 1–3. Let u(t) = 0 for t ∈ [t0, tu) where







































tu = t0 + 2ncφ2
max {ln (ωoρ0) , 0}

√

λ(ωo)
, ρ0 = max

26i6n
|xi(t0)− x̂i(t0)|

1
n ,

cφ2 = λmax(Pφ), AT
φPφ + PφAφ = −I, Aφ =











−φ1 1 0 ··· 0

... 0
. . .

. . .
...

...
...
. . .

. . . 0
−φn 0 ··· 0 1

−φn+1 0 ··· ··· 0











.

(16)

For t > tu, u(t) is designed according to (7) and (13). Then there exist positives η∗i (1 6 i 6 5) and ω∗

dependent on (xe(t0), x̂e(t0), ψf , ψb̄, ψb,Mr,K) such that

sup
t>t0

‖x(t)− x∗(t)‖ 6 η∗1 max

{

lnωo
√

λ(ωo)
,
λ(ωo)

ωo
,

1

λ(ωo)

}

, (17)

‖xe(t)− x̂e(t)‖ 6 η∗2

(

λ(ωo)

ωo
+ e−η

∗
3ωo(t−tu)

)

, ∀t > tu, (18)

|u(t)− u∗(t)| 6 η∗4

(

λ(ωo)

ωo
+

1

λ(ωo)
+ e−η

∗
5λ(ωo)(t−tu)

)

, ∀t > tu, (19)

for any ωo > ω∗.

From Theorem 1, the bounds of tracking and estimating errors, as well as the difference between the
actual and ideal control inputs, are provided. According to the tuning law of λ(ωo) shown in Assumption 3,
Eq. (17) implies that the actual trajectory x(t) can approach the ideal one x∗(t) by tuning ωo to be
suitably large. Moreover, the satisfied estimating performance of ESO is illustrated by (18). As shown
in (19), the difference between the actual control input u(t) and the ideal input u∗(t) can be sufficiently
small via adjusting ωo.

The proof of Theorem 1 is given in Appendix A.
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Remark 4. The design of tu is to prevent from the poor closed-loop performance caused by the peaking
phenomenon of ESO, which is a common method as shown in [9,23,26]. Moreover, if the initial condition

satisfies that max26i6n |xi(t0)− x̂i(t0)|
1
n 6 1

ωo
, then tu = t0 and the satisfied transient performance (17)–

(19) can be obtained by designing u(t) as (7) and (13) for t > t0.

5 Simulations and experiments

5.1 Application example: single-link robotic manipulator

In this subsection, the simulations of a robotic manipulator system are presented.

Consider the following single-link robotic manipulator coupled to a direct current (DC) motor with a
nonrigid joint [32]:



























J1q̈1(t) + F1q̇1(t) +K

(

q1(t)−
q2(t)

N

)

+mgd cos(q1(t)) = 0,

J2q̈2(t) + F2q̇2(t)−
K

N

(

q1(t)−
q2(t)

N

)

= Kti(t),

Li̇(t) +Ri(t) +Kbq̇2(t) = u(t) + fN(q1, q̇1, q2, q̇2, i),

(20)

where q1(t) ∈ R and q2(t) ∈ R are the angular positions of the link and the motor shaft at time t, i(t) ∈ R

is the armature current, and u(t) ∈ R is the armature voltage. The inertias J1 and J2, the viscous
friction coefficients F1 and F2, the spring coefficient K, the torque coefficient Kt, the back electromotive
force (EMF) coefficient Kb, the armature resistance R, the armature inductance L, the link mass m, the
position of the link’s center of gravity d, the gear ratio N and the acceleration of gravity g are constants.
The function fN(·) represents the unmodeled dynamics for DC motor.

Based on the measurement of the angular position of the link q1(t), the control objective is to design
the armature voltage u(t) such that q1(t) can track the reference signal r(t) despite the unknown system
parameters (J1, J2, F1, F2,K,Kt,Kb, R, L,N,m, d, g) and uncertainty fN .

By defining the following new states:



















































x1 = q1,

x2 = q̇1,

x3 =
(

−F1q̇1(t)−K
(

q1(t)−
q2
N

)

−mgd cos(q1(t))
)

/J1,

x4 =

(

−F1x3 −Kq̇1 +
Kq̇2
N

−mgd
d(cos(q1(t)))

dt

)

/J1,

x5 =

(

−F1x4 −Kx3 −
KF2q̇2
NJ2

+
K2

N2J2

(

x1 −
q2
N

)

+
KtKi

NJ2
−mgd

d2(cos(q1))

dt2

)

/J1,

(21)

the single-link robotic manipulator system (20) can be rewritten as (1) with b = KtK
NLJ1J2

and f =
KtKRi
NLJ2

−KtKKbq̇2
L − F1x5

J1
−Kx4

J1
− KF2

NJ1J2
q̈2+

K2x2

N2J2
− K2q̈2
N2J1J2

−mgd
J1

d3 cos(q1)
dt3 +fN . Although the detailed values

of the system parameters (J1, J2, F1, F2,K,Kt,Kb, R, L,N,m, d, g) are unknown, the control direction
satisfies that b > 0 based on the physical mechanism.

To verify the capability of handling uncertainties, the following fN , containing step disturbance, sinu-
soidal disturbance and unknown internal uncertainty, is tested in simulations:

fN =



















0, if 0 6 t < 5,

80, if 5 6 t < 10,

50 sin(t), if 10 6 t < 15,

3(q1 + q̇1 + q2 + q̇2 + i), if t > 15.

(22)
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Figure 1 (Color online) The tracking performance of pro-

posed ADRC and conventional ADRC for Cases 1–3.

Figure 2 (Color online) The tracking errors of proposed

ADRC and conventional ADRC for Cases 1–3.

Moreover, the following groups of system parameters are considered:



























Case 1: J1 = J2 = F1 = F2 = K = Kt = Kb = R = L = N = 1, m = d =
1

2
, g = 10,

Case 2: J1 = J2 = Kt = L = N = 1, F1 = F2 = R = K = Kb = 2, Kt = 1.22, m = d =
1

2
, g = 10,

Case 3: F1 = F2 = K = Kt = Kb = R = L = N = 1, J1 = J2 = m = d =
1

2
, g = 10.

Then the proposed ADRC (7) and (13) is designed with φi satisfying (8), ωo = 400, λ =
√
ωo and

K = [32 80 80 40 10]T. Besides, the following conventional ADRC with the same (φi, ωo,K) is considered
in simulations:































x̂i(t) = x̂i+1(t) + φiω
i
o(y(t)− x̂1(t)), i = 1, 2, 3, 4,

x̂5(t) = x̂6(t) + buu(t) + φ5ω
5
o(y(t)− x̂1(t)),

x̂6(t) = φ6ω
6
o(y(t)− x̂1(t)),

u(t) =
−x̂6(t)−KT([x̂1(t) · · · x̂5(t)]T − r̄(t)) + r(5)(t)

bu
.

(23)

The nominal value of input gain bu is selected as 1, which is the real value of b in Case 1.

Let the reference signal r(t) = 0.2 sin(t/2). The simulation results are shown in Figures 1 and 2.
From Figures 1 and 2, when bu is equal to the real value of b (Case 1), the conventional ADRC-based
closed-loop system has better tracking performance. However, when the control input gain b varies owing
to the varieties of the system parameters (Cases 2 and 3), the tracking performance of the conventional
ADRC-based closed-loop system becomes poor. In Case 3, the real value of control input gain b = 4
which exceeds the limits of conventional ADRC to handle the uncertain control input gain [27]. Hence
the conventional ADRC-based closed-loop system becomes unstable for Case 3. Moreover, Figures 1 and
2 show that the proposed ADRC still achieves satisfied tracking performance for Cases 2 and 3, which
illustrates that the proposed ADRC has the stronger robustness to the uncertainty of control input gain.

5.2 Experiment verification: permanent magnet linear synchronous motor servo system

In this subsection, the experiments of a permanent magnet linear synchronous motor (PMLSM) servo
system are presented.

The PMLSM servo system can be modeled as follows [33]:

ẋ1(t) = x2(t), ẋ2(t) =
kf
m
u(t)− B

m
x2(t) +

fs
m

+
fl
m
, (24)
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Figure 3 (Color online) Experimental setup of PMLSM servo

system.

Figure 4 (Color online) The control inputs of proposed

ADRC for various load masses (26).

where x1(t) ∈ R is the position of the mover, x2(t) ∈ R is the velocity of the mover, u(t) ∈ R is the
voltage, and the constants m,B, and kf are the mass of the mover, the viscous coefficient and the thrust
coefficient, respectively. fs and fl represent the unknown Coulomb moving friction force and external
load force, respectively.

Based on the measurement of the position of the mover x1(t), the control objective is to design the
voltage u(t) such that x1(t) can track the reference signal r(t).

Let b =
kf
m and f = −B

mx2+
fs
m + fl

m . Although the system parameters m,B, and kf and the dynamics
fs and fl are unknown, the control direction satisfies that b > 0 owing to the physical mechanism. Hence
the proposed ADRC (7) and (13) can be designed. The control parameters are chosen as ωo = 256, λ =√
ωo = 16, K = [625 50]T, φ1 = φ2 = 3, φ3 = 1. The following reference signal is considered:

r(t) =































0, if 0 6 t < 1,

0.1t− 0.1, if 1 6 t < 2,

0.1, if 2 6 t < 4,

− 0.1t+ 0.5, if 4 6 t < 5,

0, if t > 5.

(25)

To verify the robustness of the proposed design to uncertainties, the following varieties of the load
mass are considered in the experiment:

∆m ∈ {−0.4 (kg), − 0.2 (kg), 0 (kg), 0.2 (kg), 0.4 (kg), 0.6 (kg)}. (26)

The experimental setup is shown in Figure 3. Via the encoder (type: MicroE 126-70012-c), the position
of the mover is acquired and transmitted to the master computer. With the designed control algorithm
in the master computer, the digital control input is generated. The control card (type: GT-400-VS) is
employed as a real-time controller.

The experimental results are presented in Figures 4–6. From Figures 5 and 6, the closed-loop perfor-
mance of the proposed ADRC is highly consistent with each other despite the perturbations of the load
mass. For various load masses, the control inputs change smoothly, as shown in Figure 4. The exper-
imental results illustrate the effectiveness of the proposed ADRC for uncertain systems with unknown
control input gain.

6 Conclusion

The control problem for nonlinear uncertain systems with unknown control input gain is considered. A
new ADRC design is proposed, which only requires the information of control direction. The ESO is
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Figure 5 (Color online) The positions of the mover for vari-

ous load masses (26).

Figure 6 (Color online) The velocities of the mover for vari-

ous load masses (26).

presented to estimate the system state and the total disturbance containing the uncertainty of control
input. Based on the estimations from ESO and the sign of control input gain, the control input is generated
by a designed dynamical system which forces the actual input to track the ideal input. Moreover, for
a wide class of nonlinear uncertainties, the closed-loop transient performance of the proposed ADRC is
investigated. The theoretical results illustrate that the tracking and estimating errors, as well as the
difference between the actual and ideal control inputs, can be sufficiently small by tuning the parameter
of ESO. Finally, the simulations of a single-link robotic manipulator system and the experiments of a
PMLSM servo system are presented, which illustrates the effectiveness of the proposed ADRC.
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Appendix A Proof of Theorem 1

The proof consists of the following four steps:

(1) The analysis for the closed-loop form of the error system;

(2) The analysis for the bounds of uncertain terms in the closed-loop system;

(3) The analysis for the trajectories of the closed-loop system in [t0, tu);

(4) The analysis for the trajectories of the closed-loop system in [tu,∞).

Step 1. The analysis for the closed-loop form of the error systems.

Let the tracking and estimating errors and the difference between the actual and ideal inputs be e(t) = x(t) − x∗(t), ξ(t) =

T−1
1 (xe(t) − x̂e(t)), δu(t) = u(t) − u∗(t), where T1 is a diagonal matrix with the i-th diagonal element T1(i, i) = ωi−n−1

o .

Next, we analyze the dynamics of (e, ξ, δu). According to the ideal control input (10), the system (1) can be rewritten as

ẋ(t) = Ax(t) +B(b(x, t)u(t) + f(x, t) − b(x, t)u∗(t) + b(x, t)u∗(t))

= Ax(t) − BKT(x(t)− r̄(t)) +Br(n)(t) + Bbδu(t). (A1)

According to (9) and the definition of AK , the dynamics of e(t) is shown as follows:

ė(t) = AKe(t) +Bbδu(t). (A2)

From (5), (7) and the definition of Aφ (16), the dynamics of ξ can be obtained as follows:

ξ̇(t) = ωoAφξ(t) +Bf ẋn+1(t). (A3)

By (13), the dynamics of δu can be calculated as

δ̇u(t) = −sgn(b)λ(x̂n+1(t) +KT(x̂(t) − r̄(t)) − r(n)(t)) − u̇∗(t)

= −|b(x, t)|λδu(t) + sgn(b)λKT
e T1ξ(t) − u̇∗(t), (A4)

where Ke = [KT 1]T.

Based on (A2)–(A4), the closed-loop system is presented as follows:















ė(t) = Ae(t) + BΓe0(e, t),

ξ̇(t) = ωoAφξ(t) +BfΓξ0(e, t),

δ̇u(t) = −|b(x, t)|λδu(t) + Γδu0(e, ξ, ωo, λ, t),

t ∈ [t0, tu), (A5)















ė(t) = AKe(t) +BΓe1(e, δu, t),

ξ̇(t) = ωoAφξ(t) + BfΓξ1(e, ξ, δu, ωo, λ, t),

δ̇u(t) = −|b(x, t)|λδu(t) + Γδu1(e, ξ, δu, ωo, λ, t),

t ∈ [tu,∞), (A6)
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where Aφ is defined in (16) and



































































































Γe0 = f(e+ x∗, t) +KT(x∗ − r̄) − r(n), Γe1 = bδu,

Γξ0 = ∂f
∂x

(A(e + x∗) +Bf(e + x∗, t)) + ∂f
∂t
,

Γξ1 = (−λb|b| + ∂b
∂x

(AKe +Bbδu + ẋ∗) + ∂b
∂t

)δu + |b|λKT
e T1ξ + ∂f

∂x
(AKe +Bbδu + ẋ∗)

+( ∂b
∂x

(AKe+ Bbδu + ẋ∗) + ∂b
∂t

)(−f(e+ x∗, t) −KT(e+ x∗ − r̄) + r(n))/b+ ∂f
∂t
,

Γδu0 = ( ∂f
∂x

(A(e + x∗) +Bf(e + x∗, t)) + ∂f
∂t

+KT(A(e+ x∗) + Bf(e+ x∗, t) − ˙̄r)− r(n+1))/b

+(−f(e + x∗, t) −KT(e + x∗ − r̄) + r(n))( ∂b
∂x (A(e+ x∗) +Bf(e+ x∗, t)) + ∂b

∂t )/b
2 + sgn(b)λKT

e T1ξ,

Γδu1 = ( ∂f
∂x

(AKe +Bbδu + ẋ∗) + ∂f
∂t

+
KT(AKe+Bbδu+ẋ∗− ˙̄r)−r(n+1))

b
+ sgn(b)λKT

e T1ξ

+(−f(e + x∗, t) −KT(e + x∗ − r̄) + r(n))( ∂b
∂x

(AKe +Bbδu + ẋ∗) + ∂b
∂t

)/b2.

(A7)

Because the matrices AK and Aφ are Hurwitz, there exist positive definite matrices PK and Pφ such that AT
KPK +PKAK = −I

and AT
φPφ + PφAφ = −I.

Step 2. The analysis for the bounds of uncertain terms (Γe0,Γξ0,Γδu0,Γe1,Γξ1,Γδu1).

Owing to Assumption 1 and (9), there exists a positive constant Mx∗ such that supt>t0
{‖x∗(t)‖, ‖ẋ∗(t)‖} 6 Mx∗ . With the

combination of (A7) and Assumptions 1 and 2, the bounds of Γe0, Γξ0, Γδu0, Γe1, Γξ1 and Γδu1 can be obtained. To simplify the

expression of these boundaries, we introduce the non-decreasing function Ψ(a) , sup‖x‖6a{ψf (x), ψb̄(x), 1/ψb(x)}.
Considering any given positives ρe, ρξ, ρδu and ω∗

o , for any e ∈ {e| ‖e‖ 6 ρe}, ξ ∈ {ξ| ‖ξ‖ 6 ρξ}, δu ∈ {δu| |δu| 6 ρδu} and

ωo ∈ {ωo| ωo > ω∗
o}, there is















|Γe0| 6 πe0(ρe), |Γe1| 6 πe1(ρe)|δu|,
|Γξ0| 6 πξ0(ρe), |Γξ1| 6 πξ1(ρe) + (λ + 1)πδu (ρe, ρδu ) + πω(ω

∗
o )Ψ(ρe +Mx∗ )λ‖ξ‖,

|Γδu0| 6 πδu0(ρe) + πω(ω∗
o )λ‖ξ‖, |Γδu1| 6 πδu1(ρe, ρδu ) + πω(ω∗

o )λ‖ξ‖,
(A8)

where πe0(ρe) , Ψ(ρe +Mx∗ ) + ‖K‖(Mx∗ + nMr) +Mr , πe1(ρe) , Ψ(ρe +Mx∗ ), πξ0(ρe) , Ψ(ρe +Mx∗ )(1 + ‖A‖(ρe +Mx∗ ) +
Ψ(ρe +Mx∗ )), πξ1(ρe) , Ψ(ρe +Mx∗ )(‖AK‖ρe +Mx∗ + 1)(1 + Ψ(ρe +Mx∗ )(Ψ(ρe +Mx∗ ) + ‖K‖(ρe +Mx∗ + nMr) +Mr)),

πδu (ρe, ρδu ) , Ψ2(ρe+Mx∗ )ρ2δu +(2Ψ2(ρe +Mx∗)+Ψ(ρe+Mx∗ )(‖AK‖ρe+Mx∗ +1))(1+Ψ(ρe+Mx∗ )(Ψ(ρe+Mx∗)+‖K‖(ρe+
Mx∗ +nMr) +Mr))(ρδu +1), πω(ωo) , ‖Ke‖T1(ωo), πδu0 , (Ψ(ρe +Mx∗ )(1+ ‖A‖(ρe +Mx∗ ))+ ‖K‖(‖A‖(ρe +Mx∗ ) +Ψ(ρe +

Mx∗ )−nMr)+Mr)Ψ(ρe+Mx∗)+Ψ3(ρe+Mx∗)(Ψ(ρe+Mx∗ )+‖K‖(ρe+Mx∗+nMr)+Mr)(1+‖A‖(ρe+Mx∗ )+Ψ(ρe+Mx∗)), and
πδu1 , (Ψ(ρe+Mx∗)(‖AK‖ρe+Ψ(ρe+Mx∗ )ρδu +Mx∗ +1)+‖K‖(‖AK‖ρe+Ψ(ρe+Mx∗ )ρδu +Mx∗ +nMr)+Mr)Ψ(ρe+Mx∗)+
(Ψ(ρe +Mx∗ )+‖K‖(ρe +Mx∗ +nMr)+Mr)(‖AK‖ρe +Ψ(ρe +Mx∗ )ρδu +Mx∗ +1)Ψ3(ρe +Mx∗ ). The functions πe0(a), πe1(a),

πξ0(a), πξ1(a), πδu (a, b), πδu0(a) and πδu1(a, b) are non-decreasing with respect to the variables a and b. The function πω(a) is

non-increasing with respect to the variable a. More importantly, Eq. (A8) shows that the bounds of (Γe0,Γξ0,Γδu0,Γe1,Γξ1,Γδu1)

depend on the bounds of (e, ξ, δu) and the lower bound of ωo.

Step 3. The analysis for the trajectories of the closed-loop system in [t0, tu).

Owing to the definition of tu and Assumption 3, it can be deduced that limωo→∞ tu = t0. According to the dynamics (A5),

there exists a positive ω1 satisfying ω1 > max{1, ρ0} such that tu − t0 is suitably small and ‖e(t)‖ 6 ηe1(ω1) for t ∈ [t0, tu) and

ωo > ω1, where ηe1(ω1) is a positive constant dependent on ω1. Thus, it can be deduced from (A5) that

sup
t06t6tu

‖e(t)‖ 6 4ncφ2(‖A‖ηe1 + πe0(ηe1))
lnωo√
λ
, (A9)

where cφ2 is presented in (16).

Let Vφ(t) = ξT(t)Pφξ(t) and Vu(t) = δ2u(t)/2. Let cφ1 and cφ2 be the minimal and maximal eigenvalues of Pφ, respectively.

Then, we define a non-increasing function: Ψb(a) , inf‖x‖6a ψb(x). According to Assumption 2, there exists a positive constant

M(a) such that Ψb(a) > M(a) > 0 for any given a > 0. Hence let the positive constant ηb1 , Ψb(ηe1 +Mx∗ ).
Based on (A5), the dynamics of

√

Vφ(t) and
√

Vu(t) for t ∈ [t0, tu) satisfies























d
√

Vφ(t)

dt
=

−ωo‖ξ‖2 + 2ξTPφBfΓξ0

2
√

Vφ

6 − ωo

2cφ2

√

Vφ(t) +
‖Pφ‖πξ0(ηe1)

√
cφ1

,

d
√

Vu(t)

dt
=

−|b|λ|δu|2 + δuΓδu0

2
√
Vu

6 −ηb1λ
√

Vu(t) +

√
2πδu0(ηe1) +

√
2πωλ‖ξ(t)‖

2
.

(A10)

Owing to Gronwall lemma, Eq. (A10) implies that
√

Vφ(t) has the following bound:

√

Vφ(t) 6
2cφ2

‖Pφ‖πξ0(ηe1)
√
cφ1

ωo

+
√

Vφ(t0)e
−ωo(t−t0)

2cφ2 , t ∈ [t0, tu]. (A11)

Based on Gronwall lemma, (A10), and (A11), the bound of
√

Vu(t) is given as follows:

√

Vu(t) 6

√
2πδu0(ηe1)

2ηb1λ
+
√

Vu(t0)e
−ηb1λ(t−t0)

+

∫

t

t0

e
−ηb1λ(t−s)√

2πωλ‖ξ(s)‖ds

6

√
2πδu0(ηe1)

2ηb1λ
+

√
2πωcφ2‖Pφ‖πξ0(ηe1)

cφ1ηb1ωo

+
√

Vu(t0)e
−ηb1λ(t−t0)
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+

√
2πωλ

√

Vφ(t0)√
cφ1(

ωo
2cφ2

− ηb1λ)
e
−ηb1λ(t−t0)

(

1 − e
−(

ωo
2cφ2

−ηb1λ)(t−t0)
)

. (A12)

We consider the case that ρ0 > 1
ωo

. Notice that
√

Vφ(t0) 6 n
√
cφ2ω

n−1
o ρn−1

0 . Recalling the definition of tu in (16), the

following equations hold for ωo
λ

> 1 and λ > 1

4η2
b1

c2
φ2

:

√

Vφ(t0)e
−ωo(tu−t0)

2cφ2 =
√

Vφ(t0)e
−nωo√

λ
ln(ωoρ0)

6
n
√

cφ2

ωoρ0
, e

−ηb1λ(tu−t0)
= e

−2ncφ2ηb1
√

λ ln(ωoρ0) 6 1
ρn0 ωn

o
. (A13)

Based on (A11)–(A13), it can be deduced that























√

Vφ(tu) 6 ηVφ1(ω2) ,
2cφ2

‖Pφ‖πξ0(ηe1)
√
cφ1

ω2

+
n
√
cφ2

ρ0ω2

,

√

Vu(tu) 6 ηVu1(ω2, λ2) ,

√
2πδu0(ηe1)

2ηb1λ2

+

√
2πω(ω2)cφ2‖Pφ‖πξ0(ηe1)

cφ1ηb1ω2

+

√

Vu(t0)

ωn
2 ρ

n
0

+

√
2πω(ω2)n

√
cφ2

√
cφ1ηb1ρ0ω2

,

for any ωo > ω2, λ > λ2 and ωo
λ

> τ2, where ω2 = max{λ2τ2, ω1}, λ2 = 1

4η2
b1

c2
φ2

and τ2 = max{1, 4ηb1cφ2}.

If ρ0 6 1
ωo

, then tu = t0. Moreover, it can be proved that ‖e(tu)‖,
√

Vφ(tu) and
√

Vu(tu) are bounded for any ωo > ω2.

Without loss of generality, for ρ0 6 1
ωo

, let ηe1, ηVφ1 and ηVu1 denote the bounds of ‖e(tu)‖,
√

Vφ(tu) and
√

Vu(tu), respectively.

The similar derivatives as the case that ρ0 >
1

ωo
can be made. Thus, in the next step, the analysis for the case that ρ0 >

1
ωo

is

presented.

Step 4. The analysis for the trajectories of the closed-loop system in [tu,∞).

Owing to the dynamics (13), (A5), and (A6), (e, ξ, u) are continuous at tu. Let VK(t) = eT(t)PKe(t), ck1 and ck2 be the

minimal and maximum eigenvalues of PK , respectively. Then the following constants are introduced.



















ηVK2 ,
√
ck2 max{ηe1, 2‖PK‖πe1(ηe2)ηδu2}, ηVφ2 , ηVφ1, ηVu2 , max

{

ηVu1,
2πω(ω2)ηξ2

ηb2

}

,

ηe2 ,
ηVK1
√
ck1

, ηξ2 ,
ηV 2√
c21

, ηδu2 ,
ηV 2√
c21

, ηb2 , Ψb(ηe2 +Mx∗ ).

(A14)

Then we will prove that there exist positives ω3, λ3 and τ3 such that e(t), ξ(t), δu(t) stay in a bounded set Ω1 , {(e, ξ, δu) |
√
VK 6

ηVK2,
√

Vφ 6 ηVφ2,
√
Vu 6 ηVu2} for ωo > ω3, λ > λ3,

ωo
λ

> τ3 and t > tu. The proof consists of the following three steps.

(S1) We assume that there exists a positive t∗ satisfying t∗ ∈ [tu,∞) such that
√

Vφ(t∗) = ηVφ2. Besides,
√

Vφ(t) 6 ηVφ2,
√

VK(t) 6 ηVK2 and
√

Vδu (t) 6 ηVu2 for t ∈ [tu, t
∗]. Then it can be deduced that ‖e(t)‖ 6 ηe2, ‖ξ(t)‖ 6 ηξ2 and |δu(t)| 6 ηδu2

for t ∈ [tu, t
∗]. Owing to the dynamics (A6) and the bound of Γξ1 (A8), the derivative of

√

Vφ(t∗) satisfies

d
√

Vφ(t∗)

dt
6 −

ωoηVφ2

2cφ2

+
‖Pφ‖(πξ1(ηe2) + (λ+ 1)πδu (ηe2, ηδu2) + πω(ωo)Ψ(ηe2 +Mx∗ )ληξ2)

√
cφ1

. (A15)

By selecting ω3 = max{ω2, (6cφ2‖Pφ‖(πξ1(ηe2) + πδu (ηe2, ηδu2)))/(ηVφ2
√
cφ1)} and τ3 = (6cφ2‖Pφ‖(πω(ω2)Ψ(ηe2 +Mx∗ )ηξ2 +

πδu (ηe2, ηδu2)))/(ηVφ2
√
cφ1), the inequality (A15) directly implies that

d
√

Vφ(t∗)

dt < 0 for (ωo, λ) satisfying ωo > ω3 and ωo
λ

> τ3.

(S2) We assume that there exists a positive t∗ satisfying t∗ ∈ [tu,∞) such that
√

Vu(t∗) = ηVu2. Besides,
√

Vu(t) 6 ηVu2,
√

VK(t) 6 ηVK2 and
√

Vφ(t) 6 ηVφ2 for t ∈ [tu, t
∗]. Hence ‖e(t)‖ 6 ηe2, ‖ξ(t)‖ 6 ηξ2, |δu(t)| 6 ηδu2 and |b(x, t)| > ηb2 for t ∈

[tu, t
∗]. Based on (A6) and (A8), the derivative of

√

Vu(t∗) satisfies that
d
√

Vu(t∗)

dt 6 −ηb2ηVu2λ+
√

2
2 (πδu1(ηe2, ηδu2)+πωληξ2).

Owing to the definition of ηVu2 in (A14), we have −
ηb2ηVu2

2 +πω(ω2)ηξ2 6 0 for any ωo > ω3. By choosing λ3 =
2
√

2πδu1(ηe2,ηδu2)

ηb2ηVu2
,

it can be verified that
d
√

Vu(t∗)

dt < 0 for ωo > ω3 and λ > λ3.

(S3) We assume that there exists a positive t∗ satisfying t∗ ∈ [tu,∞) such that
√

VK(t∗) = ηVK2. Besides,
√

VK(t) 6 ηVK2,
√

Vφ(t) 6 ηVφ2 and
√

Vu(t) 6 ηVu2 for t ∈ [tu, t
∗]. Hence ‖e(t)‖ 6 ηe2, ‖ξ(t)‖ 6 ηξ2 and |δu(t)| 6 ηδu2 for t ∈ [tu, t

∗]. According

to (A6), (A8) and (A14), the derivative of
√

VK(t∗) satisfies that
d
√

VK (t∗)

dt 6 − ‖e(t∗)‖
2
√

VK (t∗)
(‖e(t∗)‖ − 2‖PK‖πe1(ηe2)ηδu2) < 0.

Based on (S1)–(S3), it can be concluded that the variables (e(t), ξ(t), δu(t)) stay in Ω1 for any ωo > ω3, λ > λ3 and ωo
λ

> τ3.

Next, we analyze the bounds of
√

VK(t),
√

Vφ(t) and
√

Vu(t) for t > tu.

Firstly, the bound of
√

Vφ(t) is studied. Owing to (A6) and (A8), for t > tu, we have

d
√

Vφ(t)

dt
6 − ωo

2cφ2

√

Vφ(t) +
‖Pφ‖(πξ1(ηe2) + (λ+ 1)πδu (ηe2, ηδu2) + πω(ωo)Ψ(ηe2 +Mx∗ )ληξ2)√

cφ1

. (A16)

Based on Gronwall lemma,
√

Vφ(t) has the following bound:

√

Vφ(t) 6 ηVφ2e
−ωo(t−tu)

2cφ2 + θφ1

1

ωo

+ θφ2

λ

ωo

, ∀t ∈ [tu,∞), (A17)

for ωo > ω3, λ > λ3 and ωo
λ

> τ3, where θφ1 = (‖Pφ‖(πξ1(ηe2) + πδu (ηe2, ηδu2)))/
√
cφ1 and θφ2 = (‖Pφ‖(πδu (ηe2, ηδu2) +

πω(ω3)Ψ(ηe2 +Mx∗ )ηξ2))/
√
cφ1.
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Secondly, we analyze the bound of
√

Vu(t). Owing to (A6), (A8) and (A17), for t > tu, we have

d
√

Vu(t)

dt
6 −ηb2λ

√

Vu(t) +

√
2

2
(πδu1(ηe2, ηδu2) + πωλ‖ξ(t)‖)

6 −ηb2λ
√

Vu(t) +

√
2

2






πδu1(ηe2, ηδu2) + λ

πω(ηVφ2e
− ωo

2cφ2
(t−tu)

+ θφ1
1

ωo
+ θφ2

λ
ωo

)
√
cφ1






. (A18)

Based on Gronwall lemma, the bound of
√

Vu(t) is shown as follows:

√

Vu(t) 6 ηVu2e
−ηb2λ(t−tu)

+ θu1
1

ωo

+ θu2
λ

ωo

+ θu3
1

λ
+ θu4

∫

t

tu

e
−ηb2λ(t−s)

e
− ωo

2cφ2
(s−tu)

ds

6

(

ηVu2 +
θu4

ηb2λ3

)

e
−ηb2λ(t−tu)

+ θu1
1

ωo

+ θu2
λ

ωo

+ θu3
1

λ
, ∀t ∈ [tu,∞), (A19)

for ωo > ω3, λ > λ3 and ωo
λ

> τ4 , max{τ3, 4cφ2ηb2}, where θu1 =

√
2πω(ω3)θφ1
2ηb2

√
cφ1

, θu2 =

√
2πω(ω3)θφ2
2ηb2

√
cφ1

, θu3 =

√
2πδu1(ηe2,ηδu2)

2ηb2

and θu4 =

√
2πω(ω3)ηVφ2

2ηb2
√

cφ1
.

Thirdly, the bound of
√

VK(t) is investigated. By defining t̃u = tu + lnωo

ηb2
√

λ
, it can be deduced from (A6) and (A9) that























sup
tu6t6t̃u

√

VK(t) 6
√
ck2

(

‖e(tu)‖ + (‖AK‖ηe2 + πe1(ηe2)ηδu2)
lnωo

ηb2
√
λ

)

6 θe
lnωo√
λ
,

e
−ηb2λ(t̃u−tu)

=
1

ω
√

λ
o

6
1

ωo

,

(A20)

for ωo > ω3, λ > λ4 , max{λ3, 1} and ωo
λ

> τ4, where θe = 4
√
ck2ncφ2(‖A‖ηe1 + πe0(ηe1)) +

√
ck2‖AK‖ηe2+

√
ck2πe1(ηe2)ηδu2

ηb2
.

Then the bound of
√

VK(t) for t > t̃u is analyzed. According to (A6), (A8), (A19), and (A20), the dynamics of
√

VK(t) satisfies

the following inequality for t > t̃u.

d
√

VK(t)

dt
6 −

√

VK(t)

2ck2

+

√
2‖PK‖πe1(ηe2)√

ck1

((

ηVu2 +
θu4

ηb2λ

)

e
−ηb2λ(t−tu)

+
θu1

ωo

+
θu2λ

ωo

+
θu3

λ

)

6 −
√

VK(t)

2ck2

+

√
2‖PK‖πe1(ηe2)√

ck1

((

ηVu2 +
θu4

ηb2λ
+ θu1

)

1

ωo

+
θu2λ

ωo

+
θu3

λ

)

, (A21)

for ωo > ω3, λ > λ4 and ωo
λ

> τ4. With the help of Gronwall lemma, we get the following bound of
√
VK .

sup
t>t̃u

√

VK(t) 6
√

VK(t̃u) + θe1
1

ωo

+ θe2
λ

ωo

+ θe3
1

λ
6 θe

lnωo√
λ

+ θe1
1

ωo

+ θe2
λ

ωo

+ θe3
1

λ
, (A22)

for ωo > ω3, λ > λ4, and
ωo
λ

> τ4, where θe1 = 2
√
2ck2‖PK‖πe1(ηe2)(ηVu2 +

θu4
ηb2λ3

+ θu1)/
√
ck1, θe2 = 2

√
2ck2‖PK‖πe1(ηe2)θu2

/
√
ck1 and θe3 = 2

√
2ck2‖PK‖πe1(ηe2)θu3/

√
ck1.

According to Assumption 3, there exists a positive ω4 satisfying ω4 > ω3 such that λ(ωo) > λ4 and ωo
λ(ωo)

> τ4 for any ωo > ω4.

Notice that 1
ωo

6 λ
ωo

for λ > λ4 > 1. With the combination of the bounds of supt06t6tu
‖e(t)‖,

√

VK(t),
√

Vφ(t) and
√

Vu(t),

i.e., (A9), (A17), (A19), (A20) and (A22), we prove (17)–(19).
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